mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-13 18:56:36 +03:00
small fixes
This commit is contained in:
parent
cfc27d7ff9
commit
8c4aa076bc
|
@ -29,7 +29,7 @@ from spacy.tokens import Doc
|
|||
class EL_Model:
|
||||
|
||||
PRINT_INSPECT = False
|
||||
PRINT_TRAIN = False
|
||||
PRINT_TRAIN = True
|
||||
EPS = 0.0000000005
|
||||
CUTOFF = 0.5
|
||||
|
||||
|
@ -40,14 +40,15 @@ class EL_Model:
|
|||
INPUT_DIM = 300 # dimension of pre-trained vectors
|
||||
|
||||
# HIDDEN_1_WIDTH = 32 # 10
|
||||
# HIDDEN_2_WIDTH = 32 # 6
|
||||
HIDDEN_2_WIDTH = 32 # 6
|
||||
DESC_WIDTH = 64 # 4
|
||||
ARTICLE_WIDTH = 64 # 8
|
||||
SENT_WIDTH = 64
|
||||
|
||||
DROP = 0.1
|
||||
LEARN_RATE = 0.001
|
||||
LEARN_RATE = 0.0001
|
||||
EPOCHS = 20
|
||||
L2 = 1e-6
|
||||
|
||||
name = "entity_linker"
|
||||
|
||||
|
@ -62,7 +63,10 @@ class EL_Model:
|
|||
|
||||
def train_model(self, training_dir, entity_descr_output, trainlimit=None, devlimit=None, to_print=True):
|
||||
# raise errors instead of runtime warnings in case of int/float overflow
|
||||
np.seterr(all='raise')
|
||||
# (not sure if we need this. set L2 to 0 because it throws an error otherwsise)
|
||||
# np.seterr(all='raise')
|
||||
# alternative:
|
||||
np.seterr(divide="raise", over="warn", under="ignore", invalid="raise")
|
||||
|
||||
train_ent, train_gold, train_desc, train_art, train_art_texts, train_sent, train_sent_texts = \
|
||||
self._get_training_data(training_dir, entity_descr_output, False, trainlimit, to_print=False)
|
||||
|
@ -159,6 +163,7 @@ class EL_Model:
|
|||
stop = min(stop + self.BATCH_SIZE, len(train_ent))
|
||||
|
||||
if self.PRINT_TRAIN:
|
||||
print()
|
||||
self._test_dev(train_ent, train_gold, train_desc, train_art, train_art_texts, train_sent, train_sent_texts,
|
||||
print_string="train_inter_epoch " + str(i), avg=True)
|
||||
|
||||
|
@ -250,15 +255,20 @@ class EL_Model:
|
|||
|
||||
in_width = desc_width + article_width + sent_width
|
||||
|
||||
output_layer = (
|
||||
zero_init(Affine(1, in_width, drop_factor=0.0)) >> logistic
|
||||
)
|
||||
self.model = output_layer
|
||||
self.model = Affine(self.HIDDEN_2_WIDTH, in_width) \
|
||||
>> LN(Maxout(self.HIDDEN_2_WIDTH, self.HIDDEN_2_WIDTH)) \
|
||||
>> Affine(1, self.HIDDEN_2_WIDTH) \
|
||||
>> logistic
|
||||
|
||||
# output_layer = (
|
||||
# zero_init(Affine(1, in_width, drop_factor=0.0)) >> logistic
|
||||
# )
|
||||
# self.model = output_layer
|
||||
self.model.nO = 1
|
||||
|
||||
def _encoder(self, width):
|
||||
tok2vec = Tok2Vec(width=width, embed_size=2000, pretrained_vectors=self.nlp.vocab.vectors.name, cnn_maxout_pieces=3,
|
||||
subword_features=True, conv_depth=4, bilstm_depth=0)
|
||||
subword_features=False, conv_depth=4, bilstm_depth=0)
|
||||
|
||||
return tok2vec >> flatten_add_lengths >> Pooling(mean_pool)
|
||||
|
||||
|
@ -287,19 +297,19 @@ class EL_Model:
|
|||
def _begin_training(self):
|
||||
self.sgd_article = create_default_optimizer(self.article_encoder.ops)
|
||||
self.sgd_article.learn_rate = self.LEARN_RATE
|
||||
self.sgd_article.L2 = 0
|
||||
self.sgd_article.L2 = self.L2
|
||||
|
||||
self.sgd_sent = create_default_optimizer(self.sent_encoder.ops)
|
||||
self.sgd_sent.learn_rate = self.LEARN_RATE
|
||||
self.sgd_sent.L2 = 0
|
||||
self.sgd_sent.L2 = self.L2
|
||||
|
||||
self.sgd_desc = create_default_optimizer(self.desc_encoder.ops)
|
||||
self.sgd_desc.learn_rate = self.LEARN_RATE
|
||||
self.sgd_desc.L2 = 0
|
||||
self.sgd_desc.L2 = self.L2
|
||||
|
||||
self.sgd = create_default_optimizer(self.model.ops)
|
||||
self.sgd.learn_rate = self.LEARN_RATE
|
||||
self.sgd.L2 = 0
|
||||
self.sgd.L2 = self.L2
|
||||
|
||||
@staticmethod
|
||||
def get_loss(predictions, golds):
|
||||
|
|
|
@ -111,7 +111,7 @@ if __name__ == "__main__":
|
|||
print("STEP 6: training", datetime.datetime.now())
|
||||
my_nlp = spacy.load('en_core_web_md')
|
||||
trainer = EL_Model(kb=my_kb, nlp=my_nlp)
|
||||
trainer.train_model(training_dir=TRAINING_DIR, entity_descr_output=ENTITY_DESCR, trainlimit=10000, devlimit=1000)
|
||||
trainer.train_model(training_dir=TRAINING_DIR, entity_descr_output=ENTITY_DESCR, trainlimit=100, devlimit=20)
|
||||
print()
|
||||
|
||||
# STEP 7: apply the EL algorithm on the dev dataset
|
||||
|
|
Loading…
Reference in New Issue
Block a user