mirror of
https://github.com/explosion/spaCy.git
synced 2025-02-27 17:12:54 +03:00
adding local sentence encoder
This commit is contained in:
parent
4392c01b7b
commit
86ed771e0b
|
@ -42,6 +42,7 @@ class EL_Model:
|
||||||
HIDDEN_2_WIDTH = 32 # 6
|
HIDDEN_2_WIDTH = 32 # 6
|
||||||
DESC_WIDTH = 64 # 4
|
DESC_WIDTH = 64 # 4
|
||||||
ARTICLE_WIDTH = 64 # 8
|
ARTICLE_WIDTH = 64 # 8
|
||||||
|
SENT_WIDTH = 64
|
||||||
|
|
||||||
DROP = 0.1
|
DROP = 0.1
|
||||||
|
|
||||||
|
@ -55,6 +56,7 @@ class EL_Model:
|
||||||
self._build_cnn(in_width=self.INPUT_DIM,
|
self._build_cnn(in_width=self.INPUT_DIM,
|
||||||
desc_width=self.DESC_WIDTH,
|
desc_width=self.DESC_WIDTH,
|
||||||
article_width=self.ARTICLE_WIDTH,
|
article_width=self.ARTICLE_WIDTH,
|
||||||
|
sent_width=self.SENT_WIDTH,
|
||||||
hidden_1_width=self.HIDDEN_1_WIDTH,
|
hidden_1_width=self.HIDDEN_1_WIDTH,
|
||||||
hidden_2_width=self.HIDDEN_2_WIDTH)
|
hidden_2_width=self.HIDDEN_2_WIDTH)
|
||||||
|
|
||||||
|
@ -122,12 +124,15 @@ class EL_Model:
|
||||||
print(" HIDDEN_1_WIDTH", self.HIDDEN_1_WIDTH)
|
print(" HIDDEN_1_WIDTH", self.HIDDEN_1_WIDTH)
|
||||||
print(" DESC_WIDTH", self.DESC_WIDTH)
|
print(" DESC_WIDTH", self.DESC_WIDTH)
|
||||||
print(" ARTICLE_WIDTH", self.ARTICLE_WIDTH)
|
print(" ARTICLE_WIDTH", self.ARTICLE_WIDTH)
|
||||||
|
print(" SENT_WIDTH", self.SENT_WIDTH)
|
||||||
print(" HIDDEN_2_WIDTH", self.HIDDEN_2_WIDTH)
|
print(" HIDDEN_2_WIDTH", self.HIDDEN_2_WIDTH)
|
||||||
print(" DROP", self.DROP)
|
print(" DROP", self.DROP)
|
||||||
print()
|
print()
|
||||||
|
|
||||||
self._test_dev(dev_ent, dev_gold, dev_desc, dev_art, dev_art_texts, print_string="dev_random", calc_random=True)
|
self._test_dev(dev_ent, dev_gold, dev_desc, dev_art, dev_art_texts, dev_sent, dev_sent_texts,
|
||||||
self._test_dev(dev_ent, dev_gold, dev_desc, dev_art, dev_art_texts, print_string="dev_pre", avg=True)
|
print_string="dev_random", calc_random=True)
|
||||||
|
self._test_dev(dev_ent, dev_gold, dev_desc, dev_art, dev_art_texts, dev_sent, dev_sent_texts,
|
||||||
|
print_string="dev_pre", avg=True)
|
||||||
print()
|
print()
|
||||||
|
|
||||||
start = 0
|
start = 0
|
||||||
|
@ -139,10 +144,12 @@ class EL_Model:
|
||||||
|
|
||||||
golds = [train_gold[e] for e in next_batch]
|
golds = [train_gold[e] for e in next_batch]
|
||||||
descs = [train_desc[e] for e in next_batch]
|
descs = [train_desc[e] for e in next_batch]
|
||||||
articles = [train_art_texts[train_art[e]] for e in next_batch]
|
article_texts = [train_art_texts[train_art[e]] for e in next_batch]
|
||||||
|
sent_texts = [train_sent_texts[train_sent[e]] for e in next_batch]
|
||||||
|
|
||||||
self.update(entities=next_batch, golds=golds, descs=descs, texts=articles)
|
self.update(entities=next_batch, golds=golds, descs=descs, art_texts=article_texts, sent_texts=sent_texts)
|
||||||
self._test_dev(dev_ent, dev_gold, dev_desc, dev_art, dev_art_texts, print_string="dev_inter", avg=True)
|
self._test_dev(dev_ent, dev_gold, dev_desc, dev_art, dev_art_texts, dev_sent, dev_sent_texts,
|
||||||
|
print_string="dev_inter", avg=True)
|
||||||
|
|
||||||
processed += len(next_batch)
|
processed += len(next_batch)
|
||||||
|
|
||||||
|
@ -153,7 +160,8 @@ class EL_Model:
|
||||||
print()
|
print()
|
||||||
print("Trained on", processed, "entities in total")
|
print("Trained on", processed, "entities in total")
|
||||||
|
|
||||||
def _test_dev(self, entities, gold_by_entity, desc_by_entity, article_by_entity, texts_by_id, print_string, avg=True, calc_random=False):
|
def _test_dev(self, entities, gold_by_entity, desc_by_entity, art_by_entity, art_texts, sent_by_entity, sent_texts,
|
||||||
|
print_string, avg=True, calc_random=False):
|
||||||
golds = [gold_by_entity[e] for e in entities]
|
golds = [gold_by_entity[e] for e in entities]
|
||||||
|
|
||||||
if calc_random:
|
if calc_random:
|
||||||
|
@ -161,29 +169,35 @@ class EL_Model:
|
||||||
|
|
||||||
else:
|
else:
|
||||||
desc_docs = self.nlp.pipe([desc_by_entity[e] for e in entities])
|
desc_docs = self.nlp.pipe([desc_by_entity[e] for e in entities])
|
||||||
article_docs = self.nlp.pipe([texts_by_id[article_by_entity[e]] for e in entities])
|
article_docs = self.nlp.pipe([art_texts[art_by_entity[e]] for e in entities])
|
||||||
predictions = self._predict(entities=entities, article_docs=article_docs, desc_docs=desc_docs, avg=avg)
|
sent_docs = self.nlp.pipe([sent_texts[sent_by_entity[e]] for e in entities])
|
||||||
|
predictions = self._predict(entities=entities, article_docs=article_docs, sent_docs=sent_docs,
|
||||||
|
desc_docs=desc_docs, avg=avg)
|
||||||
|
|
||||||
# TODO: combine with prior probability
|
# TODO: combine with prior probability
|
||||||
p, r, f, acc = run_el.evaluate(predictions, golds, to_print=False, times_hundred=False)
|
p, r, f, acc = run_el.evaluate(predictions, golds, to_print=False, times_hundred=False)
|
||||||
loss, gradient = self.get_loss(self.model.ops.asarray(predictions), self.model.ops.asarray(golds))
|
loss, gradient = self.get_loss(self.model.ops.asarray(predictions), self.model.ops.asarray(golds))
|
||||||
|
|
||||||
print("p/r/F/acc/loss", print_string, round(p, 1), round(r, 1), round(f, 1), round(acc, 2), round(loss, 5))
|
print("p/r/F/acc/loss", print_string, round(p, 2), round(r, 2), round(f, 2), round(acc, 2), round(loss, 2))
|
||||||
|
|
||||||
return loss, p, r, f
|
return loss, p, r, f
|
||||||
|
|
||||||
def _predict(self, entities, article_docs, desc_docs, avg=True, apply_threshold=True):
|
def _predict(self, entities, article_docs, sent_docs, desc_docs, avg=True, apply_threshold=True):
|
||||||
if avg:
|
if avg:
|
||||||
with self.article_encoder.use_params(self.sgd_article.averages) \
|
with self.article_encoder.use_params(self.sgd_article.averages) \
|
||||||
and self.desc_encoder.use_params(self.sgd_entity.averages):
|
and self.desc_encoder.use_params(self.sgd_desc.averages):
|
||||||
doc_encodings = self.article_encoder(article_docs)
|
doc_encodings = self.article_encoder(article_docs)
|
||||||
desc_encodings = self.desc_encoder(desc_docs)
|
desc_encodings = self.desc_encoder(desc_docs)
|
||||||
|
sent_encodings = self.sent_encoder(sent_docs)
|
||||||
|
|
||||||
else:
|
else:
|
||||||
doc_encodings = self.article_encoder(article_docs)
|
doc_encodings = self.article_encoder(article_docs)
|
||||||
desc_encodings = self.desc_encoder(desc_docs)
|
desc_encodings = self.desc_encoder(desc_docs)
|
||||||
|
sent_encodings = self.sent_encoder(sent_docs)
|
||||||
|
|
||||||
|
concat_encodings = [list(doc_encodings[i]) + list(sent_encodings[i]) + list(desc_encodings[i]) for i in
|
||||||
|
range(len(entities))]
|
||||||
|
|
||||||
concat_encodings = [list(desc_encodings[i]) + list(doc_encodings[i]) for i in range(len(entities))]
|
|
||||||
np_array_list = np.asarray(concat_encodings)
|
np_array_list = np.asarray(concat_encodings)
|
||||||
|
|
||||||
if avg:
|
if avg:
|
||||||
|
@ -201,16 +215,17 @@ class EL_Model:
|
||||||
|
|
||||||
def _predict_random(self, entities, apply_threshold=True):
|
def _predict_random(self, entities, apply_threshold=True):
|
||||||
if not apply_threshold:
|
if not apply_threshold:
|
||||||
return [float(random.uniform(0, 1)) for e in entities]
|
return [float(random.uniform(0, 1)) for _ in entities]
|
||||||
else:
|
else:
|
||||||
return [float(1.0) if random.uniform(0, 1) > self.CUTOFF else float(0.0) for e in entities]
|
return [float(1.0) if random.uniform(0, 1) > self.CUTOFF else float(0.0) for _ in entities]
|
||||||
|
|
||||||
def _build_cnn(self, in_width, desc_width, article_width, hidden_1_width, hidden_2_width):
|
def _build_cnn(self, in_width, desc_width, article_width, sent_width, hidden_1_width, hidden_2_width):
|
||||||
with Model.define_operators({">>": chain, "|": concatenate, "**": clone}):
|
with Model.define_operators({">>": chain, "|": concatenate, "**": clone}):
|
||||||
self.desc_encoder = self._encoder(in_width=in_width, hidden_with=hidden_1_width, end_width=desc_width)
|
self.desc_encoder = self._encoder(in_width=in_width, hidden_with=hidden_1_width, end_width=desc_width)
|
||||||
self.article_encoder = self._encoder(in_width=in_width, hidden_with=hidden_1_width, end_width=article_width)
|
self.article_encoder = self._encoder(in_width=in_width, hidden_with=hidden_1_width, end_width=article_width)
|
||||||
|
self.sent_encoder = self._encoder(in_width=in_width, hidden_with=hidden_1_width, end_width=sent_width)
|
||||||
|
|
||||||
in_width = desc_width + article_width
|
in_width = article_width + sent_width + desc_width
|
||||||
out_width = hidden_2_width
|
out_width = hidden_2_width
|
||||||
|
|
||||||
self.model = Affine(out_width, in_width) \
|
self.model = Affine(out_width, in_width) \
|
||||||
|
@ -224,7 +239,8 @@ class EL_Model:
|
||||||
cnn_maxout_pieces = 3
|
cnn_maxout_pieces = 3
|
||||||
|
|
||||||
with Model.define_operators({">>": chain}):
|
with Model.define_operators({">>": chain}):
|
||||||
convolution = Residual((ExtractWindow(nW=1) >> LN(Maxout(hidden_with, hidden_with * 3, pieces=cnn_maxout_pieces))))
|
convolution = Residual((ExtractWindow(nW=1) >>
|
||||||
|
LN(Maxout(hidden_with, hidden_with * 3, pieces=cnn_maxout_pieces))))
|
||||||
|
|
||||||
encoder = SpacyVectors \
|
encoder = SpacyVectors \
|
||||||
>> with_flatten(LN(Maxout(hidden_with, in_width)) >> convolution ** conv_depth, pad=conv_depth) \
|
>> with_flatten(LN(Maxout(hidden_with, in_width)) >> convolution ** conv_depth, pad=conv_depth) \
|
||||||
|
@ -241,7 +257,8 @@ class EL_Model:
|
||||||
|
|
||||||
def _begin_training(self):
|
def _begin_training(self):
|
||||||
self.sgd_article = create_default_optimizer(self.article_encoder.ops)
|
self.sgd_article = create_default_optimizer(self.article_encoder.ops)
|
||||||
self.sgd_entity = create_default_optimizer(self.desc_encoder.ops)
|
self.sgd_sent = create_default_optimizer(self.sent_encoder.ops)
|
||||||
|
self.sgd_desc = create_default_optimizer(self.desc_encoder.ops)
|
||||||
self.sgd = create_default_optimizer(self.model.ops)
|
self.sgd = create_default_optimizer(self.model.ops)
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
|
@ -251,17 +268,19 @@ class EL_Model:
|
||||||
loss = (d_scores ** 2).mean()
|
loss = (d_scores ** 2).mean()
|
||||||
return loss, gradient
|
return loss, gradient
|
||||||
|
|
||||||
def update(self, entities, golds, descs, texts):
|
def update(self, entities, golds, descs, art_texts, sent_texts):
|
||||||
golds = self.model.ops.asarray(golds)
|
golds = self.model.ops.asarray(golds)
|
||||||
|
|
||||||
|
art_docs = self.nlp.pipe(art_texts)
|
||||||
|
sent_docs = self.nlp.pipe(sent_texts)
|
||||||
desc_docs = self.nlp.pipe(descs)
|
desc_docs = self.nlp.pipe(descs)
|
||||||
article_docs = self.nlp.pipe(texts)
|
|
||||||
|
|
||||||
doc_encodings, bp_doc = self.article_encoder.begin_update(article_docs, drop=self.DROP)
|
doc_encodings, bp_doc = self.article_encoder.begin_update(art_docs, drop=self.DROP)
|
||||||
|
sent_encodings, bp_sent = self.sent_encoder.begin_update(sent_docs, drop=self.DROP)
|
||||||
|
desc_encodings, bp_desc = self.desc_encoder.begin_update(desc_docs, drop=self.DROP)
|
||||||
|
|
||||||
desc_encodings, bp_entity = self.desc_encoder.begin_update(desc_docs, drop=self.DROP)
|
concat_encodings = [list(doc_encodings[i]) + list(sent_encodings[i]) + list(desc_encodings[i])
|
||||||
|
for i in range(len(entities))]
|
||||||
concat_encodings = [list(desc_encodings[i]) + list(doc_encodings[i]) for i in range(len(entities))]
|
|
||||||
|
|
||||||
predictions, bp_model = self.model.begin_update(np.asarray(concat_encodings), drop=self.DROP)
|
predictions, bp_model = self.model.begin_update(np.asarray(concat_encodings), drop=self.DROP)
|
||||||
predictions = self.model.ops.flatten(predictions)
|
predictions = self.model.ops.flatten(predictions)
|
||||||
|
@ -282,17 +301,23 @@ class EL_Model:
|
||||||
model_gradient = bp_model(gradient, sgd=self.sgd)
|
model_gradient = bp_model(gradient, sgd=self.sgd)
|
||||||
# print("model_gradient", model_gradient)
|
# print("model_gradient", model_gradient)
|
||||||
|
|
||||||
# concat = desc + doc, but doc is the same within this function (TODO: multiple docs/articles)
|
# concat = doc + sent + desc, but doc is the same within this function
|
||||||
doc_gradient = model_gradient[0][self.DESC_WIDTH:]
|
sent_start = self.ARTICLE_WIDTH
|
||||||
entity_gradients = list()
|
desc_start = self.ARTICLE_WIDTH + self.SENT_WIDTH
|
||||||
|
doc_gradient = model_gradient[0][0:sent_start]
|
||||||
|
sent_gradients = list()
|
||||||
|
desc_gradients = list()
|
||||||
for x in model_gradient:
|
for x in model_gradient:
|
||||||
entity_gradients.append(list(x[0:self.DESC_WIDTH]))
|
sent_gradients.append(list(x[sent_start:desc_start]))
|
||||||
|
desc_gradients.append(list(x[desc_start:]))
|
||||||
|
|
||||||
# print("doc_gradient", doc_gradient)
|
# print("doc_gradient", doc_gradient)
|
||||||
# print("entity_gradients", entity_gradients)
|
# print("sent_gradients", sent_gradients)
|
||||||
|
# print("desc_gradients", desc_gradients)
|
||||||
|
|
||||||
bp_doc([doc_gradient], sgd=self.sgd_article)
|
bp_doc([doc_gradient], sgd=self.sgd_article)
|
||||||
bp_entity(entity_gradients, sgd=self.sgd_entity)
|
bp_sent(sent_gradients, sgd=self.sgd_sent)
|
||||||
|
bp_desc(desc_gradients, sgd=self.sgd_desc)
|
||||||
|
|
||||||
def _get_training_data(self, training_dir, entity_descr_output, dev, limit, to_print):
|
def _get_training_data(self, training_dir, entity_descr_output, dev, limit, to_print):
|
||||||
id_to_descr = kb_creator._get_id_to_description(entity_descr_output)
|
id_to_descr = kb_creator._get_id_to_description(entity_descr_output)
|
||||||
|
@ -301,8 +326,6 @@ class EL_Model:
|
||||||
collect_correct=True,
|
collect_correct=True,
|
||||||
collect_incorrect=True)
|
collect_incorrect=True)
|
||||||
|
|
||||||
local_vectors = list() # TODO: local vectors
|
|
||||||
|
|
||||||
entities = set()
|
entities = set()
|
||||||
gold_by_entity = dict()
|
gold_by_entity = dict()
|
||||||
desc_by_entity = dict()
|
desc_by_entity = dict()
|
||||||
|
@ -372,14 +395,15 @@ class EL_Model:
|
||||||
sentence_to_id = dict()
|
sentence_to_id = dict()
|
||||||
for match_id, start, end in matches:
|
for match_id, start, end in matches:
|
||||||
span = article_doc[start:end]
|
span = article_doc[start:end]
|
||||||
sent_text = span.sent
|
sent_text = span.sent.text
|
||||||
sent_nr = sentence_to_id.get(sent_text, None)
|
sent_nr = sentence_to_id.get(sent_text, None)
|
||||||
|
mention = span.text
|
||||||
if sent_nr is None:
|
if sent_nr is None:
|
||||||
sent_nr = "S_" + str(next_sent_nr) + article_id
|
sent_nr = "S_" + str(next_sent_nr) + article_id
|
||||||
next_sent_nr += 1
|
next_sent_nr += 1
|
||||||
text_by_sentence[sent_nr] = sent_text
|
text_by_sentence[sent_nr] = sent_text
|
||||||
sentence_to_id[sent_text] = sent_nr
|
sentence_to_id[sent_text] = sent_nr
|
||||||
mention_entities = entities_by_mention[span.text]
|
mention_entities = entities_by_mention[mention]
|
||||||
for entity in mention_entities:
|
for entity in mention_entities:
|
||||||
entities.add(entity)
|
entities.add(entity)
|
||||||
sentence_by_entity[entity] = sent_nr
|
sentence_by_entity[entity] = sent_nr
|
||||||
|
@ -399,5 +423,6 @@ class EL_Model:
|
||||||
print()
|
print()
|
||||||
print("Processed", cnt, "training articles, dev=" + str(dev))
|
print("Processed", cnt, "training articles, dev=" + str(dev))
|
||||||
print()
|
print()
|
||||||
return list(entities), gold_by_entity, desc_by_entity, article_by_entity, text_by_article, sentence_by_entity, text_by_sentence
|
return list(entities), gold_by_entity, desc_by_entity, article_by_entity, text_by_article, \
|
||||||
|
sentence_by_entity, text_by_sentence
|
||||||
|
|
||||||
|
|
|
@ -111,7 +111,7 @@ if __name__ == "__main__":
|
||||||
print("STEP 6: training", datetime.datetime.now())
|
print("STEP 6: training", datetime.datetime.now())
|
||||||
my_nlp = spacy.load('en_core_web_md')
|
my_nlp = spacy.load('en_core_web_md')
|
||||||
trainer = EL_Model(kb=my_kb, nlp=my_nlp)
|
trainer = EL_Model(kb=my_kb, nlp=my_nlp)
|
||||||
trainer.train_model(training_dir=TRAINING_DIR, entity_descr_output=ENTITY_DESCR, trainlimit=100, devlimit=20)
|
trainer.train_model(training_dir=TRAINING_DIR, entity_descr_output=ENTITY_DESCR, trainlimit=1000, devlimit=50)
|
||||||
print()
|
print()
|
||||||
|
|
||||||
# STEP 7: apply the EL algorithm on the dev dataset
|
# STEP 7: apply the EL algorithm on the dev dataset
|
||||||
|
|
Loading…
Reference in New Issue
Block a user