adding local sentence encoder

This commit is contained in:
svlandeg 2019-05-23 16:59:11 +02:00
parent 4392c01b7b
commit 86ed771e0b
2 changed files with 63 additions and 38 deletions

View File

@ -42,6 +42,7 @@ class EL_Model:
HIDDEN_2_WIDTH = 32 # 6 HIDDEN_2_WIDTH = 32 # 6
DESC_WIDTH = 64 # 4 DESC_WIDTH = 64 # 4
ARTICLE_WIDTH = 64 # 8 ARTICLE_WIDTH = 64 # 8
SENT_WIDTH = 64
DROP = 0.1 DROP = 0.1
@ -55,6 +56,7 @@ class EL_Model:
self._build_cnn(in_width=self.INPUT_DIM, self._build_cnn(in_width=self.INPUT_DIM,
desc_width=self.DESC_WIDTH, desc_width=self.DESC_WIDTH,
article_width=self.ARTICLE_WIDTH, article_width=self.ARTICLE_WIDTH,
sent_width=self.SENT_WIDTH,
hidden_1_width=self.HIDDEN_1_WIDTH, hidden_1_width=self.HIDDEN_1_WIDTH,
hidden_2_width=self.HIDDEN_2_WIDTH) hidden_2_width=self.HIDDEN_2_WIDTH)
@ -77,8 +79,8 @@ class EL_Model:
print("article text", train_art_texts[train_art[entity]]) print("article text", train_art_texts[train_art[entity]])
print() print()
train_pos_entities = [k for k,v in train_gold.items() if v] train_pos_entities = [k for k, v in train_gold.items() if v]
train_neg_entities = [k for k,v in train_gold.items() if not v] train_neg_entities = [k for k, v in train_gold.items() if not v]
train_pos_count = len(train_pos_entities) train_pos_count = len(train_pos_entities)
train_neg_count = len(train_neg_entities) train_neg_count = len(train_neg_entities)
@ -122,12 +124,15 @@ class EL_Model:
print(" HIDDEN_1_WIDTH", self.HIDDEN_1_WIDTH) print(" HIDDEN_1_WIDTH", self.HIDDEN_1_WIDTH)
print(" DESC_WIDTH", self.DESC_WIDTH) print(" DESC_WIDTH", self.DESC_WIDTH)
print(" ARTICLE_WIDTH", self.ARTICLE_WIDTH) print(" ARTICLE_WIDTH", self.ARTICLE_WIDTH)
print(" SENT_WIDTH", self.SENT_WIDTH)
print(" HIDDEN_2_WIDTH", self.HIDDEN_2_WIDTH) print(" HIDDEN_2_WIDTH", self.HIDDEN_2_WIDTH)
print(" DROP", self.DROP) print(" DROP", self.DROP)
print() print()
self._test_dev(dev_ent, dev_gold, dev_desc, dev_art, dev_art_texts, print_string="dev_random", calc_random=True) self._test_dev(dev_ent, dev_gold, dev_desc, dev_art, dev_art_texts, dev_sent, dev_sent_texts,
self._test_dev(dev_ent, dev_gold, dev_desc, dev_art, dev_art_texts, print_string="dev_pre", avg=True) print_string="dev_random", calc_random=True)
self._test_dev(dev_ent, dev_gold, dev_desc, dev_art, dev_art_texts, dev_sent, dev_sent_texts,
print_string="dev_pre", avg=True)
print() print()
start = 0 start = 0
@ -139,10 +144,12 @@ class EL_Model:
golds = [train_gold[e] for e in next_batch] golds = [train_gold[e] for e in next_batch]
descs = [train_desc[e] for e in next_batch] descs = [train_desc[e] for e in next_batch]
articles = [train_art_texts[train_art[e]] for e in next_batch] article_texts = [train_art_texts[train_art[e]] for e in next_batch]
sent_texts = [train_sent_texts[train_sent[e]] for e in next_batch]
self.update(entities=next_batch, golds=golds, descs=descs, texts=articles) self.update(entities=next_batch, golds=golds, descs=descs, art_texts=article_texts, sent_texts=sent_texts)
self._test_dev(dev_ent, dev_gold, dev_desc, dev_art, dev_art_texts, print_string="dev_inter", avg=True) self._test_dev(dev_ent, dev_gold, dev_desc, dev_art, dev_art_texts, dev_sent, dev_sent_texts,
print_string="dev_inter", avg=True)
processed += len(next_batch) processed += len(next_batch)
@ -153,7 +160,8 @@ class EL_Model:
print() print()
print("Trained on", processed, "entities in total") print("Trained on", processed, "entities in total")
def _test_dev(self, entities, gold_by_entity, desc_by_entity, article_by_entity, texts_by_id, print_string, avg=True, calc_random=False): def _test_dev(self, entities, gold_by_entity, desc_by_entity, art_by_entity, art_texts, sent_by_entity, sent_texts,
print_string, avg=True, calc_random=False):
golds = [gold_by_entity[e] for e in entities] golds = [gold_by_entity[e] for e in entities]
if calc_random: if calc_random:
@ -161,29 +169,35 @@ class EL_Model:
else: else:
desc_docs = self.nlp.pipe([desc_by_entity[e] for e in entities]) desc_docs = self.nlp.pipe([desc_by_entity[e] for e in entities])
article_docs = self.nlp.pipe([texts_by_id[article_by_entity[e]] for e in entities]) article_docs = self.nlp.pipe([art_texts[art_by_entity[e]] for e in entities])
predictions = self._predict(entities=entities, article_docs=article_docs, desc_docs=desc_docs, avg=avg) sent_docs = self.nlp.pipe([sent_texts[sent_by_entity[e]] for e in entities])
predictions = self._predict(entities=entities, article_docs=article_docs, sent_docs=sent_docs,
desc_docs=desc_docs, avg=avg)
# TODO: combine with prior probability # TODO: combine with prior probability
p, r, f, acc = run_el.evaluate(predictions, golds, to_print=False, times_hundred=False) p, r, f, acc = run_el.evaluate(predictions, golds, to_print=False, times_hundred=False)
loss, gradient = self.get_loss(self.model.ops.asarray(predictions), self.model.ops.asarray(golds)) loss, gradient = self.get_loss(self.model.ops.asarray(predictions), self.model.ops.asarray(golds))
print("p/r/F/acc/loss", print_string, round(p, 1), round(r, 1), round(f, 1), round(acc, 2), round(loss, 5)) print("p/r/F/acc/loss", print_string, round(p, 2), round(r, 2), round(f, 2), round(acc, 2), round(loss, 2))
return loss, p, r, f return loss, p, r, f
def _predict(self, entities, article_docs, desc_docs, avg=True, apply_threshold=True): def _predict(self, entities, article_docs, sent_docs, desc_docs, avg=True, apply_threshold=True):
if avg: if avg:
with self.article_encoder.use_params(self.sgd_article.averages) \ with self.article_encoder.use_params(self.sgd_article.averages) \
and self.desc_encoder.use_params(self.sgd_entity.averages): and self.desc_encoder.use_params(self.sgd_desc.averages):
doc_encodings = self.article_encoder(article_docs) doc_encodings = self.article_encoder(article_docs)
desc_encodings = self.desc_encoder(desc_docs) desc_encodings = self.desc_encoder(desc_docs)
sent_encodings = self.sent_encoder(sent_docs)
else: else:
doc_encodings = self.article_encoder(article_docs) doc_encodings = self.article_encoder(article_docs)
desc_encodings = self.desc_encoder(desc_docs) desc_encodings = self.desc_encoder(desc_docs)
sent_encodings = self.sent_encoder(sent_docs)
concat_encodings = [list(doc_encodings[i]) + list(sent_encodings[i]) + list(desc_encodings[i]) for i in
range(len(entities))]
concat_encodings = [list(desc_encodings[i]) + list(doc_encodings[i]) for i in range(len(entities))]
np_array_list = np.asarray(concat_encodings) np_array_list = np.asarray(concat_encodings)
if avg: if avg:
@ -201,16 +215,17 @@ class EL_Model:
def _predict_random(self, entities, apply_threshold=True): def _predict_random(self, entities, apply_threshold=True):
if not apply_threshold: if not apply_threshold:
return [float(random.uniform(0, 1)) for e in entities] return [float(random.uniform(0, 1)) for _ in entities]
else: else:
return [float(1.0) if random.uniform(0, 1) > self.CUTOFF else float(0.0) for e in entities] return [float(1.0) if random.uniform(0, 1) > self.CUTOFF else float(0.0) for _ in entities]
def _build_cnn(self, in_width, desc_width, article_width, hidden_1_width, hidden_2_width): def _build_cnn(self, in_width, desc_width, article_width, sent_width, hidden_1_width, hidden_2_width):
with Model.define_operators({">>": chain, "|": concatenate, "**": clone}): with Model.define_operators({">>": chain, "|": concatenate, "**": clone}):
self.desc_encoder = self._encoder(in_width=in_width, hidden_with=hidden_1_width, end_width=desc_width) self.desc_encoder = self._encoder(in_width=in_width, hidden_with=hidden_1_width, end_width=desc_width)
self.article_encoder = self._encoder(in_width=in_width, hidden_with=hidden_1_width, end_width=article_width) self.article_encoder = self._encoder(in_width=in_width, hidden_with=hidden_1_width, end_width=article_width)
self.sent_encoder = self._encoder(in_width=in_width, hidden_with=hidden_1_width, end_width=sent_width)
in_width = desc_width + article_width in_width = article_width + sent_width + desc_width
out_width = hidden_2_width out_width = hidden_2_width
self.model = Affine(out_width, in_width) \ self.model = Affine(out_width, in_width) \
@ -224,7 +239,8 @@ class EL_Model:
cnn_maxout_pieces = 3 cnn_maxout_pieces = 3
with Model.define_operators({">>": chain}): with Model.define_operators({">>": chain}):
convolution = Residual((ExtractWindow(nW=1) >> LN(Maxout(hidden_with, hidden_with * 3, pieces=cnn_maxout_pieces)))) convolution = Residual((ExtractWindow(nW=1) >>
LN(Maxout(hidden_with, hidden_with * 3, pieces=cnn_maxout_pieces))))
encoder = SpacyVectors \ encoder = SpacyVectors \
>> with_flatten(LN(Maxout(hidden_with, in_width)) >> convolution ** conv_depth, pad=conv_depth) \ >> with_flatten(LN(Maxout(hidden_with, in_width)) >> convolution ** conv_depth, pad=conv_depth) \
@ -241,7 +257,8 @@ class EL_Model:
def _begin_training(self): def _begin_training(self):
self.sgd_article = create_default_optimizer(self.article_encoder.ops) self.sgd_article = create_default_optimizer(self.article_encoder.ops)
self.sgd_entity = create_default_optimizer(self.desc_encoder.ops) self.sgd_sent = create_default_optimizer(self.sent_encoder.ops)
self.sgd_desc = create_default_optimizer(self.desc_encoder.ops)
self.sgd = create_default_optimizer(self.model.ops) self.sgd = create_default_optimizer(self.model.ops)
@staticmethod @staticmethod
@ -251,17 +268,19 @@ class EL_Model:
loss = (d_scores ** 2).mean() loss = (d_scores ** 2).mean()
return loss, gradient return loss, gradient
def update(self, entities, golds, descs, texts): def update(self, entities, golds, descs, art_texts, sent_texts):
golds = self.model.ops.asarray(golds) golds = self.model.ops.asarray(golds)
art_docs = self.nlp.pipe(art_texts)
sent_docs = self.nlp.pipe(sent_texts)
desc_docs = self.nlp.pipe(descs) desc_docs = self.nlp.pipe(descs)
article_docs = self.nlp.pipe(texts)
doc_encodings, bp_doc = self.article_encoder.begin_update(article_docs, drop=self.DROP) doc_encodings, bp_doc = self.article_encoder.begin_update(art_docs, drop=self.DROP)
sent_encodings, bp_sent = self.sent_encoder.begin_update(sent_docs, drop=self.DROP)
desc_encodings, bp_desc = self.desc_encoder.begin_update(desc_docs, drop=self.DROP)
desc_encodings, bp_entity = self.desc_encoder.begin_update(desc_docs, drop=self.DROP) concat_encodings = [list(doc_encodings[i]) + list(sent_encodings[i]) + list(desc_encodings[i])
for i in range(len(entities))]
concat_encodings = [list(desc_encodings[i]) + list(doc_encodings[i]) for i in range(len(entities))]
predictions, bp_model = self.model.begin_update(np.asarray(concat_encodings), drop=self.DROP) predictions, bp_model = self.model.begin_update(np.asarray(concat_encodings), drop=self.DROP)
predictions = self.model.ops.flatten(predictions) predictions = self.model.ops.flatten(predictions)
@ -282,17 +301,23 @@ class EL_Model:
model_gradient = bp_model(gradient, sgd=self.sgd) model_gradient = bp_model(gradient, sgd=self.sgd)
# print("model_gradient", model_gradient) # print("model_gradient", model_gradient)
# concat = desc + doc, but doc is the same within this function (TODO: multiple docs/articles) # concat = doc + sent + desc, but doc is the same within this function
doc_gradient = model_gradient[0][self.DESC_WIDTH:] sent_start = self.ARTICLE_WIDTH
entity_gradients = list() desc_start = self.ARTICLE_WIDTH + self.SENT_WIDTH
doc_gradient = model_gradient[0][0:sent_start]
sent_gradients = list()
desc_gradients = list()
for x in model_gradient: for x in model_gradient:
entity_gradients.append(list(x[0:self.DESC_WIDTH])) sent_gradients.append(list(x[sent_start:desc_start]))
desc_gradients.append(list(x[desc_start:]))
# print("doc_gradient", doc_gradient) # print("doc_gradient", doc_gradient)
# print("entity_gradients", entity_gradients) # print("sent_gradients", sent_gradients)
# print("desc_gradients", desc_gradients)
bp_doc([doc_gradient], sgd=self.sgd_article) bp_doc([doc_gradient], sgd=self.sgd_article)
bp_entity(entity_gradients, sgd=self.sgd_entity) bp_sent(sent_gradients, sgd=self.sgd_sent)
bp_desc(desc_gradients, sgd=self.sgd_desc)
def _get_training_data(self, training_dir, entity_descr_output, dev, limit, to_print): def _get_training_data(self, training_dir, entity_descr_output, dev, limit, to_print):
id_to_descr = kb_creator._get_id_to_description(entity_descr_output) id_to_descr = kb_creator._get_id_to_description(entity_descr_output)
@ -301,8 +326,6 @@ class EL_Model:
collect_correct=True, collect_correct=True,
collect_incorrect=True) collect_incorrect=True)
local_vectors = list() # TODO: local vectors
entities = set() entities = set()
gold_by_entity = dict() gold_by_entity = dict()
desc_by_entity = dict() desc_by_entity = dict()
@ -372,14 +395,15 @@ class EL_Model:
sentence_to_id = dict() sentence_to_id = dict()
for match_id, start, end in matches: for match_id, start, end in matches:
span = article_doc[start:end] span = article_doc[start:end]
sent_text = span.sent sent_text = span.sent.text
sent_nr = sentence_to_id.get(sent_text, None) sent_nr = sentence_to_id.get(sent_text, None)
mention = span.text
if sent_nr is None: if sent_nr is None:
sent_nr = "S_" + str(next_sent_nr) + article_id sent_nr = "S_" + str(next_sent_nr) + article_id
next_sent_nr += 1 next_sent_nr += 1
text_by_sentence[sent_nr] = sent_text text_by_sentence[sent_nr] = sent_text
sentence_to_id[sent_text] = sent_nr sentence_to_id[sent_text] = sent_nr
mention_entities = entities_by_mention[span.text] mention_entities = entities_by_mention[mention]
for entity in mention_entities: for entity in mention_entities:
entities.add(entity) entities.add(entity)
sentence_by_entity[entity] = sent_nr sentence_by_entity[entity] = sent_nr
@ -399,5 +423,6 @@ class EL_Model:
print() print()
print("Processed", cnt, "training articles, dev=" + str(dev)) print("Processed", cnt, "training articles, dev=" + str(dev))
print() print()
return list(entities), gold_by_entity, desc_by_entity, article_by_entity, text_by_article, sentence_by_entity, text_by_sentence return list(entities), gold_by_entity, desc_by_entity, article_by_entity, text_by_article, \
sentence_by_entity, text_by_sentence

View File

@ -111,7 +111,7 @@ if __name__ == "__main__":
print("STEP 6: training", datetime.datetime.now()) print("STEP 6: training", datetime.datetime.now())
my_nlp = spacy.load('en_core_web_md') my_nlp = spacy.load('en_core_web_md')
trainer = EL_Model(kb=my_kb, nlp=my_nlp) trainer = EL_Model(kb=my_kb, nlp=my_nlp)
trainer.train_model(training_dir=TRAINING_DIR, entity_descr_output=ENTITY_DESCR, trainlimit=100, devlimit=20) trainer.train_model(training_dir=TRAINING_DIR, entity_descr_output=ENTITY_DESCR, trainlimit=1000, devlimit=50)
print() print()
# STEP 7: apply the EL algorithm on the dev dataset # STEP 7: apply the EL algorithm on the dev dataset