mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 17:24:41 +03:00
Generalize conllu script. Now handling Chinese (maybe badly)
This commit is contained in:
parent
5cc3bd1c1d
commit
8adeea3746
|
@ -11,7 +11,7 @@ import spacy.util
|
|||
from spacy.tokens import Doc
|
||||
from spacy.gold import GoldParse, minibatch
|
||||
from spacy.syntax.nonproj import projectivize
|
||||
from collections import Counter
|
||||
from collections import defaultdict, Counter
|
||||
from timeit import default_timer as timer
|
||||
from spacy.matcher import Matcher
|
||||
|
||||
|
@ -56,7 +56,7 @@ def split_text(text):
|
|||
|
||||
|
||||
def read_data(nlp, conllu_file, text_file, raw_text=True, oracle_segments=False,
|
||||
limit=None):
|
||||
max_doc_length=None, limit=None):
|
||||
'''Read the CONLLU format into (Doc, GoldParse) tuples. If raw_text=True,
|
||||
include Doc objects created using nlp.make_doc and then aligned against
|
||||
the gold-standard sequences. If oracle_segments=True, include Doc objects
|
||||
|
@ -70,51 +70,67 @@ def read_data(nlp, conllu_file, text_file, raw_text=True, oracle_segments=False,
|
|||
docs = []
|
||||
golds = []
|
||||
for doc_id, (text, cd) in enumerate(zip(paragraphs, conllu)):
|
||||
doc_words = []
|
||||
doc_tags = []
|
||||
doc_heads = []
|
||||
doc_deps = []
|
||||
doc_ents = []
|
||||
sent_annots = []
|
||||
for cs in cd:
|
||||
sent_words = []
|
||||
sent_tags = []
|
||||
sent_heads = []
|
||||
sent_deps = []
|
||||
for id_, word, lemma, pos, tag, morph, head, dep, _1, _2 in cs:
|
||||
sent = defaultdict(list)
|
||||
for id_, word, lemma, pos, tag, morph, head, dep, _, space_after in cs:
|
||||
if '.' in id_:
|
||||
continue
|
||||
if '-' in id_:
|
||||
continue
|
||||
id_ = int(id_)-1
|
||||
head = int(head)-1 if head != '0' else id_
|
||||
sent_words.append(word)
|
||||
sent_tags.append(tag)
|
||||
sent_heads.append(head)
|
||||
sent_deps.append('ROOT' if dep == 'root' else dep)
|
||||
sent['words'].append(word)
|
||||
sent['tags'].append(tag)
|
||||
sent['heads'].append(head)
|
||||
sent['deps'].append('ROOT' if dep == 'root' else dep)
|
||||
sent['spaces'].append(space_after == '_')
|
||||
sent['entities'] = ['-'] * len(sent['words'])
|
||||
sent['heads'], sent['deps'] = projectivize(sent['heads'],
|
||||
sent['deps'])
|
||||
if oracle_segments:
|
||||
sent_heads, sent_deps = projectivize(sent_heads, sent_deps)
|
||||
docs.append(Doc(nlp.vocab, words=sent_words))
|
||||
golds.append(GoldParse(docs[-1], words=sent_words, heads=sent_heads,
|
||||
tags=sent_tags, deps=sent_deps,
|
||||
entities=['-']*len(sent_words)))
|
||||
for head in sent_heads:
|
||||
doc_heads.append(len(doc_words)+head)
|
||||
doc_words.extend(sent_words)
|
||||
doc_tags.extend(sent_tags)
|
||||
doc_deps.extend(sent_deps)
|
||||
doc_ents.extend(['-']*len(sent_words))
|
||||
# Create a GoldParse object for the sentence
|
||||
doc_heads, doc_deps = projectivize(doc_heads, doc_deps)
|
||||
if raw_text:
|
||||
docs.append(nlp.make_doc(text))
|
||||
golds.append(GoldParse(docs[-1], words=doc_words, tags=doc_tags,
|
||||
heads=doc_heads, deps=doc_deps,
|
||||
entities=doc_ents))
|
||||
if limit and doc_id >= limit:
|
||||
break
|
||||
docs.append(Doc(nlp.vocab, words=sent['words'], spaces=sent['spaces']))
|
||||
golds.append(GoldParse(docs[-1], **sent))
|
||||
|
||||
sent_annots.append(sent)
|
||||
if raw_text and max_doc_length and len(sent_annots) >= max_doc_length:
|
||||
doc, gold = _make_gold(nlp, None, sent_annots)
|
||||
sent_annots = []
|
||||
docs.append(doc)
|
||||
golds.append(gold)
|
||||
if limit and len(docs) >= limit:
|
||||
return docs, golds
|
||||
|
||||
if raw_text and sent_annots:
|
||||
doc, gold = _make_gold(nlp, None, sent_annots)
|
||||
docs.append(doc)
|
||||
golds.append(gold)
|
||||
if limit and len(docs) >= limit:
|
||||
return docs, golds
|
||||
return docs, golds
|
||||
|
||||
|
||||
def _make_gold(nlp, text, sent_annots):
|
||||
# Flatten the conll annotations, and adjust the head indices
|
||||
flat = defaultdict(list)
|
||||
for sent in sent_annots:
|
||||
flat['heads'].extend(len(flat['words'])+head for head in sent['heads'])
|
||||
for field in ['words', 'tags', 'deps', 'entities', 'spaces']:
|
||||
flat[field].extend(sent[field])
|
||||
# Construct text if necessary
|
||||
assert len(flat['words']) == len(flat['spaces'])
|
||||
if text is None:
|
||||
text = ''.join(word+' '*space for word, space in zip(flat['words'], flat['spaces']))
|
||||
doc = nlp.make_doc(text)
|
||||
flat.pop('spaces')
|
||||
gold = GoldParse(doc, **flat)
|
||||
#for annot in gold.orig_annot:
|
||||
# print(annot)
|
||||
#for i in range(len(doc)):
|
||||
# print(doc[i].text, gold.words[i], gold.labels[i], gold.heads[i])
|
||||
return doc, gold
|
||||
|
||||
|
||||
def refresh_docs(docs):
|
||||
vocab = docs[0].vocab
|
||||
return [Doc(vocab, words=[t.text for t in doc],
|
||||
|
@ -124,8 +140,8 @@ def refresh_docs(docs):
|
|||
|
||||
def read_conllu(file_):
|
||||
docs = []
|
||||
doc = None
|
||||
sent = []
|
||||
doc = []
|
||||
for line in file_:
|
||||
if line.startswith('# newdoc'):
|
||||
if doc:
|
||||
|
@ -135,29 +151,23 @@ def read_conllu(file_):
|
|||
continue
|
||||
elif not line.strip():
|
||||
if sent:
|
||||
if doc is None:
|
||||
docs.append([sent])
|
||||
else:
|
||||
doc.append(sent)
|
||||
doc.append(sent)
|
||||
sent = []
|
||||
else:
|
||||
sent.append(line.strip().split())
|
||||
if sent:
|
||||
if doc is None:
|
||||
docs.append([sent])
|
||||
else:
|
||||
doc.append(sent)
|
||||
doc.append(sent)
|
||||
if doc:
|
||||
docs.append(doc)
|
||||
return docs
|
||||
|
||||
|
||||
def parse_dev_data(nlp, text_loc, conllu_loc, oracle_segments=False,
|
||||
joint_sbd=True):
|
||||
joint_sbd=True, limit=None):
|
||||
with open(text_loc) as text_file:
|
||||
with open(conllu_loc) as conllu_file:
|
||||
docs, golds = read_data(nlp, conllu_file, text_file,
|
||||
oracle_segments=oracle_segments)
|
||||
oracle_segments=oracle_segments, limit=limit)
|
||||
if joint_sbd:
|
||||
pass
|
||||
else:
|
||||
|
@ -200,10 +210,11 @@ def print_conllu(docs, file_):
|
|||
merger.add('SUBTOK', None, [{'DEP': 'subtok', 'op': '+'}])
|
||||
for i, doc in enumerate(docs):
|
||||
matches = merger(doc)
|
||||
spans = [(doc[start].idx, doc[end+1].idx+len(doc[end+1]))
|
||||
for (_, start, end) in matches if end < (len(doc)-1)]
|
||||
for start_char, end_char in spans:
|
||||
spans = [doc[start:end+1] for _, start, end in matches]
|
||||
offsets = [(span.start_char, span.end_char) for span in spans]
|
||||
for start_char, end_char in offsets:
|
||||
doc.merge(start_char, end_char)
|
||||
#print([t.text for t in doc])
|
||||
file_.write("# newdoc id = {i}\n".format(i=i))
|
||||
for j, sent in enumerate(doc.sents):
|
||||
file_.write("# sent_id = {i}.{j}\n".format(i=i, j=j))
|
||||
|
@ -232,7 +243,7 @@ def main(lang, conllu_train_loc, text_train_loc, conllu_dev_loc, text_dev_loc,
|
|||
with open(text_train_loc) as text_file:
|
||||
docs, golds = read_data(nlp, conllu_file, text_file,
|
||||
oracle_segments=False, raw_text=True,
|
||||
limit=None)
|
||||
max_doc_length=10, limit=None)
|
||||
print("Create parser")
|
||||
nlp.add_pipe(nlp.create_pipe('parser'))
|
||||
nlp.parser.add_multitask_objective('tag')
|
||||
|
@ -257,7 +268,7 @@ def main(lang, conllu_train_loc, text_train_loc, conllu_dev_loc, text_dev_loc,
|
|||
# Batch size starts at 1 and grows, so that we make updates quickly
|
||||
# at the beginning of training.
|
||||
batch_sizes = spacy.util.compounding(spacy.util.env_opt('batch_from', 1),
|
||||
spacy.util.env_opt('batch_to', 2),
|
||||
spacy.util.env_opt('batch_to', 8),
|
||||
spacy.util.env_opt('batch_compound', 1.001))
|
||||
for i in range(30):
|
||||
docs = refresh_docs(docs)
|
||||
|
@ -275,13 +286,15 @@ def main(lang, conllu_train_loc, text_train_loc, conllu_dev_loc, text_dev_loc,
|
|||
|
||||
with nlp.use_params(optimizer.averages):
|
||||
dev_docs, scorer = parse_dev_data(nlp, text_dev_loc, conllu_dev_loc,
|
||||
oracle_segments=False, joint_sbd=True)
|
||||
oracle_segments=False, joint_sbd=True,
|
||||
limit=5)
|
||||
print_progress(i, losses, scorer)
|
||||
with open(output_loc, 'w') as file_:
|
||||
print_conllu(dev_docs, file_)
|
||||
dev_docs, scorer = parse_dev_data(nlp, text_dev_loc, conllu_dev_loc,
|
||||
oracle_segments=False, joint_sbd=False)
|
||||
print_progress(i, losses, scorer)
|
||||
with open('/tmp/train.conllu', 'w') as file_:
|
||||
print_conllu(list(nlp.pipe([d.text for d in batch_docs])), file_)
|
||||
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
|
Loading…
Reference in New Issue
Block a user