mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 17:24:41 +03:00
Merge branch 'develop' of https://github.com/explosion/spaCy into develop
This commit is contained in:
commit
931509d96a
82
spacy/_ml.py
82
spacy/_ml.py
|
@ -5,6 +5,7 @@ from thinc.neural._classes.hash_embed import HashEmbed
|
|||
from thinc.neural.ops import NumpyOps, CupyOps
|
||||
from thinc.neural.util import get_array_module
|
||||
import random
|
||||
import cytoolz
|
||||
|
||||
from thinc.neural._classes.convolution import ExtractWindow
|
||||
from thinc.neural._classes.static_vectors import StaticVectors
|
||||
|
@ -25,6 +26,7 @@ from thinc.api import uniqued, wrap, flatten_add_lengths
|
|||
|
||||
from .attrs import ID, ORTH, LOWER, NORM, PREFIX, SUFFIX, SHAPE, TAG, DEP
|
||||
from .tokens.doc import Doc
|
||||
from . import util
|
||||
|
||||
import numpy
|
||||
import io
|
||||
|
@ -55,6 +57,27 @@ def _logistic(X, drop=0.):
|
|||
return Y, logistic_bwd
|
||||
|
||||
|
||||
@layerize
|
||||
def add_tuples(X, drop=0.):
|
||||
"""Give inputs of sequence pairs, where each sequence is (vals, length),
|
||||
sum the values, returning a single sequence.
|
||||
|
||||
If input is:
|
||||
((vals1, length), (vals2, length)
|
||||
Output is:
|
||||
(vals1+vals2, length)
|
||||
|
||||
vals are a single tensor for the whole batch.
|
||||
"""
|
||||
(vals1, length1), (vals2, length2) = X
|
||||
assert length1 == length2
|
||||
|
||||
def add_tuples_bwd(dY, sgd=None):
|
||||
return (dY, dY)
|
||||
|
||||
return (vals1+vals2, length), add_tuples_bwd
|
||||
|
||||
|
||||
def _zero_init(model):
|
||||
def _zero_init_impl(self, X, y):
|
||||
self.W.fill(0)
|
||||
|
@ -63,6 +86,7 @@ def _zero_init(model):
|
|||
model.W.fill(0.)
|
||||
return model
|
||||
|
||||
|
||||
@layerize
|
||||
def _preprocess_doc(docs, drop=0.):
|
||||
keys = [doc.to_array([LOWER]) for doc in docs]
|
||||
|
@ -74,7 +98,6 @@ def _preprocess_doc(docs, drop=0.):
|
|||
return (keys, vals, lengths), None
|
||||
|
||||
|
||||
|
||||
def _init_for_precomputed(W, ops):
|
||||
if (W**2).sum() != 0.:
|
||||
return
|
||||
|
@ -82,6 +105,7 @@ def _init_for_precomputed(W, ops):
|
|||
ops.xavier_uniform_init(reshaped)
|
||||
W[:] = reshaped.reshape(W.shape)
|
||||
|
||||
|
||||
@describe.on_data(_set_dimensions_if_needed)
|
||||
@describe.attributes(
|
||||
nI=Dimension("Input size"),
|
||||
|
@ -186,8 +210,19 @@ class PrecomputableMaxouts(Model):
|
|||
return Yfp, backward
|
||||
|
||||
|
||||
def drop_layer(layer, factor=2.):
|
||||
def drop_layer_fwd(X, drop=0.):
|
||||
drop *= factor
|
||||
mask = layer.ops.get_dropout_mask((1,), drop)
|
||||
if mask is None or mask > 0:
|
||||
return layer.begin_update(X, drop=drop)
|
||||
else:
|
||||
return X, lambda dX, sgd=None: dX
|
||||
return wrap(drop_layer_fwd, layer)
|
||||
|
||||
|
||||
def Tok2Vec(width, embed_size, preprocess=None):
|
||||
cols = [ID, NORM, PREFIX, SUFFIX, SHAPE]
|
||||
cols = [ID, NORM, PREFIX, SUFFIX, SHAPE, ORTH]
|
||||
with Model.define_operators({'>>': chain, '|': concatenate, '**': clone, '+': add}):
|
||||
norm = get_col(cols.index(NORM)) >> HashEmbed(width, embed_size, name='embed_lower')
|
||||
prefix = get_col(cols.index(PREFIX)) >> HashEmbed(width, embed_size//2, name='embed_prefix')
|
||||
|
@ -299,7 +334,8 @@ def zero_init(model):
|
|||
|
||||
|
||||
def doc2feats(cols=None):
|
||||
cols = [ID, NORM, PREFIX, SUFFIX, SHAPE]
|
||||
if cols is None:
|
||||
cols = [ID, NORM, PREFIX, SUFFIX, SHAPE, ORTH]
|
||||
def forward(docs, drop=0.):
|
||||
feats = []
|
||||
for doc in docs:
|
||||
|
@ -336,25 +372,22 @@ def fine_tune(embedding, combine=None):
|
|||
vecs, bp_vecs = embedding.begin_update(docs, drop=drop)
|
||||
flat_tokvecs = embedding.ops.flatten(tokvecs)
|
||||
flat_vecs = embedding.ops.flatten(vecs)
|
||||
alpha = model.mix
|
||||
minus = 1-model.mix
|
||||
output = embedding.ops.unflatten(
|
||||
(alpha * flat_tokvecs + minus * flat_vecs), lengths)
|
||||
(model.mix[0] * flat_vecs + model.mix[1] * flat_tokvecs),
|
||||
lengths)
|
||||
|
||||
def fine_tune_bwd(d_output, sgd=None):
|
||||
bp_vecs(d_output, sgd=sgd)
|
||||
flat_grad = model.ops.flatten(d_output)
|
||||
model.d_mix += flat_tokvecs.dot(flat_grad.T).sum()
|
||||
model.d_mix += 1-flat_vecs.dot(flat_grad.T).sum()
|
||||
|
||||
bp_vecs([d_o * minus for d_o in d_output], sgd=sgd)
|
||||
d_output = [d_o * alpha for d_o in d_output]
|
||||
model.d_mix[1] += flat_tokvecs.dot(flat_grad.T).sum()
|
||||
model.d_mix[0] += flat_vecs.dot(flat_grad.T).sum()
|
||||
if sgd is not None:
|
||||
sgd(model._mem.weights, model._mem.gradient, key=model.id)
|
||||
model.mix = model.ops.xp.minimum(model.mix, 1.0)
|
||||
return d_output
|
||||
return output, fine_tune_bwd
|
||||
model = wrap(fine_tune_fwd, embedding)
|
||||
model.mix = model._mem.add((model.id, 'mix'), (1,))
|
||||
model.mix.fill(0.0)
|
||||
model.mix = model._mem.add((model.id, 'mix'), (2,))
|
||||
model.mix.fill(1.)
|
||||
model.d_mix = model._mem.add_gradient((model.id, 'd_mix'), (model.id, 'mix'))
|
||||
return model
|
||||
|
||||
|
@ -405,6 +438,27 @@ def preprocess_doc(docs, drop=0.):
|
|||
vals = ops.allocate(keys.shape[0]) + 1
|
||||
return (keys, vals, lengths), None
|
||||
|
||||
def getitem(i):
|
||||
def getitem_fwd(X, drop=0.):
|
||||
return X[i], None
|
||||
return layerize(getitem_fwd)
|
||||
|
||||
def build_tagger_model(nr_class, token_vector_width, **cfg):
|
||||
embed_size = util.env_opt('embed_size', 7500)
|
||||
with Model.define_operators({'>>': chain, '+': add}):
|
||||
# Input: (doc, tensor) tuples
|
||||
private_tok2vec = Tok2Vec(token_vector_width, embed_size, preprocess=doc2feats())
|
||||
|
||||
model = (
|
||||
fine_tune(private_tok2vec)
|
||||
>> with_flatten(
|
||||
Maxout(token_vector_width, token_vector_width)
|
||||
>> Softmax(nr_class, token_vector_width)
|
||||
)
|
||||
)
|
||||
model.nI = None
|
||||
return model
|
||||
|
||||
|
||||
def build_text_classifier(nr_class, width=64, **cfg):
|
||||
nr_vector = cfg.get('nr_vector', 200)
|
||||
|
|
Loading…
Reference in New Issue
Block a user