Merge remote-tracking branch 'upstream/master' into chore/update-v4-from-master-3

This commit is contained in:
Adriane Boyd 2022-11-02 10:46:09 +01:00
commit 79c11de0c4
13 changed files with 100 additions and 34 deletions

View File

@ -12,10 +12,10 @@ jobs:
if: github.repository_owner == 'explosion'
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- uses: actions/checkout@v3
with:
ref: ${{ github.head_ref }}
- uses: actions/setup-python@v2
- uses: actions/setup-python@v3
- run: pip install black
- name: Auto-format code if needed
run: black spacy
@ -23,10 +23,11 @@ jobs:
# code and makes GitHub think the action failed
- name: Check for modified files
id: git-check
run: echo ::set-output name=modified::$(if git diff-index --quiet HEAD --; then echo "false"; else echo "true"; fi)
run: echo modified=$(if git diff-index --quiet HEAD --; then echo "false"; else echo "true"; fi) >> $GITHUB_OUTPUT
- name: Create Pull Request
if: steps.git-check.outputs.modified == 'true'
uses: peter-evans/create-pull-request@v3
uses: peter-evans/create-pull-request@v4
with:
title: Auto-format code with black
labels: meta

View File

@ -8,7 +8,7 @@ be used in real products.
spaCy comes with
[pretrained pipelines](https://spacy.io/models) and
currently supports tokenization and training for **60+ languages**. It features
currently supports tokenization and training for **70+ languages**. It features
state-of-the-art speed and **neural network models** for tagging,
parsing, **named entity recognition**, **text classification** and more,
multi-task learning with pretrained **transformers** like BERT, as well as a
@ -16,7 +16,7 @@ production-ready [**training system**](https://spacy.io/usage/training) and easy
model packaging, deployment and workflow management. spaCy is commercial
open-source software, released under the MIT license.
💫 **Version 3.4.0 out now!**
💫 **Version 3.4 out now!**
[Check out the release notes here.](https://github.com/explosion/spaCy/releases)
[![Azure Pipelines](https://img.shields.io/azure-devops/build/explosion-ai/public/8/master.svg?logo=azure-pipelines&style=flat-square&label=build)](https://dev.azure.com/explosion-ai/public/_build?definitionId=8)
@ -79,7 +79,7 @@ more people can benefit from it.
## Features
- Support for **60+ languages**
- Support for **70+ languages**
- **Trained pipelines** for different languages and tasks
- Multi-task learning with pretrained **transformers** like BERT
- Support for pretrained **word vectors** and embeddings

View File

@ -76,15 +76,15 @@ jobs:
# Python39Mac:
# imageName: "macos-latest"
# python.version: "3.9"
Python310Linux:
imageName: "ubuntu-latest"
python.version: "3.10"
# Python310Linux:
# imageName: "ubuntu-latest"
# python.version: "3.10"
Python310Windows:
imageName: "windows-latest"
python.version: "3.10"
Python310Mac:
imageName: "macos-latest"
python.version: "3.10"
# Python310Mac:
# imageName: "macos-latest"
# python.version: "3.10"
Python311Linux:
imageName: 'ubuntu-latest'
python.version: '3.11.0-rc.2'

View File

@ -71,11 +71,10 @@ def span_maker_forward(model, docs: List[Doc], is_train) -> Tuple[Ragged, Callab
cands.append((start_token, end_token))
candidates.append(ops.asarray2i(cands))
candlens = ops.asarray1i([len(cands) for cands in candidates])
candidates = ops.xp.concatenate(candidates)
outputs = Ragged(candidates, candlens)
lengths = model.ops.asarray1i([len(cands) for cands in candidates])
out = Ragged(model.ops.flatten(candidates), lengths)
# because this is just rearranging docs, the backprop does nothing
return outputs, lambda x: []
return out, lambda x: []
@registry.misc("spacy.KBFromFile.v1")

View File

@ -27,8 +27,8 @@ single_label_default_config = """
[model.tok2vec.embed]
@architectures = "spacy.MultiHashEmbed.v2"
width = 64
rows = [2000, 2000, 1000, 1000, 1000, 1000]
attrs = ["ORTH", "LOWER", "PREFIX", "SUFFIX", "SHAPE", "ID"]
rows = [2000, 2000, 500, 1000, 500]
attrs = ["NORM", "LOWER", "PREFIX", "SUFFIX", "SHAPE"]
include_static_vectors = false
[model.tok2vec.encode]

View File

@ -24,8 +24,8 @@ multi_label_default_config = """
[model.tok2vec.embed]
@architectures = "spacy.MultiHashEmbed.v2"
width = 64
rows = [2000, 2000, 1000, 1000, 1000, 1000]
attrs = ["ORTH", "LOWER", "PREFIX", "SUFFIX", "SHAPE", "ID"]
rows = [2000, 2000, 500, 1000, 500]
attrs = ["NORM", "LOWER", "PREFIX", "SUFFIX", "SHAPE"]
include_static_vectors = false
[model.tok2vec.encode]

View File

@ -10,6 +10,7 @@ from spacy.compat import pickle
from spacy.kb import Candidate, InMemoryLookupKB, get_candidates, KnowledgeBase
from spacy.lang.en import English
from spacy.ml import load_kb
from spacy.ml.models.entity_linker import build_span_maker
from spacy.pipeline import EntityLinker, TrainablePipe
from spacy.pipeline.legacy import EntityLinker_v1
from spacy.pipeline.tok2vec import DEFAULT_TOK2VEC_MODEL
@ -716,7 +717,11 @@ TRAIN_DATA = [
("Russ Cochran was a member of University of Kentucky's golf team.",
{"links": {(0, 12): {"Q7381115": 0.0, "Q2146908": 1.0}},
"entities": [(0, 12, "PERSON"), (43, 51, "LOC")],
"sent_starts": [1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]})
"sent_starts": [1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]}),
# having a blank instance shouldn't break things
("The weather is nice today.",
{"links": {}, "entities": [],
"sent_starts": [1, -1, 0, 0, 0, 0]})
]
GOLD_entities = ["Q2146908", "Q7381115", "Q7381115", "Q2146908"]
# fmt: on
@ -1260,3 +1265,18 @@ def test_save_activations():
assert scores.data.shape == (2, 1)
assert scores.data.dtype == "float32"
assert scores.lengths.shape == (1,)
def test_span_maker_forward_with_empty():
"""The forward pass of the span maker may have a doc with no entities."""
nlp = English()
doc1 = nlp("a b c")
ent = doc1[0:1]
ent.label_ = "X"
doc1.ents = [ent]
# no entities
doc2 = nlp("x y z")
# just to get a model
span_maker = build_span_maker()
span_maker([doc1, doc2], False)

View File

@ -231,7 +231,7 @@ def test_tok2vec_listener_callback():
def test_tok2vec_listener_overfitting():
""" Test that a pipeline with a listener properly overfits, even if 'tok2vec' is in the annotating components """
"""Test that a pipeline with a listener properly overfits, even if 'tok2vec' is in the annotating components"""
orig_config = Config().from_str(cfg_string)
nlp = util.load_model_from_config(orig_config, auto_fill=True, validate=True)
train_examples = []
@ -264,7 +264,7 @@ def test_tok2vec_listener_overfitting():
def test_tok2vec_frozen_not_annotating():
""" Test that a pipeline with a frozen tok2vec raises an error when the tok2vec is not annotating """
"""Test that a pipeline with a frozen tok2vec raises an error when the tok2vec is not annotating"""
orig_config = Config().from_str(cfg_string)
nlp = util.load_model_from_config(orig_config, auto_fill=True, validate=True)
train_examples = []
@ -274,12 +274,16 @@ def test_tok2vec_frozen_not_annotating():
for i in range(2):
losses = {}
with pytest.raises(ValueError, match=r"the tok2vec embedding layer is not updated"):
nlp.update(train_examples, sgd=optimizer, losses=losses, exclude=["tok2vec"])
with pytest.raises(
ValueError, match=r"the tok2vec embedding layer is not updated"
):
nlp.update(
train_examples, sgd=optimizer, losses=losses, exclude=["tok2vec"]
)
def test_tok2vec_frozen_overfitting():
""" Test that a pipeline with a frozen & annotating tok2vec can still overfit """
"""Test that a pipeline with a frozen & annotating tok2vec can still overfit"""
orig_config = Config().from_str(cfg_string)
nlp = util.load_model_from_config(orig_config, auto_fill=True, validate=True)
train_examples = []
@ -289,7 +293,13 @@ def test_tok2vec_frozen_overfitting():
for i in range(100):
losses = {}
nlp.update(train_examples, sgd=optimizer, losses=losses, exclude=["tok2vec"], annotates=["tok2vec"])
nlp.update(
train_examples,
sgd=optimizer,
losses=losses,
exclude=["tok2vec"],
annotates=["tok2vec"],
)
assert losses["tagger"] < 0.0001
# test the trained model

View File

@ -23,7 +23,7 @@ def get_textcat_bow_kwargs():
def get_textcat_cnn_kwargs():
return {"tok2vec": test_tok2vec(), "exclusive_classes": False, "nO": 13}
return {"tok2vec": make_test_tok2vec(), "exclusive_classes": False, "nO": 13}
def get_all_params(model):
@ -65,7 +65,7 @@ def get_tok2vec_kwargs():
}
def test_tok2vec():
def make_test_tok2vec():
return build_Tok2Vec_model(**get_tok2vec_kwargs())

View File

@ -1791,7 +1791,7 @@ the entity `Span` for example `._.orgs` or `._.prev_orgs` and
> [`Doc.retokenize`](/api/doc#retokenize) context manager:
>
> ```python
> with doc.retokenize() as retokenize:
> with doc.retokenize() as retokenizer:
> for ent in doc.ents:
> retokenizer.merge(ent)
> ```

View File

@ -4,12 +4,22 @@
"code": "af",
"name": "Afrikaans"
},
{
"code": "am",
"name": "Amharic",
"has_examples": true
},
{
"code": "ar",
"name": "Arabic",
"example": "هذه جملة",
"has_examples": true
},
{
"code": "az",
"name": "Azerbaijani",
"has_examples": true
},
{
"code": "bg",
"name": "Bulgarian",
@ -65,7 +75,7 @@
{
"code": "dsb",
"name": "Lower Sorbian",
"has_examples": true
"has_examples": true
},
{
"code": "el",
@ -142,6 +152,11 @@
"code": "ga",
"name": "Irish"
},
{
"code": "grc",
"name": "Ancient Greek",
"has_examples": true
},
{
"code": "gu",
"name": "Gujarati",
@ -172,7 +187,7 @@
{
"code": "hsb",
"name": "Upper Sorbian",
"has_examples": true
"has_examples": true
},
{
"code": "hu",
@ -260,6 +275,10 @@
"example": "Адамга эң кыйыны — күн сайын адам болуу",
"has_examples": true
},
{
"code": "la",
"name": "Latin"
},
{
"code": "lb",
"name": "Luxembourgish",
@ -448,6 +467,11 @@
"example": "นี่คือประโยค",
"has_examples": true
},
{
"code": "ti",
"name": "Tigrinya",
"has_examples": true
},
{
"code": "tl",
"name": "Tagalog"

View File

@ -149,6 +149,9 @@
& > span
display: block
a
text-decoration: underline
.small
font-size: var(--font-size-code)
line-height: 1.65

View File

@ -159,6 +159,9 @@ const QuickstartInstall = ({ id, title }) => {
setters={setters}
showDropdown={showDropdown}
>
<QS os="mac" hardware="gpu" platform="arm">
# Note M1 GPU support is experimental, see <a href="https://github.com/explosion/thinc/issues/792">Thinc issue #792</a>
</QS>
<QS package="pip" config="venv">
python -m venv .env
</QS>
@ -198,7 +201,13 @@ const QuickstartInstall = ({ id, title }) => {
{nightly ? ' --pre' : ''}
</QS>
<QS package="conda">conda install -c conda-forge spacy</QS>
<QS package="conda" hardware="gpu">
<QS package="conda" hardware="gpu" os="windows">
conda install -c conda-forge cupy
</QS>
<QS package="conda" hardware="gpu" os="linux">
conda install -c conda-forge cupy
</QS>
<QS package="conda" hardware="gpu" os="mac" platform="x86">
conda install -c conda-forge cupy
</QS>
<QS package="conda" config="train">