spaCy/examples/training/conllu.py

302 lines
11 KiB
Python
Raw Normal View History

2018-02-21 15:53:59 +03:00
'''Train for CONLL 2017 UD treebank evaluation. Takes .conllu files, writes
.conllu format for development data, allowing the official scorer to be used.
'''
from __future__ import unicode_literals
import plac
import tqdm
import re
2018-02-22 18:00:34 +03:00
import sys
2018-02-21 15:53:59 +03:00
import spacy
import spacy.util
2018-02-22 18:00:34 +03:00
from spacy.tokens import Doc
2018-02-21 15:53:59 +03:00
from spacy.gold import GoldParse, minibatch
from spacy.syntax.nonproj import projectivize
from collections import defaultdict, Counter
2018-02-21 15:53:59 +03:00
from timeit import default_timer as timer
2018-02-24 12:31:53 +03:00
from spacy.matcher import Matcher
2018-02-21 15:53:59 +03:00
import random
import numpy.random
2018-02-21 15:53:59 +03:00
from spacy._align import align
random.seed(0)
numpy.random.seed(0)
2018-02-21 15:53:59 +03:00
def get_token_acc(docs, golds):
'''Quick function to evaluate tokenization accuracy.'''
miss = 0
hit = 0
for doc, gold in zip(docs, golds):
for i in range(len(doc)):
token = doc[i]
align = gold.words[i]
if align == None:
miss += 1
else:
hit += 1
return miss, hit
def golds_to_gold_tuples(docs, golds):
'''Get out the annoying 'tuples' format used by begin_training, given the
GoldParse objects.'''
tuples = []
for doc, gold in zip(docs, golds):
text = doc.text
ids, words, tags, heads, labels, iob = zip(*gold.orig_annot)
sents = [((ids, words, tags, heads, labels, iob), [])]
tuples.append((text, sents))
return tuples
def split_text(text):
2018-02-22 18:00:34 +03:00
return [par.strip().replace('\n', ' ')
for par in text.split('\n\n')]
def read_data(nlp, conllu_file, text_file, raw_text=True, oracle_segments=False,
max_doc_length=None, limit=None):
2018-02-22 18:00:34 +03:00
'''Read the CONLLU format into (Doc, GoldParse) tuples. If raw_text=True,
include Doc objects created using nlp.make_doc and then aligned against
the gold-standard sequences. If oracle_segments=True, include Doc objects
created from the gold-standard segments. At least one must be True.'''
if not raw_text and not oracle_segments:
raise ValueError("At least one of raw_text or oracle_segments must be True")
paragraphs = split_text(text_file.read())
conllu = read_conllu(conllu_file)
# sd is spacy doc; cd is conllu doc
# cs is conllu sent, ct is conllu token
docs = []
golds = []
2018-02-22 21:43:54 +03:00
for doc_id, (text, cd) in enumerate(zip(paragraphs, conllu)):
sent_annots = []
2018-02-22 18:00:34 +03:00
for cs in cd:
sent = defaultdict(list)
for id_, word, lemma, pos, tag, morph, head, dep, _, space_after in cs:
2018-02-22 18:00:34 +03:00
if '.' in id_:
continue
if '-' in id_:
continue
id_ = int(id_)-1
head = int(head)-1 if head != '0' else id_
sent['words'].append(word)
sent['tags'].append(tag)
sent['heads'].append(head)
sent['deps'].append('ROOT' if dep == 'root' else dep)
sent['spaces'].append(space_after == '_')
sent['entities'] = ['-'] * len(sent['words'])
sent['heads'], sent['deps'] = projectivize(sent['heads'],
sent['deps'])
2018-02-22 18:00:34 +03:00
if oracle_segments:
docs.append(Doc(nlp.vocab, words=sent['words'], spaces=sent['spaces']))
golds.append(GoldParse(docs[-1], **sent))
sent_annots.append(sent)
if raw_text and max_doc_length and len(sent_annots) >= max_doc_length:
doc, gold = _make_gold(nlp, None, sent_annots)
sent_annots = []
docs.append(doc)
golds.append(gold)
if limit and len(docs) >= limit:
return docs, golds
if raw_text and sent_annots:
doc, gold = _make_gold(nlp, None, sent_annots)
docs.append(doc)
golds.append(gold)
if limit and len(docs) >= limit:
return docs, golds
2018-02-22 18:00:34 +03:00
return docs, golds
def _make_gold(nlp, text, sent_annots):
# Flatten the conll annotations, and adjust the head indices
flat = defaultdict(list)
for sent in sent_annots:
flat['heads'].extend(len(flat['words'])+head for head in sent['heads'])
for field in ['words', 'tags', 'deps', 'entities', 'spaces']:
flat[field].extend(sent[field])
# Construct text if necessary
assert len(flat['words']) == len(flat['spaces'])
if text is None:
text = ''.join(word+' '*space for word, space in zip(flat['words'], flat['spaces']))
doc = nlp.make_doc(text)
flat.pop('spaces')
gold = GoldParse(doc, **flat)
#for annot in gold.orig_annot:
# print(annot)
#for i in range(len(doc)):
# print(doc[i].text, gold.words[i], gold.labels[i], gold.heads[i])
return doc, gold
2018-02-22 18:00:34 +03:00
def refresh_docs(docs):
vocab = docs[0].vocab
return [Doc(vocab, words=[t.text for t in doc],
spaces=[t.whitespace_ for t in doc])
for doc in docs]
2018-02-21 15:53:59 +03:00
def read_conllu(file_):
docs = []
sent = []
doc = []
2018-02-21 15:53:59 +03:00
for line in file_:
if line.startswith('# newdoc'):
if doc:
docs.append(doc)
doc = []
elif line.startswith('#'):
continue
elif not line.strip():
if sent:
doc.append(sent)
2018-02-21 15:53:59 +03:00
sent = []
else:
sent.append(line.strip().split())
if sent:
doc.append(sent)
2018-02-21 15:53:59 +03:00
if doc:
docs.append(doc)
return docs
2018-02-22 18:00:34 +03:00
def parse_dev_data(nlp, text_loc, conllu_loc, oracle_segments=False,
joint_sbd=True, limit=None):
2018-02-22 18:00:34 +03:00
with open(text_loc) as text_file:
with open(conllu_loc) as conllu_file:
docs, golds = read_data(nlp, conllu_file, text_file,
oracle_segments=oracle_segments, limit=limit)
2018-02-22 21:43:54 +03:00
if joint_sbd:
pass
2018-02-22 21:43:54 +03:00
else:
2018-02-22 18:00:34 +03:00
sbd = nlp.create_pipe('sentencizer')
for doc in docs:
doc = sbd(doc)
for sent in doc.sents:
sent[0].is_sent_start = True
for word in sent[1:]:
word.is_sent_start = False
2018-02-21 15:53:59 +03:00
scorer = nlp.evaluate(zip(docs, golds))
return docs, scorer
2018-02-21 16:46:54 +03:00
def print_progress(itn, losses, scorer):
2018-02-21 15:53:59 +03:00
scores = {}
for col in ['dep_loss', 'tag_loss', 'uas', 'tags_acc', 'token_acc',
'ents_p', 'ents_r', 'ents_f', 'cpu_wps', 'gpu_wps']:
scores[col] = 0.0
scores['dep_loss'] = losses.get('parser', 0.0)
scores['ner_loss'] = losses.get('ner', 0.0)
scores['tag_loss'] = losses.get('tagger', 0.0)
scores.update(scorer.scores)
tpl = '\t'.join((
'{:d}',
'{dep_loss:.3f}',
'{ner_loss:.3f}',
'{uas:.3f}',
'{ents_p:.3f}',
'{ents_r:.3f}',
'{ents_f:.3f}',
'{tags_acc:.3f}',
'{token_acc:.3f}',
))
print(tpl.format(itn, **scores))
2018-02-24 12:31:53 +03:00
2018-02-21 15:53:59 +03:00
def print_conllu(docs, file_):
2018-02-24 12:31:53 +03:00
merger = Matcher(docs[0].vocab)
merger.add('SUBTOK', None, [{'DEP': 'subtok', 'op': '+'}])
2018-02-21 15:53:59 +03:00
for i, doc in enumerate(docs):
2018-02-24 12:31:53 +03:00
matches = merger(doc)
spans = [doc[start:end+1] for _, start, end in matches]
offsets = [(span.start_char, span.end_char) for span in spans]
for start_char, end_char in offsets:
2018-02-24 12:31:53 +03:00
doc.merge(start_char, end_char)
#print([t.text for t in doc])
2018-02-21 15:53:59 +03:00
file_.write("# newdoc id = {i}\n".format(i=i))
for j, sent in enumerate(doc.sents):
file_.write("# sent_id = {i}.{j}\n".format(i=i, j=j))
file_.write("# text = {text}\n".format(text=sent.text))
for k, t in enumerate(sent):
if t.head.i == t.i:
head = 0
else:
head = k + (t.head.i - t.i) + 1
2018-02-22 18:00:34 +03:00
fields = [str(k+1), t.text, t.lemma_, t.pos_, t.tag_, '_',
str(head), t.dep_.lower(), '_', '_']
2018-02-21 15:53:59 +03:00
file_.write('\t'.join(fields) + '\n')
file_.write('\n')
2018-02-24 12:31:53 +03:00
def main(lang, conllu_train_loc, text_train_loc, conllu_dev_loc, text_dev_loc,
2018-02-21 15:53:59 +03:00
output_loc):
2018-02-24 12:31:53 +03:00
nlp = spacy.blank(lang)
if lang == 'en':
vec_nlp = spacy.util.load_model('spacy/data/en_core_web_lg/en_core_web_lg-2.0.0')
nlp.vocab.vectors = vec_nlp.vocab.vectors
for lex in vec_nlp.vocab:
_ = nlp.vocab[lex.orth_]
vec_nlp = None
2018-02-22 18:00:34 +03:00
with open(conllu_train_loc) as conllu_file:
with open(text_train_loc) as text_file:
docs, golds = read_data(nlp, conllu_file, text_file,
oracle_segments=False, raw_text=True,
max_doc_length=10, limit=None)
2018-02-21 15:53:59 +03:00
print("Create parser")
nlp.add_pipe(nlp.create_pipe('parser'))
nlp.parser.add_multitask_objective('tag')
nlp.parser.add_multitask_objective('sent_start')
2018-02-24 12:31:53 +03:00
nlp.parser.moves.add_action(2, 'subtok')
2018-02-21 15:53:59 +03:00
nlp.add_pipe(nlp.create_pipe('tagger'))
for gold in golds:
for tag in gold.tags:
if tag is not None:
nlp.tagger.add_label(tag)
optimizer = nlp.begin_training(lambda: golds_to_gold_tuples(docs, golds))
# Replace labels that didn't make the frequency cutoff
actions = set(nlp.parser.labels)
label_set = set([act.split('-')[1] for act in actions if '-' in act])
for gold in golds:
for i, label in enumerate(gold.labels):
if label is not None and label not in label_set:
gold.labels[i] = label.split('||')[0]
2018-02-21 15:53:59 +03:00
n_train_words = sum(len(doc) for doc in docs)
print(n_train_words)
print("Begin training")
# Batch size starts at 1 and grows, so that we make updates quickly
# at the beginning of training.
batch_sizes = spacy.util.compounding(spacy.util.env_opt('batch_from', 1),
spacy.util.env_opt('batch_to', 8),
spacy.util.env_opt('batch_compound', 1.001))
2018-02-22 18:00:34 +03:00
for i in range(30):
docs = refresh_docs(docs)
batches = minibatch(list(zip(docs, golds)), size=batch_sizes)
2018-02-21 15:53:59 +03:00
with tqdm.tqdm(total=n_train_words, leave=False) as pbar:
losses = {}
2018-02-22 18:00:34 +03:00
for batch in batches:
2018-02-21 15:53:59 +03:00
if not batch:
continue
batch_docs, batch_gold = zip(*batch)
nlp.update(batch_docs, batch_gold, sgd=optimizer,
drop=0.2, losses=losses)
pbar.update(sum(len(doc) for doc in batch_docs))
with nlp.use_params(optimizer.averages):
2018-02-22 18:00:34 +03:00
dev_docs, scorer = parse_dev_data(nlp, text_dev_loc, conllu_dev_loc,
oracle_segments=False, joint_sbd=True,
limit=5)
2018-02-22 18:00:34 +03:00
print_progress(i, losses, scorer)
with open(output_loc, 'w') as file_:
print_conllu(dev_docs, file_)
with open('/tmp/train.conllu', 'w') as file_:
print_conllu(list(nlp.pipe([d.text for d in batch_docs])), file_)
2018-02-21 15:53:59 +03:00
2018-02-22 18:00:34 +03:00
2018-02-21 15:53:59 +03:00
if __name__ == '__main__':
plac.call(main)