Merge pull request #11089 from polm/coref/dimension-inference

Dimension inference in Coref
This commit is contained in:
Paul O'Leary McCann 2022-07-12 15:58:10 +09:00 committed by GitHub
commit 90973faf9e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 216 additions and 34 deletions

View File

@ -1,6 +1,6 @@
from typing import List, Tuple, Callable, cast
from thinc.api import Model, chain
from thinc.api import Model, chain, get_width
from thinc.api import PyTorchWrapper, ArgsKwargs
from thinc.types import Floats2d, Ints2d
from thinc.util import torch, xp2torch, torch2xp
@ -22,13 +22,48 @@ def build_wl_coref_model(
# pairs to keep per mention after rough scoring
antecedent_limit: int = 50,
antecedent_batch_size: int = 512,
tok2vec_size: int = 768, # tok2vec size
nI=None,
) -> Model[List[Doc], Tuple[Floats2d, Ints2d]]:
with Model.define_operators({">>": chain}):
coref_clusterer = PyTorchWrapper(
coref_clusterer: Model[List[Floats2d], Tuple[Floats2d, Ints2d]] = Model(
"coref_clusterer",
forward=coref_forward,
init=coref_init,
dims={"nI": nI},
attrs={
"distance_embedding_size": distance_embedding_size,
"hidden_size": hidden_size,
"depth": depth,
"dropout": dropout,
"antecedent_limit": antecedent_limit,
"antecedent_batch_size": antecedent_batch_size,
},
)
model = tok2vec >> coref_clusterer
model.set_ref("coref_clusterer", coref_clusterer)
return model
def coref_init(model: Model, X=None, Y=None):
if model.layers:
return
if X is not None and model.has_dim("nI") is None:
model.set_dim("nI", get_width(X))
hidden_size = model.attrs["hidden_size"]
depth = model.attrs["depth"]
dropout = model.attrs["dropout"]
antecedent_limit = model.attrs["antecedent_limit"]
antecedent_batch_size = model.attrs["antecedent_batch_size"]
distance_embedding_size = model.attrs["distance_embedding_size"]
model._layers = [
PyTorchWrapper(
CorefClusterer(
tok2vec_size,
model.get_dim("nI"),
distance_embedding_size,
hidden_size,
depth,
@ -39,10 +74,13 @@ def build_wl_coref_model(
convert_inputs=convert_coref_clusterer_inputs,
convert_outputs=convert_coref_clusterer_outputs,
)
coref_model = tok2vec >> coref_clusterer
return coref_model
# TODO maybe we need mixed precision and grad scaling?
]
def coref_forward(model: Model, X, is_train: bool):
return model.layers[0](X, is_train)
def convert_coref_clusterer_inputs(model: Model, X: List[Floats2d], is_train: bool):
# The input here is List[Floats2d], one for each doc
# just use the first

View File

@ -147,7 +147,9 @@ def get_clusters_from_doc(doc) -> List[List[Tuple[int, int]]]:
ints are char spans, to be tokenization independent.
"""
out = []
for key, val in doc.spans.items():
keys = sorted(list(doc.spans.keys()))
for key in keys:
val = doc.spans[key]
cluster = []
for span in val:

View File

@ -1,6 +1,6 @@
from typing import List, Tuple, cast
from thinc.api import Model, chain, tuplify
from thinc.api import Model, chain, tuplify, get_width
from thinc.api import PyTorchWrapper, ArgsKwargs
from thinc.types import Floats2d, Ints1d
from thinc.util import torch, xp2torch, torch2xp
@ -13,7 +13,6 @@ from .coref_util import get_sentence_ids
@registry.architectures("spacy.SpanPredictor.v1")
def build_span_predictor(
tok2vec: Model[List[Doc], List[Floats2d]],
tok2vec_size: int = 768,
hidden_size: int = 1024,
distance_embedding_size: int = 64,
conv_channels: int = 4,
@ -23,10 +22,46 @@ def build_span_predictor(
):
# TODO add model return types
nI = None
with Model.define_operators({">>": chain, "&": tuplify}):
span_predictor = PyTorchWrapper(
span_predictor: Model[List[Floats2d], List[Floats2d]] = Model(
"span_predictor",
forward=span_predictor_forward,
init=span_predictor_init,
dims={"nI": nI},
attrs={
"distance_embedding_size": distance_embedding_size,
"hidden_size": hidden_size,
"conv_channels": conv_channels,
"window_size": window_size,
"max_distance": max_distance,
},
)
head_info = build_get_head_metadata(prefix)
model = (tok2vec & head_info) >> span_predictor
model.set_ref("span_predictor", span_predictor)
return model
def span_predictor_init(model: Model, X=None, Y=None):
if model.layers:
return
if X is not None and model.has_dim("nI") is None:
model.set_dim("nI", get_width(X))
hidden_size = model.attrs["hidden_size"]
distance_embedding_size = model.attrs["distance_embedding_size"]
conv_channels = model.attrs["conv_channels"]
window_size = model.attrs["window_size"]
max_distance = model.attrs["max_distance"]
model._layers = [
PyTorchWrapper(
SpanPredictor(
tok2vec_size,
model.get_dim("nI"),
hidden_size,
distance_embedding_size,
conv_channels,
@ -35,10 +70,12 @@ def build_span_predictor(
),
convert_inputs=convert_span_predictor_inputs,
)
head_info = build_get_head_metadata(prefix)
model = (tok2vec & head_info) >> span_predictor
# TODO maybe we need mixed precision and grad scaling?
]
return model
def span_predictor_forward(model: Model, X, is_train: bool):
return model.layers[0](X, is_train)
def convert_span_predictor_inputs(
@ -61,7 +98,9 @@ def convert_span_predictor_inputs(
else:
head_ids_tensor = xp2torch(head_ids[0], requires_grad=False)
argskwargs = ArgsKwargs(args=(sent_ids_tensor, word_features, head_ids_tensor), kwargs={})
argskwargs = ArgsKwargs(
args=(sent_ids_tensor, word_features, head_ids_tensor), kwargs={}
)
return argskwargs, backprop

View File

@ -6,6 +6,7 @@ from thinc.api import Model, Config, Optimizer
from thinc.api import set_dropout_rate, to_categorical
from itertools import islice
from statistics import mean
import srsly
from .trainable_pipe import TrainablePipe
from ..language import Language
@ -13,7 +14,7 @@ from ..training import Example, validate_examples, validate_get_examples
from ..errors import Errors
from ..tokens import Doc
from ..vocab import Vocab
from ..util import registry
from ..util import registry, from_disk, from_bytes
from ..ml.models.coref_util import (
create_gold_scores,
@ -30,7 +31,6 @@ from ..scorer import Scorer
default_config = """
[model]
@architectures = "spacy.Coref.v1"
tok2vec_size = 768
distance_embedding_size = 20
hidden_size = 1024
depth = 1
@ -340,3 +340,57 @@ class CoreferenceResolver(TrainablePipe):
assert len(X) > 0, Errors.E923.format(name=self.name)
self.model.initialize(X=X, Y=Y)
# Store the input dimensionality. nI and nO are not stored explicitly
# for PyTorch models. This makes it tricky to reconstruct the model
# during deserialization. So, besides storing the labels, we also
# store the number of inputs.
coref_clusterer = self.model.get_ref("coref_clusterer")
self.cfg["nI"] = coref_clusterer.get_dim("nI")
def from_bytes(self, bytes_data, *, exclude=tuple()):
deserializers = {
"cfg": lambda b: self.cfg.update(srsly.json_loads(b)),
"vocab": lambda b: self.vocab.from_bytes(b, exclude=exclude),
}
from_bytes(bytes_data, deserializers, exclude)
self._initialize_from_disk()
model_deserializers = {
"model": lambda b: self.model.from_bytes(b),
}
from_bytes(bytes_data, model_deserializers, exclude)
return self
def from_disk(self, path, exclude=tuple()):
def load_model(p):
try:
with open(p, "rb") as mfile:
self.model.from_bytes(mfile.read())
except AttributeError:
raise ValueError(Errors.E149) from None
deserializers = {
"cfg": lambda p: self.cfg.update(srsly.read_json(p)),
"vocab": lambda p: self.vocab.from_disk(p, exclude=exclude),
}
from_disk(path, deserializers, exclude)
self._initialize_from_disk()
model_deserializers = {
"model": load_model,
}
from_disk(path, model_deserializers, exclude)
return self
def _initialize_from_disk(self):
# The PyTorch model is constructed lazily, so we need to
# explicitly initialize the model before deserialization.
model = self.model.get_ref("coref_clusterer")
if model.has_dim("nI") is None:
model.set_dim("nI", self.cfg["nI"])
self.model.initialize()

View File

@ -5,6 +5,7 @@ from thinc.types import Floats2d, Floats3d, Ints2d
from thinc.api import Model, Config, Optimizer, CategoricalCrossentropy
from thinc.api import set_dropout_rate, to_categorical
from itertools import islice
import srsly
from .trainable_pipe import TrainablePipe
from ..language import Language
@ -13,7 +14,7 @@ from ..errors import Errors
from ..scorer import Scorer, doc2clusters
from ..tokens import Doc
from ..vocab import Vocab
from ..util import registry
from ..util import registry, from_bytes, from_disk
from ..ml.models.coref_util import (
MentionClusters,
@ -23,7 +24,6 @@ from ..ml.models.coref_util import (
default_span_predictor_config = """
[model]
@architectures = "spacy.SpanPredictor.v1"
tok2vec_size = 768
hidden_size = 1024
distance_embedding_size = 64
conv_channels = 4
@ -346,3 +346,57 @@ class SpanPredictor(TrainablePipe):
assert len(X) > 0, Errors.E923.format(name=self.name)
self.model.initialize(X=X, Y=Y)
# Store the input dimensionality. nI and nO are not stored explicitly
# for PyTorch models. This makes it tricky to reconstruct the model
# during deserialization. So, besides storing the labels, we also
# store the number of inputs.
span_predictor = self.model.get_ref("span_predictor")
self.cfg["nI"] = span_predictor.get_dim("nI")
def from_bytes(self, bytes_data, *, exclude=tuple()):
deserializers = {
"cfg": lambda b: self.cfg.update(srsly.json_loads(b)),
"vocab": lambda b: self.vocab.from_bytes(b, exclude=exclude),
}
from_bytes(bytes_data, deserializers, exclude)
self._initialize_from_disk()
model_deserializers = {
"model": lambda b: self.model.from_bytes(b),
}
from_bytes(bytes_data, model_deserializers, exclude)
return self
def from_disk(self, path, exclude=tuple()):
def load_model(p):
try:
with open(p, "rb") as mfile:
self.model.from_bytes(mfile.read())
except AttributeError:
raise ValueError(Errors.E149) from None
deserializers = {
"cfg": lambda p: self.cfg.update(srsly.read_json(p)),
"vocab": lambda p: self.vocab.from_disk(p, exclude=exclude),
}
from_disk(path, deserializers, exclude)
self._initialize_from_disk()
model_deserializers = {
"model": load_model,
}
from_disk(path, model_deserializers, exclude)
return self
def _initialize_from_disk(self):
# The PyTorch model is constructed lazily, so we need to
# explicitly initialize the model before deserialization.
model = self.model.get_ref("span_predictor")
if model.has_dim("nI") is None:
model.set_dim("nI", self.cfg["nI"])
self.model.initialize()

View File

@ -36,9 +36,6 @@ TRAIN_DATA = [
# fmt: on
CONFIG = {"model": {"@architectures": "spacy.Coref.v1", "tok2vec_size": 64}}
@pytest.fixture
def nlp():
return English()
@ -67,7 +64,7 @@ def test_not_initialized(nlp):
@pytest.mark.skipif(not has_torch, reason="Torch not available")
def test_initialized(nlp):
nlp.add_pipe("coref", config=CONFIG)
nlp.add_pipe("coref")
nlp.initialize()
assert nlp.pipe_names == ["coref"]
text = "She gave me her pen."
@ -79,7 +76,7 @@ def test_initialized(nlp):
@pytest.mark.skipif(not has_torch, reason="Torch not available")
def test_initialized_short(nlp):
nlp.add_pipe("coref", config=CONFIG)
nlp.add_pipe("coref")
nlp.initialize()
assert nlp.pipe_names == ["coref"]
text = "Hi there"
@ -89,7 +86,7 @@ def test_initialized_short(nlp):
@pytest.mark.skipif(not has_torch, reason="Torch not available")
def test_coref_serialization(nlp):
# Test that the coref component can be serialized
nlp.add_pipe("coref", last=True, config=CONFIG)
nlp.add_pipe("coref", last=True)
nlp.initialize()
assert nlp.pipe_names == ["coref"]
text = "She gave me her pen."
@ -111,7 +108,7 @@ def test_overfitting_IO(nlp):
for text, annot in TRAIN_DATA:
train_examples.append(Example.from_dict(nlp.make_doc(text), annot))
nlp.add_pipe("coref", config=CONFIG)
nlp.add_pipe("coref")
optimizer = nlp.initialize()
test_text = TRAIN_DATA[0][0]
doc = nlp(test_text)
@ -166,7 +163,7 @@ def test_tokenization_mismatch(nlp):
train_examples.append(eg)
nlp.add_pipe("coref", config=CONFIG)
nlp.add_pipe("coref")
optimizer = nlp.initialize()
test_text = TRAIN_DATA[0][0]
doc = nlp(test_text)
@ -228,7 +225,7 @@ def test_whitespace_mismatch(nlp):
eg.predicted = nlp.make_doc(" " + text)
train_examples.append(eg)
nlp.add_pipe("coref", config=CONFIG)
nlp.add_pipe("coref")
optimizer = nlp.initialize()
test_text = TRAIN_DATA[0][0]
doc = nlp(test_text)

View File

@ -44,8 +44,6 @@ TRAIN_DATA = [
]
# fmt: on
CONFIG = {"model": {"@architectures": "spacy.SpanPredictor.v1", "tok2vec_size": 64}}
@pytest.fixture
def nlp():
@ -76,7 +74,7 @@ def test_not_initialized(nlp):
@pytest.mark.skipif(not has_torch, reason="Torch not available")
def test_span_predictor_serialization(nlp):
# Test that the span predictor component can be serialized
nlp.add_pipe("span_predictor", last=True, config=CONFIG)
nlp.add_pipe("span_predictor", last=True)
nlp.initialize()
assert nlp.pipe_names == ["span_predictor"]
text = "She gave me her pen."
@ -109,7 +107,7 @@ def test_overfitting_IO(nlp):
pred.spans[key] = [pred[span.start : span.end] for span in spans]
train_examples.append(eg)
nlp.add_pipe("span_predictor", config=CONFIG)
nlp.add_pipe("span_predictor")
optimizer = nlp.initialize()
test_text = TRAIN_DATA[0][0]
doc = nlp(test_text)
@ -173,7 +171,7 @@ def test_tokenization_mismatch(nlp):
train_examples.append(eg)
nlp.add_pipe("span_predictor", config=CONFIG)
nlp.add_pipe("span_predictor")
optimizer = nlp.initialize()
test_text = TRAIN_DATA[0][0]
doc = nlp(test_text)
@ -218,7 +216,7 @@ def test_whitespace_mismatch(nlp):
eg.predicted = nlp.make_doc(" " + text)
train_examples.append(eg)
nlp.add_pipe("span_predictor", config=CONFIG)
nlp.add_pipe("span_predictor")
optimizer = nlp.initialize()
test_text = TRAIN_DATA[0][0]
doc = nlp(test_text)