mirror of
https://github.com/explosion/spaCy.git
synced 2024-11-11 20:28:20 +03:00
302 lines
11 KiB
Python
302 lines
11 KiB
Python
'''Train for CONLL 2017 UD treebank evaluation. Takes .conllu files, writes
|
|
.conllu format for development data, allowing the official scorer to be used.
|
|
'''
|
|
from __future__ import unicode_literals
|
|
import plac
|
|
import tqdm
|
|
import re
|
|
import sys
|
|
import spacy
|
|
import spacy.util
|
|
from spacy.tokens import Doc
|
|
from spacy.gold import GoldParse, minibatch
|
|
from spacy.syntax.nonproj import projectivize
|
|
from collections import defaultdict, Counter
|
|
from timeit import default_timer as timer
|
|
from spacy.matcher import Matcher
|
|
|
|
import random
|
|
import numpy.random
|
|
|
|
from spacy._align import align
|
|
|
|
random.seed(0)
|
|
numpy.random.seed(0)
|
|
|
|
|
|
def get_token_acc(docs, golds):
|
|
'''Quick function to evaluate tokenization accuracy.'''
|
|
miss = 0
|
|
hit = 0
|
|
for doc, gold in zip(docs, golds):
|
|
for i in range(len(doc)):
|
|
token = doc[i]
|
|
align = gold.words[i]
|
|
if align == None:
|
|
miss += 1
|
|
else:
|
|
hit += 1
|
|
return miss, hit
|
|
|
|
|
|
def golds_to_gold_tuples(docs, golds):
|
|
'''Get out the annoying 'tuples' format used by begin_training, given the
|
|
GoldParse objects.'''
|
|
tuples = []
|
|
for doc, gold in zip(docs, golds):
|
|
text = doc.text
|
|
ids, words, tags, heads, labels, iob = zip(*gold.orig_annot)
|
|
sents = [((ids, words, tags, heads, labels, iob), [])]
|
|
tuples.append((text, sents))
|
|
return tuples
|
|
|
|
def split_text(text):
|
|
return [par.strip().replace('\n', ' ')
|
|
for par in text.split('\n\n')]
|
|
|
|
|
|
def read_data(nlp, conllu_file, text_file, raw_text=True, oracle_segments=False,
|
|
max_doc_length=None, limit=None):
|
|
'''Read the CONLLU format into (Doc, GoldParse) tuples. If raw_text=True,
|
|
include Doc objects created using nlp.make_doc and then aligned against
|
|
the gold-standard sequences. If oracle_segments=True, include Doc objects
|
|
created from the gold-standard segments. At least one must be True.'''
|
|
if not raw_text and not oracle_segments:
|
|
raise ValueError("At least one of raw_text or oracle_segments must be True")
|
|
paragraphs = split_text(text_file.read())
|
|
conllu = read_conllu(conllu_file)
|
|
# sd is spacy doc; cd is conllu doc
|
|
# cs is conllu sent, ct is conllu token
|
|
docs = []
|
|
golds = []
|
|
for doc_id, (text, cd) in enumerate(zip(paragraphs, conllu)):
|
|
sent_annots = []
|
|
for cs in cd:
|
|
sent = defaultdict(list)
|
|
for id_, word, lemma, pos, tag, morph, head, dep, _, space_after in cs:
|
|
if '.' in id_:
|
|
continue
|
|
if '-' in id_:
|
|
continue
|
|
id_ = int(id_)-1
|
|
head = int(head)-1 if head != '0' else id_
|
|
sent['words'].append(word)
|
|
sent['tags'].append(tag)
|
|
sent['heads'].append(head)
|
|
sent['deps'].append('ROOT' if dep == 'root' else dep)
|
|
sent['spaces'].append(space_after == '_')
|
|
sent['entities'] = ['-'] * len(sent['words'])
|
|
sent['heads'], sent['deps'] = projectivize(sent['heads'],
|
|
sent['deps'])
|
|
if oracle_segments:
|
|
docs.append(Doc(nlp.vocab, words=sent['words'], spaces=sent['spaces']))
|
|
golds.append(GoldParse(docs[-1], **sent))
|
|
|
|
sent_annots.append(sent)
|
|
if raw_text and max_doc_length and len(sent_annots) >= max_doc_length:
|
|
doc, gold = _make_gold(nlp, None, sent_annots)
|
|
sent_annots = []
|
|
docs.append(doc)
|
|
golds.append(gold)
|
|
if limit and len(docs) >= limit:
|
|
return docs, golds
|
|
|
|
if raw_text and sent_annots:
|
|
doc, gold = _make_gold(nlp, None, sent_annots)
|
|
docs.append(doc)
|
|
golds.append(gold)
|
|
if limit and len(docs) >= limit:
|
|
return docs, golds
|
|
return docs, golds
|
|
|
|
|
|
def _make_gold(nlp, text, sent_annots):
|
|
# Flatten the conll annotations, and adjust the head indices
|
|
flat = defaultdict(list)
|
|
for sent in sent_annots:
|
|
flat['heads'].extend(len(flat['words'])+head for head in sent['heads'])
|
|
for field in ['words', 'tags', 'deps', 'entities', 'spaces']:
|
|
flat[field].extend(sent[field])
|
|
# Construct text if necessary
|
|
assert len(flat['words']) == len(flat['spaces'])
|
|
if text is None:
|
|
text = ''.join(word+' '*space for word, space in zip(flat['words'], flat['spaces']))
|
|
doc = nlp.make_doc(text)
|
|
flat.pop('spaces')
|
|
gold = GoldParse(doc, **flat)
|
|
#for annot in gold.orig_annot:
|
|
# print(annot)
|
|
#for i in range(len(doc)):
|
|
# print(doc[i].text, gold.words[i], gold.labels[i], gold.heads[i])
|
|
return doc, gold
|
|
|
|
|
|
def refresh_docs(docs):
|
|
vocab = docs[0].vocab
|
|
return [Doc(vocab, words=[t.text for t in doc],
|
|
spaces=[t.whitespace_ for t in doc])
|
|
for doc in docs]
|
|
|
|
|
|
def read_conllu(file_):
|
|
docs = []
|
|
sent = []
|
|
doc = []
|
|
for line in file_:
|
|
if line.startswith('# newdoc'):
|
|
if doc:
|
|
docs.append(doc)
|
|
doc = []
|
|
elif line.startswith('#'):
|
|
continue
|
|
elif not line.strip():
|
|
if sent:
|
|
doc.append(sent)
|
|
sent = []
|
|
else:
|
|
sent.append(line.strip().split())
|
|
if sent:
|
|
doc.append(sent)
|
|
if doc:
|
|
docs.append(doc)
|
|
return docs
|
|
|
|
|
|
def parse_dev_data(nlp, text_loc, conllu_loc, oracle_segments=False,
|
|
joint_sbd=True, limit=None):
|
|
with open(text_loc) as text_file:
|
|
with open(conllu_loc) as conllu_file:
|
|
docs, golds = read_data(nlp, conllu_file, text_file,
|
|
oracle_segments=oracle_segments, limit=limit)
|
|
if joint_sbd:
|
|
pass
|
|
else:
|
|
sbd = nlp.create_pipe('sentencizer')
|
|
for doc in docs:
|
|
doc = sbd(doc)
|
|
for sent in doc.sents:
|
|
sent[0].is_sent_start = True
|
|
for word in sent[1:]:
|
|
word.is_sent_start = False
|
|
scorer = nlp.evaluate(zip(docs, golds))
|
|
return docs, scorer
|
|
|
|
|
|
def print_progress(itn, losses, scorer):
|
|
scores = {}
|
|
for col in ['dep_loss', 'tag_loss', 'uas', 'tags_acc', 'token_acc',
|
|
'ents_p', 'ents_r', 'ents_f', 'cpu_wps', 'gpu_wps']:
|
|
scores[col] = 0.0
|
|
scores['dep_loss'] = losses.get('parser', 0.0)
|
|
scores['ner_loss'] = losses.get('ner', 0.0)
|
|
scores['tag_loss'] = losses.get('tagger', 0.0)
|
|
scores.update(scorer.scores)
|
|
tpl = '\t'.join((
|
|
'{:d}',
|
|
'{dep_loss:.3f}',
|
|
'{ner_loss:.3f}',
|
|
'{uas:.3f}',
|
|
'{ents_p:.3f}',
|
|
'{ents_r:.3f}',
|
|
'{ents_f:.3f}',
|
|
'{tags_acc:.3f}',
|
|
'{token_acc:.3f}',
|
|
))
|
|
print(tpl.format(itn, **scores))
|
|
|
|
|
|
def print_conllu(docs, file_):
|
|
merger = Matcher(docs[0].vocab)
|
|
merger.add('SUBTOK', None, [{'DEP': 'subtok', 'op': '+'}])
|
|
for i, doc in enumerate(docs):
|
|
matches = merger(doc)
|
|
spans = [doc[start:end+1] for _, start, end in matches]
|
|
offsets = [(span.start_char, span.end_char) for span in spans]
|
|
for start_char, end_char in offsets:
|
|
doc.merge(start_char, end_char)
|
|
#print([t.text for t in doc])
|
|
file_.write("# newdoc id = {i}\n".format(i=i))
|
|
for j, sent in enumerate(doc.sents):
|
|
file_.write("# sent_id = {i}.{j}\n".format(i=i, j=j))
|
|
file_.write("# text = {text}\n".format(text=sent.text))
|
|
for k, t in enumerate(sent):
|
|
if t.head.i == t.i:
|
|
head = 0
|
|
else:
|
|
head = k + (t.head.i - t.i) + 1
|
|
fields = [str(k+1), t.text, t.lemma_, t.pos_, t.tag_, '_',
|
|
str(head), t.dep_.lower(), '_', '_']
|
|
file_.write('\t'.join(fields) + '\n')
|
|
file_.write('\n')
|
|
|
|
|
|
def main(lang, conllu_train_loc, text_train_loc, conllu_dev_loc, text_dev_loc,
|
|
output_loc):
|
|
nlp = spacy.blank(lang)
|
|
if lang == 'en':
|
|
vec_nlp = spacy.util.load_model('spacy/data/en_core_web_lg/en_core_web_lg-2.0.0')
|
|
nlp.vocab.vectors = vec_nlp.vocab.vectors
|
|
for lex in vec_nlp.vocab:
|
|
_ = nlp.vocab[lex.orth_]
|
|
vec_nlp = None
|
|
with open(conllu_train_loc) as conllu_file:
|
|
with open(text_train_loc) as text_file:
|
|
docs, golds = read_data(nlp, conllu_file, text_file,
|
|
oracle_segments=False, raw_text=True,
|
|
max_doc_length=10, limit=None)
|
|
print("Create parser")
|
|
nlp.add_pipe(nlp.create_pipe('parser'))
|
|
nlp.parser.add_multitask_objective('tag')
|
|
nlp.parser.add_multitask_objective('sent_start')
|
|
nlp.parser.moves.add_action(2, 'subtok')
|
|
nlp.add_pipe(nlp.create_pipe('tagger'))
|
|
for gold in golds:
|
|
for tag in gold.tags:
|
|
if tag is not None:
|
|
nlp.tagger.add_label(tag)
|
|
optimizer = nlp.begin_training(lambda: golds_to_gold_tuples(docs, golds))
|
|
# Replace labels that didn't make the frequency cutoff
|
|
actions = set(nlp.parser.labels)
|
|
label_set = set([act.split('-')[1] for act in actions if '-' in act])
|
|
for gold in golds:
|
|
for i, label in enumerate(gold.labels):
|
|
if label is not None and label not in label_set:
|
|
gold.labels[i] = label.split('||')[0]
|
|
n_train_words = sum(len(doc) for doc in docs)
|
|
print(n_train_words)
|
|
print("Begin training")
|
|
# Batch size starts at 1 and grows, so that we make updates quickly
|
|
# at the beginning of training.
|
|
batch_sizes = spacy.util.compounding(spacy.util.env_opt('batch_from', 1),
|
|
spacy.util.env_opt('batch_to', 8),
|
|
spacy.util.env_opt('batch_compound', 1.001))
|
|
for i in range(30):
|
|
docs = refresh_docs(docs)
|
|
batches = minibatch(list(zip(docs, golds)), size=batch_sizes)
|
|
with tqdm.tqdm(total=n_train_words, leave=False) as pbar:
|
|
losses = {}
|
|
for batch in batches:
|
|
if not batch:
|
|
continue
|
|
batch_docs, batch_gold = zip(*batch)
|
|
|
|
nlp.update(batch_docs, batch_gold, sgd=optimizer,
|
|
drop=0.2, losses=losses)
|
|
pbar.update(sum(len(doc) for doc in batch_docs))
|
|
|
|
with nlp.use_params(optimizer.averages):
|
|
dev_docs, scorer = parse_dev_data(nlp, text_dev_loc, conllu_dev_loc,
|
|
oracle_segments=False, joint_sbd=True,
|
|
limit=5)
|
|
print_progress(i, losses, scorer)
|
|
with open(output_loc, 'w') as file_:
|
|
print_conllu(dev_docs, file_)
|
|
with open('/tmp/train.conllu', 'w') as file_:
|
|
print_conllu(list(nlp.pipe([d.text for d in batch_docs])), file_)
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
plac.call(main)
|