Fix conflicts

This commit is contained in:
Matthew Honnibal 2023-06-11 13:27:46 +02:00
commit 9753484b94
56 changed files with 5512 additions and 194 deletions

View File

@ -107,22 +107,22 @@ jobs:
- name: Test import
run: python -W error -c "import spacy"
- name: "Test download CLI"
run: |
python -m spacy download ca_core_news_sm
python -m spacy download ca_core_news_md
python -c "import spacy; nlp=spacy.load('ca_core_news_sm'); doc=nlp('test')"
if: matrix.python_version == '3.9'
- name: "Test download_url in info CLI"
run: |
python -W error -m spacy info ca_core_news_sm | grep -q download_url
if: matrix.python_version == '3.9'
- name: "Test no warnings on load (#11713)"
run: |
python -W error -c "import ca_core_news_sm; nlp = ca_core_news_sm.load(); doc=nlp('test')"
if: matrix.python_version == '3.9'
# - name: "Test download CLI"
# run: |
# python -m spacy download ca_core_news_sm
# python -m spacy download ca_core_news_md
# python -c "import spacy; nlp=spacy.load('ca_core_news_sm'); doc=nlp('test')"
# if: matrix.python_version == '3.9'
#
# - name: "Test download_url in info CLI"
# run: |
# python -W error -m spacy info ca_core_news_sm | grep -q download_url
# if: matrix.python_version == '3.9'
#
# - name: "Test no warnings on load (#11713)"
# run: |
# python -W error -c "import ca_core_news_sm; nlp = ca_core_news_sm.load(); doc=nlp('test')"
# if: matrix.python_version == '3.9'
- name: "Test convert CLI"
run: |
@ -146,17 +146,17 @@ jobs:
python -m spacy train ner.cfg --paths.train ner-token-per-line-conll2003.spacy --paths.dev ner-token-per-line-conll2003.spacy --training.max_steps 10 --gpu-id -1
if: matrix.python_version == '3.9'
- name: "Test assemble CLI"
run: |
python -c "import spacy; config = spacy.util.load_config('ner.cfg'); config['components']['ner'] = {'source': 'ca_core_news_sm'}; config.to_disk('ner_source_sm.cfg')"
PYTHONWARNINGS="error,ignore::DeprecationWarning" python -m spacy assemble ner_source_sm.cfg output_dir
if: matrix.python_version == '3.9'
- name: "Test assemble CLI vectors warning"
run: |
python -c "import spacy; config = spacy.util.load_config('ner.cfg'); config['components']['ner'] = {'source': 'ca_core_news_md'}; config.to_disk('ner_source_md.cfg')"
python -m spacy assemble ner_source_md.cfg output_dir 2>&1 | grep -q W113
if: matrix.python_version == '3.9'
# - name: "Test assemble CLI"
# run: |
# python -c "import spacy; config = spacy.util.load_config('ner.cfg'); config['components']['ner'] = {'source': 'ca_core_news_sm'}; config.to_disk('ner_source_sm.cfg')"
# PYTHONWARNINGS="error,ignore::DeprecationWarning" python -m spacy assemble ner_source_sm.cfg output_dir
# if: matrix.python_version == '3.9'
#
# - name: "Test assemble CLI vectors warning"
# run: |
# python -c "import spacy; config = spacy.util.load_config('ner.cfg'); config['components']['ner'] = {'source': 'ca_core_news_md'}; config.to_disk('ner_source_md.cfg')"
# python -m spacy assemble ner_source_md.cfg output_dir 2>&1 | grep -q W113
# if: matrix.python_version == '3.9'
- name: "Install test requirements"
run: |

View File

@ -35,19 +35,20 @@ open-source software, released under the [MIT license](https://github.com/explos
## 📖 Documentation
| Documentation | |
| ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| ⭐️ **[spaCy 101]** | New to spaCy? Here's everything you need to know! |
| 📚 **[Usage Guides]** | How to use spaCy and its features. |
| 🚀 **[New in v3.0]** | New features, backwards incompatibilities and migration guide. |
| 🪐 **[Project Templates]** | End-to-end workflows you can clone, modify and run. |
| 🎛 **[API Reference]** | The detailed reference for spaCy's API. |
| 📦 **[Models]** | Download trained pipelines for spaCy. |
| 🌌 **[Universe]** | Plugins, extensions, demos and books from the spaCy ecosystem. |
| 👩‍🏫 **[Online Course]** | Learn spaCy in this free and interactive online course. |
| 📺 **[Videos]** | Our YouTube channel with video tutorials, talks and more. |
| 🛠 **[Changelog]** | Changes and version history. |
| 💝 **[Contribute]** | How to contribute to the spaCy project and code base. |
| Documentation | |
| ----------------------------- | ---------------------------------------------------------------------- |
| ⭐️ **[spaCy 101]** | New to spaCy? Here's everything you need to know! |
| 📚 **[Usage Guides]** | How to use spaCy and its features. |
| 🚀 **[New in v3.0]** | New features, backwards incompatibilities and migration guide. |
| 🪐 **[Project Templates]** | End-to-end workflows you can clone, modify and run. |
| 🎛 **[API Reference]** | The detailed reference for spaCy's API. |
| 📦 **[Models]** | Download trained pipelines for spaCy. |
| 🌌 **[Universe]** | Plugins, extensions, demos and books from the spaCy ecosystem. |
| ⚙️ **[spaCy VS Code Extension]** | Additional tooling and features for working with spaCy's config files. |
| 👩‍🏫 **[Online Course]** | Learn spaCy in this free and interactive online course. |
| 📺 **[Videos]** | Our YouTube channel with video tutorials, talks and more. |
| 🛠 **[Changelog]** | Changes and version history. |
| 💝 **[Contribute]** | How to contribute to the spaCy project and code base. |
| <a href="https://explosion.ai/spacy-tailored-pipelines"><img src="https://user-images.githubusercontent.com/13643239/152853098-1c761611-ccb0-4ec6-9066-b234552831fe.png" width="125" alt="spaCy Tailored Pipelines"/></a> | Get a custom spaCy pipeline, tailor-made for your NLP problem by spaCy's core developers. Streamlined, production-ready, predictable and maintainable. Start by completing our 5-minute questionnaire to tell us what you need and we'll be in touch! **[Learn more &rarr;](https://explosion.ai/spacy-tailored-pipelines)** |
| <a href="https://explosion.ai/spacy-tailored-analysis"><img src="https://user-images.githubusercontent.com/1019791/206151300-b00cd189-e503-4797-aa1e-1bb6344062c5.png" width="125" alt="spaCy Tailored Pipelines"/></a> | Bespoke advice for problem solving, strategy and analysis for applied NLP projects. Services include data strategy, code reviews, pipeline design and annotation coaching. Curious? Fill in our 5-minute questionnaire to tell us what you need and we'll be in touch! **[Learn more &rarr;](https://explosion.ai/spacy-tailored-analysis)** |
@ -57,13 +58,13 @@ open-source software, released under the [MIT license](https://github.com/explos
[api reference]: https://spacy.io/api/
[models]: https://spacy.io/models
[universe]: https://spacy.io/universe
[spaCy VS Code Extension]: https://github.com/explosion/spacy-vscode
[videos]: https://www.youtube.com/c/ExplosionAI
[online course]: https://course.spacy.io
[project templates]: https://github.com/explosion/projects
[changelog]: https://spacy.io/usage#changelog
[contribute]: https://github.com/explosion/spaCy/blob/master/CONTRIBUTING.md
## 💬 Where to ask questions
The spaCy project is maintained by the [spaCy team](https://explosion.ai/about).

View File

@ -9,7 +9,7 @@ murmurhash>=0.28.0,<1.1.0
wasabi>=0.9.1,<1.2.0
srsly>=2.4.3,<3.0.0
catalogue>=2.0.6,<2.1.0
typer>=0.3.0,<0.8.0
typer>=0.3.0,<0.10.0
pathy>=0.10.0
smart-open>=5.2.1,<7.0.0
# Third party dependencies

View File

@ -52,7 +52,7 @@ install_requires =
srsly>=2.4.3,<3.0.0
catalogue>=2.0.6,<2.1.0
# Third-party dependencies
typer>=0.3.0,<0.8.0
typer>=0.3.0,<0.10.0
pathy>=0.10.0
smart-open>=5.2.1,<7.0.0
tqdm>=4.38.0,<5.0.0

View File

@ -1,6 +1,6 @@
# fmt: off
__title__ = "spacy"
__version__ = "3.5.0"
__version__ = "3.6.0.dev1"
__download_url__ = "https://github.com/explosion/spacy-models/releases/download"
__compatibility__ = "https://raw.githubusercontent.com/explosion/spacy-models/master/compatibility.json"
__projects__ = "https://github.com/explosion/projects"

View File

@ -81,11 +81,8 @@ def download(
def get_model_filename(model_name: str, version: str, sdist: bool = False) -> str:
dl_tpl = "{m}-{v}/{m}-{v}{s}"
egg_tpl = "#egg={m}=={v}"
suffix = SDIST_SUFFIX if sdist else WHEEL_SUFFIX
filename = dl_tpl.format(m=model_name, v=version, s=suffix)
if sdist:
filename += egg_tpl.format(m=model_name, v=version)
return filename

View File

@ -27,6 +27,7 @@ def evaluate_cli(
gold_preproc: bool = Opt(False, "--gold-preproc", "-G", help="Use gold preprocessing"),
displacy_path: Optional[Path] = Opt(None, "--displacy-path", "-dp", help="Directory to output rendered parses as HTML", exists=True, file_okay=False),
displacy_limit: int = Opt(25, "--displacy-limit", "-dl", help="Limit of parses to render as HTML"),
per_component: bool = Opt(False, "--per-component", "-P", help="Return scores per component, only applicable when an output JSON file is specified."),
# fmt: on
):
"""
@ -50,6 +51,7 @@ def evaluate_cli(
gold_preproc=gold_preproc,
displacy_path=displacy_path,
displacy_limit=displacy_limit,
per_component=per_component,
silent=False,
)
@ -64,6 +66,7 @@ def evaluate(
displacy_limit: int = 25,
silent: bool = True,
spans_key: str = "sc",
per_component: bool = False,
) -> Dict[str, Any]:
msg = Printer(no_print=silent, pretty=not silent)
fix_random_seed()
@ -78,44 +81,53 @@ def evaluate(
corpus = Corpus(data_path, gold_preproc=gold_preproc)
nlp = util.load_model(model)
dev_dataset = list(corpus(nlp))
scores = nlp.evaluate(dev_dataset)
metrics = {
"TOK": "token_acc",
"TAG": "tag_acc",
"POS": "pos_acc",
"MORPH": "morph_acc",
"LEMMA": "lemma_acc",
"UAS": "dep_uas",
"LAS": "dep_las",
"NER P": "ents_p",
"NER R": "ents_r",
"NER F": "ents_f",
"TEXTCAT": "cats_score",
"SENT P": "sents_p",
"SENT R": "sents_r",
"SENT F": "sents_f",
"SPAN P": f"spans_{spans_key}_p",
"SPAN R": f"spans_{spans_key}_r",
"SPAN F": f"spans_{spans_key}_f",
"SPEED": "speed",
}
results = {}
data = {}
for metric, key in metrics.items():
if key in scores:
if key == "cats_score":
metric = metric + " (" + scores.get("cats_score_desc", "unk") + ")"
if isinstance(scores[key], (int, float)):
if key == "speed":
results[metric] = f"{scores[key]:.0f}"
scores = nlp.evaluate(dev_dataset, per_component=per_component)
if per_component:
data = scores
if output is None:
msg.warn(
"The per-component option is enabled but there is no output JSON file provided to save the scores to."
)
else:
msg.info("Per-component scores will be saved to output JSON file.")
else:
metrics = {
"TOK": "token_acc",
"TAG": "tag_acc",
"POS": "pos_acc",
"MORPH": "morph_acc",
"LEMMA": "lemma_acc",
"UAS": "dep_uas",
"LAS": "dep_las",
"NER P": "ents_p",
"NER R": "ents_r",
"NER F": "ents_f",
"TEXTCAT": "cats_score",
"SENT P": "sents_p",
"SENT R": "sents_r",
"SENT F": "sents_f",
"SPAN P": f"spans_{spans_key}_p",
"SPAN R": f"spans_{spans_key}_r",
"SPAN F": f"spans_{spans_key}_f",
"SPEED": "speed",
}
results = {}
data = {}
for metric, key in metrics.items():
if key in scores:
if key == "cats_score":
metric = metric + " (" + scores.get("cats_score_desc", "unk") + ")"
if isinstance(scores[key], (int, float)):
if key == "speed":
results[metric] = f"{scores[key]:.0f}"
else:
results[metric] = f"{scores[key]*100:.2f}"
else:
results[metric] = f"{scores[key]*100:.2f}"
else:
results[metric] = "-"
data[re.sub(r"[\s/]", "_", key.lower())] = scores[key]
results[metric] = "-"
data[re.sub(r"[\s/]", "_", key.lower())] = scores[key]
msg.table(results, title="Results")
data = handle_scores_per_type(scores, data, spans_key=spans_key, silent=silent)
msg.table(results, title="Results")
data = handle_scores_per_type(scores, data, spans_key=spans_key, silent=silent)
if displacy_path:
factory_names = [nlp.get_pipe_meta(pipe).factory for pipe in nlp.pipe_names]

View File

@ -3,7 +3,7 @@ the docs and the init config command. It encodes various best practices and
can help generate the best possible configuration, given a user's requirements. #}
{%- set use_transformer = hardware != "cpu" and transformer_data -%}
{%- set transformer = transformer_data[optimize] if use_transformer else {} -%}
{%- set listener_components = ["tagger", "morphologizer", "parser", "ner", "textcat", "textcat_multilabel", "entity_linker", "spancat", "spancat_singlelabel", "trainable_lemmatizer"] -%}
{%- set listener_components = ["tagger", "morphologizer", "parser", "ner", "textcat", "textcat_multilabel", "entity_linker", "span_finder", "spancat", "spancat_singlelabel", "trainable_lemmatizer"] -%}
[paths]
train = null
dev = null
@ -28,7 +28,7 @@ lang = "{{ lang }}"
tok2vec/transformer. #}
{%- set with_accuracy_or_transformer = (use_transformer or with_accuracy) -%}
{%- set textcat_needs_features = has_textcat and with_accuracy_or_transformer -%}
{%- if ("tagger" in components or "morphologizer" in components or "parser" in components or "ner" in components or "spancat" in components or "spancat_singlelabel" in components or "trainable_lemmatizer" in components or "entity_linker" in components or textcat_needs_features) -%}
{%- if ("tagger" in components or "morphologizer" in components or "parser" in components or "ner" in components or "span_finder" in components or "spancat" in components or "spancat_singlelabel" in components or "trainable_lemmatizer" in components or "entity_linker" in components or textcat_needs_features) -%}
{%- set full_pipeline = ["transformer" if use_transformer else "tok2vec"] + components -%}
{%- else -%}
{%- set full_pipeline = components -%}
@ -127,6 +127,30 @@ grad_factor = 1.0
@layers = "reduce_mean.v1"
{% endif -%}
{% if "span_finder" in components -%}
[components.span_finder]
factory = "span_finder"
max_length = null
min_length = null
scorer = {"@scorers":"spacy.span_finder_scorer.v1"}
spans_key = "sc"
threshold = 0.5
[components.span_finder.model]
@architectures = "spacy.SpanFinder.v1"
[components.span_finder.model.scorer]
@layers = "spacy.LinearLogistic.v1"
nO = 2
[components.span_finder.model.tok2vec]
@architectures = "spacy-transformers.TransformerListener.v1"
grad_factor = 1.0
[components.span_finder.model.tok2vec.pooling]
@layers = "reduce_mean.v1"
{% endif -%}
{% if "spancat" in components -%}
[components.spancat]
factory = "spancat"
@ -392,6 +416,27 @@ nO = null
width = ${components.tok2vec.model.encode.width}
{% endif %}
{% if "span_finder" in components %}
[components.span_finder]
factory = "span_finder"
max_length = null
min_length = null
scorer = {"@scorers":"spacy.span_finder_scorer.v1"}
spans_key = "sc"
threshold = 0.5
[components.span_finder.model]
@architectures = "spacy.SpanFinder.v1"
[components.span_finder.model.scorer]
@layers = "spacy.LinearLogistic.v1"
nO = 2
[components.span_finder.model.tok2vec]
@architectures = "spacy.Tok2VecListener.v1"
width = ${components.tok2vec.model.encode.width}
{% endif %}
{% if "spancat" in components %}
[components.spancat]
factory = "spancat"

View File

@ -975,7 +975,14 @@ class Errors(metaclass=ErrorsWithCodes):
E1050 = ("Port {port} is already in use. Please specify an available port with `displacy.serve(doc, port=port)` "
"or use `auto_select_port=True` to pick an available port automatically.")
E1051 = ("'allow_overlap' can only be False when max_positive is 1, but found 'max_positive': {max_positive}.")
E1052 = ("Cannot create Language instance from config: missing pipeline components. The following components were added by instance (rather than config) via the 'Language.add_pipe_instance()' method, but are not present in the 'pipe_instances' variable: {names}")
E1052 = ("Unable to copy spans: the character offsets for the span at "
"index {i} in the span group do not align with the tokenization "
"in the target doc.")
E1053 = ("Both 'min_length' and 'max_length' should be larger than 0, but found"
" 'min_length': {min_length}, 'max_length': {max_length}")
E1054 = ("The text, including whitespace, must match between reference and "
"predicted docs when training {component}.")
E1055 = ("Cannot create Language instance from config: missing pipeline components. The following components were added by instance (rather than config) via the 'Language.add_pipe_instance()' method, but are not present in the 'pipe_instances' variable: {names}")
# Deprecated model shortcuts, only used in errors and warnings

24
spacy/lang/ms/__init__.py Normal file
View File

@ -0,0 +1,24 @@
from .stop_words import STOP_WORDS
from .punctuation import TOKENIZER_SUFFIXES, TOKENIZER_PREFIXES, TOKENIZER_INFIXES
from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS
from .lex_attrs import LEX_ATTRS
from .syntax_iterators import SYNTAX_ITERATORS
from ...language import Language, BaseDefaults
class MalayDefaults(BaseDefaults):
tokenizer_exceptions = TOKENIZER_EXCEPTIONS
prefixes = TOKENIZER_PREFIXES
suffixes = TOKENIZER_SUFFIXES
infixes = TOKENIZER_INFIXES
syntax_iterators = SYNTAX_ITERATORS
lex_attr_getters = LEX_ATTRS
stop_words = STOP_WORDS
class Malay(Language):
lang = "ms"
Defaults = MalayDefaults
__all__ = ["Malay"]

File diff suppressed because it is too large Load Diff

17
spacy/lang/ms/examples.py Normal file
View File

@ -0,0 +1,17 @@
"""
Example sentences to test spaCy and its language models.
>>> from spacy.lang.ms.examples import sentences
>>> docs = nlp.pipe(sentences)
"""
sentences = [
"Malaysia ialah sebuah negara yang terletak di Asia Tenggara.",
"Berapa banyak pelajar yang akan menghadiri majlis perpisahan sekolah?",
"Pengeluaran makanan berasal dari beberapa lokasi termasuk Cameron Highlands, Johor Bahru, dan Kuching.",
"Syarikat XYZ telah menghasilkan 20,000 unit produk baharu dalam setahun terakhir",
"Kuala Lumpur merupakan ibu negara Malaysia." "Kau berada di mana semalam?",
"Siapa yang akan memimpin projek itu?",
"Siapa perdana menteri Malaysia sekarang?",
]

View File

@ -0,0 +1,66 @@
import unicodedata
from .punctuation import LIST_CURRENCY
from ...attrs import IS_CURRENCY, LIKE_NUM
_num_words = [
"kosong",
"satu",
"dua",
"tiga",
"empat",
"lima",
"enam",
"tujuh",
"lapan",
"sembilan",
"sepuluh",
"sebelas",
"belas",
"puluh",
"ratus",
"ribu",
"juta",
"billion",
"trillion",
"kuadrilion",
"kuintilion",
"sekstilion",
"septilion",
"oktilion",
"nonilion",
"desilion",
]
def like_num(text):
if text.startswith(("+", "-", "±", "~")):
text = text[1:]
text = text.replace(",", "").replace(".", "")
if text.isdigit():
return True
if text.count("/") == 1:
num, denom = text.split("/")
if num.isdigit() and denom.isdigit():
return True
if text.lower() in _num_words:
return True
if text.count("-") == 1:
_, num = text.split("-")
if num.isdigit() or num in _num_words:
return True
return False
def is_currency(text):
if text in LIST_CURRENCY:
return True
for char in text:
if unicodedata.category(char) != "Sc":
return False
return True
LEX_ATTRS = {IS_CURRENCY: is_currency, LIKE_NUM: like_num}

View File

@ -0,0 +1,61 @@
from ..punctuation import TOKENIZER_PREFIXES, TOKENIZER_SUFFIXES, TOKENIZER_INFIXES
from ..char_classes import ALPHA, merge_chars, split_chars, _currency, _units
_units = (
_units + "s bit Gbps Mbps mbps Kbps kbps ƒ ppi px "
"Hz kHz MHz GHz mAh "
"ratus rb ribu ribuan "
"juta jt jutaan mill?iar million bil[l]?iun bilyun billion "
)
_currency = _currency + r" USD RM MYR Rp IDR RMB SGD S\$"
_months = (
"Januari Februari Mac April Mei Jun Julai Ogos September "
"Oktober November Disember Januari Februari Mac Mei Jun "
"Julai Ogos Oktober Disember Jan Feb Mac Jun Julai Ogos Sept "
"Okt Nov Dis"
)
UNITS = merge_chars(_units)
CURRENCY = merge_chars(_currency)
HTML_PREFIX = r"<(b|strong|i|em|p|span|div|br)\s?/>|<a([^>]+)>"
HTML_SUFFIX = r"</(b|strong|i|em|p|span|div|a)>"
MONTHS = merge_chars(_months)
LIST_CURRENCY = split_chars(_currency)
_prefixes = list(TOKENIZER_PREFIXES)
_prefixes.remove("#") # hashtag
_prefixes = _prefixes + LIST_CURRENCY + [HTML_PREFIX] + ["/", ""]
_suffixes = (
TOKENIZER_SUFFIXES
+ [r"\-[Nn]ya", "-[KkMm]u", "[—-]"]
+ [
# disabled: variable width currency variable
# r"(?<={c})(?:[0-9]+)".format(c=CURRENCY),
r"(?<=[0-9])(?:{u})".format(u=UNITS),
r"(?<=[0-9])%",
# disabled: variable width HTML_SUFFIX variable
# r"(?<=[0-9{a}]{h})(?:[\.,:-])".format(a=ALPHA, h=HTML_SUFFIX),
r"(?<=[0-9{a}])(?:{h})".format(a=ALPHA, h=HTML_SUFFIX),
]
)
_infixes = TOKENIZER_INFIXES + [
r"(?<=[0-9])[\\/](?=[0-9%-])",
r"(?<=[0-9])%(?=[{a}0-9/])".format(a=ALPHA),
# disabled: variable width units variable
# r"(?<={u})[\/-](?=[0-9])".format(u=UNITS),
# disabled: variable width months variable
# r"(?<={m})[\/-](?=[0-9])".format(m=MONTHS),
r'(?<=[0-9)][.,])"(?=[0-9])',
r'(?<=[{a})][.,\'])["—](?=[{a}])'.format(a=ALPHA),
r"(?<=[{a}])-(?=[0-9])".format(a=ALPHA),
r"(?<=[0-9])-(?=[{a}])".format(a=ALPHA),
r"(?<=[{a}])[\/-](?={c}|[{a}])".format(a=ALPHA, c=CURRENCY),
]
TOKENIZER_PREFIXES = _prefixes
TOKENIZER_SUFFIXES = _suffixes
TOKENIZER_INFIXES = _infixes

118
spacy/lang/ms/stop_words.py Normal file
View File

@ -0,0 +1,118 @@
STOP_WORDS = set(
"""
ada adalah adanya adapun agak agaknya agar akan akankah akhir akhiri akhirnya
aku akulah amat amatlah anda andalah antar antara antaranya apa apaan apabila
apakah apalagi apatah artinya asal asalkan atas atau ataukah ataupun awal
awalnya
bagai bagaikan bagaimana bagaimanakah bagaimanapun bagi bagian bahkan bahwa
bahwasanya baik bakal bakalan balik banyak bapak baru bawah beberapa begini
beginian beginikah beginilah begitu begitukah begitulah begitupun bekerja
belakang belakangan belum belumlah benar benarkah benarlah berada berakhir
berakhirlah berakhirnya berapa berapakah berapalah berapapun berarti berawal
berbagai berdatangan beri berikan berikut berikutnya berjumlah berkali-kali
berkata berkehendak berkeinginan berkenaan berlainan berlalu berlangsung
berlebihan bermacam bermacam-macam bermaksud bermula bersama bersama-sama
bersiap bersiap-siap bertanya bertanya-tanya berturut berturut-turut bertutur
berujar berupa besar betul betulkah biasa biasanya bila bilakah bisa bisakah
boleh bolehkah bolehlah buat bukan bukankah bukanlah bukannya bulan bung
cara caranya cukup cukupkah cukuplah cuma
dahulu dalam dan dapat dari daripada datang dekat demi demikian demikianlah
dengan depan di dia diakhiri diakhirinya dialah diantara diantaranya diberi
diberikan diberikannya dibuat dibuatnya didapat didatangkan digunakan
diibaratkan diibaratkannya diingat diingatkan diinginkan dijawab dijelaskan
dijelaskannya dikarenakan dikatakan dikatakannya dikerjakan diketahui
diketahuinya dikira dilakukan dilalui dilihat dimaksud dimaksudkan
dimaksudkannya dimaksudnya diminta dimintai dimisalkan dimulai dimulailah
dimulainya dimungkinkan dini dipastikan diperbuat diperbuatnya dipergunakan
diperkirakan diperlihatkan diperlukan diperlukannya dipersoalkan dipertanyakan
dipunyai diri dirinya disampaikan disebut disebutkan disebutkannya disini
disinilah ditambahkan ditandaskan ditanya ditanyai ditanyakan ditegaskan
ditujukan ditunjuk ditunjuki ditunjukkan ditunjukkannya ditunjuknya dituturkan
dituturkannya diucapkan diucapkannya diungkapkan dong dua dulu
empat enggak enggaknya entah entahlah
guna gunakan
hal hampir hanya hanyalah hari harus haruslah harusnya hendak hendaklah
hendaknya hingga
ia ialah ibarat ibaratkan ibaratnya ibu ikut ingat ingat-ingat ingin inginkah
inginkan ini inikah inilah itu itukah itulah
jadi jadilah jadinya jangan jangankan janganlah jauh jawab jawaban jawabnya
jelas jelaskan jelaslah jelasnya jika jikalau juga jumlah jumlahnya justru
kala kalau kalaulah kalaupun kalian kami kamilah kamu kamulah kan kapan
kapankah kapanpun karena karenanya kasus kata katakan katakanlah katanya ke
keadaan kebetulan kecil kedua keduanya keinginan kelamaan kelihatan
kelihatannya kelima keluar kembali kemudian kemungkinan kemungkinannya kenapa
kepada kepadanya kesampaian keseluruhan keseluruhannya keterlaluan ketika
khususnya kini kinilah kira kira-kira kiranya kita kitalah kok kurang
lagi lagian lah lain lainnya lalu lama lamanya lanjut lanjutnya lebih lewat
lima luar
macam maka makanya makin malah malahan mampu mampukah mana manakala manalagi
masa masalah masalahnya masih masihkah masing masing-masing mau maupun
melainkan melakukan melalui melihat melihatnya memang memastikan memberi
memberikan membuat memerlukan memihak meminta memintakan memisalkan memperbuat
mempergunakan memperkirakan memperlihatkan mempersiapkan mempersoalkan
mempertanyakan mempunyai memulai memungkinkan menaiki menambahkan menandaskan
menanti menanti-nanti menantikan menanya menanyai menanyakan mendapat
mendapatkan mendatang mendatangi mendatangkan menegaskan mengakhiri mengapa
mengatakan mengatakannya mengenai mengerjakan mengetahui menggunakan
menghendaki mengibaratkan mengibaratkannya mengingat mengingatkan menginginkan
mengira mengucapkan mengucapkannya mengungkapkan menjadi menjawab menjelaskan
menuju menunjuk menunjuki menunjukkan menunjuknya menurut menuturkan
menyampaikan menyangkut menyatakan menyebutkan menyeluruh menyiapkan merasa
mereka merekalah merupakan meski meskipun meyakini meyakinkan minta mirip
misal misalkan misalnya mula mulai mulailah mulanya mungkin mungkinkah
nah naik namun nanti nantinya nyaris nyatanya
oleh olehnya
pada padahal padanya pak paling panjang pantas para pasti pastilah penting
pentingnya per percuma perlu perlukah perlunya pernah persoalan pertama
pertama-tama pertanyaan pertanyakan pihak pihaknya pukul pula pun punya
rasa rasanya rata rupanya
saat saatnya saja sajalah saling sama sama-sama sambil sampai sampai-sampai
sampaikan sana sangat sangatlah satu saya sayalah se sebab sebabnya sebagai
sebagaimana sebagainya sebagian sebaik sebaik-baiknya sebaiknya sebaliknya
sebanyak sebegini sebegitu sebelum sebelumnya sebenarnya seberapa sebesar
sebetulnya sebisanya sebuah sebut sebutlah sebutnya secara secukupnya sedang
sedangkan sedemikian sedikit sedikitnya seenaknya segala segalanya segera
seharusnya sehingga seingat sejak sejauh sejenak sejumlah sekadar sekadarnya
sekali sekali-kali sekalian sekaligus sekalipun sekarang sekarang sekecil
seketika sekiranya sekitar sekitarnya sekurang-kurangnya sekurangnya sela
selain selaku selalu selama selama-lamanya selamanya selanjutnya seluruh
seluruhnya semacam semakin semampu semampunya semasa semasih semata semata-mata
semaunya sementara semisal semisalnya sempat semua semuanya semula sendiri
sendirian sendirinya seolah seolah-olah seorang sepanjang sepantasnya
sepantasnyalah seperlunya seperti sepertinya sepihak sering seringnya serta
serupa sesaat sesama sesampai sesegera sesekali seseorang sesuatu sesuatunya
sesudah sesudahnya setelah setempat setengah seterusnya setiap setiba setibanya
setidak-tidaknya setidaknya setinggi seusai sewaktu siap siapa siapakah
siapapun sini sinilah soal soalnya suatu sudah sudahkah sudahlah supaya
tadi tadinya tahu tahun tak tambah tambahnya tampak tampaknya tandas tandasnya
tanpa tanya tanyakan tanyanya tapi tegas tegasnya telah tempat tengah tentang
tentu tentulah tentunya tepat terakhir terasa terbanyak terdahulu terdapat
terdiri terhadap terhadapnya teringat teringat-ingat terjadi terjadilah
terjadinya terkira terlalu terlebih terlihat termasuk ternyata tersampaikan
tersebut tersebutlah tertentu tertuju terus terutama tetap tetapi tiap tiba
tiba-tiba tidak tidakkah tidaklah tiga tinggi toh tunjuk turut tutur tuturnya
ucap ucapnya ujar ujarnya umum umumnya ungkap ungkapnya untuk usah usai
waduh wah wahai waktu waktunya walau walaupun wong
yaitu yakin yakni yang
""".split()
)

View File

@ -0,0 +1,41 @@
from typing import Union, Iterator, Tuple
from ...symbols import NOUN, PROPN, PRON
from ...errors import Errors
from ...tokens import Doc, Span
def noun_chunks(doclike: Union[Doc, Span]) -> Iterator[Tuple[int, int, int]]:
"""
Detect base noun phrases from a dependency parse. Works on both Doc and Span.
"""
# fmt: off
labels = ["nsubj", "nsubj:pass", "obj", "iobj", "ROOT", "appos", "nmod", "nmod:poss"]
# fmt: on
doc = doclike.doc # Ensure works on both Doc and Span.
if not doc.has_annotation("DEP"):
raise ValueError(Errors.E029)
np_deps = [doc.vocab.strings[label] for label in labels]
conj = doc.vocab.strings.add("conj")
np_label = doc.vocab.strings.add("NP")
prev_end = -1
for i, word in enumerate(doclike):
if word.pos not in (NOUN, PROPN, PRON):
continue
# Prevent nested chunks from being produced
if word.left_edge.i <= prev_end:
continue
if word.dep in np_deps:
prev_end = word.right_edge.i
yield word.left_edge.i, word.right_edge.i + 1, np_label
elif word.dep == conj:
head = word.head
while head.dep == conj and head.head.i < head.i:
head = head.head
# If the head is an NP, and we're coordinated to it, we're an NP
if head.dep in np_deps:
prev_end = word.right_edge.i
yield word.left_edge.i, word.right_edge.i + 1, np_label
SYNTAX_ITERATORS = {"noun_chunks": noun_chunks}

File diff suppressed because it is too large Load Diff

View File

@ -1,6 +1,6 @@
from typing import Iterator, Optional, Any, Dict, Callable, Iterable
from typing import Union, Tuple, List, Set, Pattern, Sequence, overload
from typing import NoReturn, TYPE_CHECKING, TypeVar, cast
from typing import NoReturn, TypeVar, cast
from dataclasses import dataclass
import random
@ -1325,7 +1325,10 @@ class Language:
"No 'get_examples' callback provided to 'Language.initialize', creating dummy examples"
)
doc = Doc(self.vocab, words=["x", "y", "z"])
get_examples = lambda: [Example.from_dict(doc, {})]
def get_examples():
return [Example.from_dict(doc, {})]
if not hasattr(get_examples, "__call__"):
err = Errors.E930.format(
method="Language.initialize", obj=type(get_examples)
@ -1428,6 +1431,7 @@ class Language:
scorer: Optional[Scorer] = None,
component_cfg: Optional[Dict[str, Dict[str, Any]]] = None,
scorer_cfg: Optional[Dict[str, Any]] = None,
per_component: bool = False,
) -> Dict[str, Any]:
"""Evaluate a model's pipeline components.
@ -1439,6 +1443,8 @@ class Language:
arguments for specific components.
scorer_cfg (dict): An optional dictionary with extra keyword arguments
for the scorer.
per_component (bool): Whether to return the scores keyed by component
name. Defaults to False.
RETURNS (Scorer): The scorer containing the evaluation results.
@ -1471,7 +1477,7 @@ class Language:
for eg, doc in zip(examples, docs):
eg.predicted = doc
end_time = timer()
results = scorer.score(examples)
results = scorer.score(examples, per_component=per_component)
n_words = sum(len(eg.predicted) for eg in examples)
results["speed"] = n_words / (end_time - start_time)
return results
@ -1847,7 +1853,7 @@ class Language:
# and aren't built by factory.
missing_components = _find_missing_components(pipeline, pipe_instances, exclude)
if missing_components:
raise ValueError(Errors.E1052.format(names=", ".join(missing_components)))
raise ValueError(Errors.E1055.format(names=", ".join(missing_components)))
# If components are loaded from a source (existing models), we cache
# them here so they're only loaded once
source_nlps = {}

View File

@ -1,6 +1,7 @@
from .entity_linker import * # noqa
from .multi_task import * # noqa
from .parser import * # noqa
from .span_finder import * # noqa
from .spancat import * # noqa
from .tagger import * # noqa
from .textcat import * # noqa

View File

@ -0,0 +1,42 @@
from typing import Callable, List, Tuple
from thinc.api import Model, chain, with_array
from thinc.types import Floats1d, Floats2d
from ...tokens import Doc
from ...util import registry
InT = List[Doc]
OutT = Floats2d
@registry.architectures("spacy.SpanFinder.v1")
def build_finder_model(
tok2vec: Model[InT, List[Floats2d]], scorer: Model[OutT, OutT]
) -> Model[InT, OutT]:
logistic_layer: Model[List[Floats2d], List[Floats2d]] = with_array(scorer)
model: Model[InT, OutT] = chain(tok2vec, logistic_layer, flattener())
model.set_ref("tok2vec", tok2vec)
model.set_ref("scorer", scorer)
model.set_ref("logistic_layer", logistic_layer)
return model
def flattener() -> Model[List[Floats2d], Floats2d]:
"""Flattens the input to a 1-dimensional list of scores"""
def forward(
model: Model[Floats1d, Floats1d], X: List[Floats2d], is_train: bool
) -> Tuple[Floats2d, Callable[[Floats2d], List[Floats2d]]]:
lens = model.ops.asarray1i([len(doc) for doc in X])
Y = model.ops.flatten(X)
def backprop(dY: Floats2d) -> List[Floats2d]:
return model.ops.unflatten(dY, lens)
return Y, backprop
return Model("Flattener", forward=forward)

View File

@ -2,21 +2,22 @@ from .attributeruler import AttributeRuler
from .dep_parser import DependencyParser
from .edit_tree_lemmatizer import EditTreeLemmatizer
from .entity_linker import EntityLinker
from .ner import EntityRecognizer
from .entityruler import EntityRuler
from .functions import merge_entities, merge_noun_chunks, merge_subtokens
from .lemmatizer import Lemmatizer
from .morphologizer import Morphologizer
from .ner import EntityRecognizer
from .pipe import Pipe
from .trainable_pipe import TrainablePipe
from .senter import SentenceRecognizer
from .sentencizer import Sentencizer
from .senter import SentenceRecognizer
from .span_finder import SpanFinder
from .span_ruler import SpanRuler
from .spancat import SpanCategorizer
from .tagger import Tagger
from .textcat import TextCategorizer
from .spancat import SpanCategorizer
from .span_ruler import SpanRuler
from .textcat_multilabel import MultiLabel_TextCategorizer
from .tok2vec import Tok2Vec
from .functions import merge_entities, merge_noun_chunks, merge_subtokens
from .trainable_pipe import TrainablePipe
__all__ = [
"AttributeRuler",
@ -31,6 +32,7 @@ __all__ = [
"SentenceRecognizer",
"Sentencizer",
"SpanCategorizer",
"SpanFinder",
"SpanRuler",
"Tagger",
"TextCategorizer",

View File

@ -0,0 +1,336 @@
from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple
from thinc.api import Config, Model, Optimizer, set_dropout_rate
from thinc.types import Floats2d
from ..language import Language
from .trainable_pipe import TrainablePipe
from ..scorer import Scorer
from ..tokens import Doc, Span
from ..training import Example
from ..errors import Errors
from ..util import registry
from .spancat import DEFAULT_SPANS_KEY
span_finder_default_config = """
[model]
@architectures = "spacy.SpanFinder.v1"
[model.scorer]
@layers = "spacy.LinearLogistic.v1"
nO = 2
[model.tok2vec]
@architectures = "spacy.Tok2Vec.v2"
[model.tok2vec.embed]
@architectures = "spacy.MultiHashEmbed.v2"
width = 96
rows = [5000, 1000, 2500, 1000]
attrs = ["NORM", "PREFIX", "SUFFIX", "SHAPE"]
include_static_vectors = false
[model.tok2vec.encode]
@architectures = "spacy.MaxoutWindowEncoder.v2"
width = ${model.tok2vec.embed.width}
window_size = 1
maxout_pieces = 3
depth = 4
"""
DEFAULT_SPAN_FINDER_MODEL = Config().from_str(span_finder_default_config)["model"]
@Language.factory(
"span_finder",
assigns=["doc.spans"],
default_config={
"threshold": 0.5,
"model": DEFAULT_SPAN_FINDER_MODEL,
"spans_key": DEFAULT_SPANS_KEY,
"max_length": None,
"min_length": None,
"scorer": {"@scorers": "spacy.span_finder_scorer.v1"},
},
default_score_weights={
f"span_finder_{DEFAULT_SPANS_KEY}_f": 1.0,
f"span_finder_{DEFAULT_SPANS_KEY}_p": 0.0,
f"span_finder_{DEFAULT_SPANS_KEY}_r": 0.0,
},
)
def make_span_finder(
nlp: Language,
name: str,
model: Model[Iterable[Doc], Floats2d],
spans_key: str,
threshold: float,
max_length: Optional[int],
min_length: Optional[int],
scorer: Optional[Callable],
) -> "SpanFinder":
"""Create a SpanFinder component. The component predicts whether a token is
the start or the end of a potential span.
model (Model[List[Doc], Floats2d]): A model instance that
is given a list of documents and predicts a probability for each token.
spans_key (str): Key of the doc.spans dict to save the spans under. During
initialization and training, the component will look for spans on the
reference document under the same key.
threshold (float): Minimum probability to consider a prediction positive.
max_length (Optional[int]): Maximum length of the produced spans, defaults
to None meaning unlimited length.
min_length (Optional[int]): Minimum length of the produced spans, defaults
to None meaning shortest span length is 1.
scorer (Optional[Callable]): The scoring method. Defaults to
Scorer.score_spans for the Doc.spans[spans_key] with overlapping
spans allowed.
"""
return SpanFinder(
nlp,
model=model,
threshold=threshold,
name=name,
scorer=scorer,
max_length=max_length,
min_length=min_length,
spans_key=spans_key,
)
@registry.scorers("spacy.span_finder_scorer.v1")
def make_span_finder_scorer():
return span_finder_score
def span_finder_score(examples: Iterable[Example], **kwargs) -> Dict[str, Any]:
kwargs = dict(kwargs)
attr_prefix = "span_finder_"
key = kwargs["spans_key"]
kwargs.setdefault("attr", f"{attr_prefix}{key}")
kwargs.setdefault(
"getter", lambda doc, key: doc.spans.get(key[len(attr_prefix) :], [])
)
kwargs.setdefault("has_annotation", lambda doc: key in doc.spans)
kwargs.setdefault("allow_overlap", True)
kwargs.setdefault("labeled", False)
scores = Scorer.score_spans(examples, **kwargs)
scores.pop(f"{kwargs['attr']}_per_type", None)
return scores
def _char_indices(span: Span) -> Tuple[int, int]:
start = span[0].idx
end = span[-1].idx + len(span[-1])
return start, end
class SpanFinder(TrainablePipe):
"""Pipeline that learns span boundaries.
DOCS: https://spacy.io/api/spanfinder
"""
def __init__(
self,
nlp: Language,
model: Model[Iterable[Doc], Floats2d],
name: str = "span_finder",
*,
spans_key: str = DEFAULT_SPANS_KEY,
threshold: float = 0.5,
max_length: Optional[int] = None,
min_length: Optional[int] = None,
scorer: Optional[Callable] = span_finder_score,
) -> None:
"""Initialize the span finder.
model (thinc.api.Model): The Thinc Model powering the pipeline
component.
name (str): The component instance name, used to add entries to the
losses during training.
threshold (float): Minimum probability to consider a prediction
positive.
scorer (Optional[Callable]): The scoring method.
spans_key (str): Key of the doc.spans dict to save the spans under.
During initialization and training, the component will look for
spans on the reference document under the same key.
max_length (Optional[int]): Maximum length of the produced spans,
defaults to None meaning unlimited length.
min_length (Optional[int]): Minimum length of the produced spans,
defaults to None meaning shortest span length is 1.
DOCS: https://spacy.io/api/spanfinder#init
"""
self.vocab = nlp.vocab
if (max_length is not None and max_length < 1) or (
min_length is not None and min_length < 1
):
raise ValueError(
Errors.E1053.format(min_length=min_length, max_length=max_length)
)
self.model = model
self.name = name
self.scorer = scorer
self.cfg: Dict[str, Any] = {
"min_length": min_length,
"max_length": max_length,
"threshold": threshold,
"spans_key": spans_key,
}
def predict(self, docs: Iterable[Doc]):
"""Apply the pipeline's model to a batch of docs, without modifying
them.
docs (Iterable[Doc]): The documents to predict.
RETURNS: The models prediction for each document.
DOCS: https://spacy.io/api/spanfinder#predict
"""
scores = self.model.predict(docs)
return scores
def set_annotations(self, docs: Iterable[Doc], scores: Floats2d) -> None:
"""Modify a batch of Doc objects, using pre-computed scores.
docs (Iterable[Doc]): The documents to modify.
scores: The scores to set, produced by SpanFinder predict method.
DOCS: https://spacy.io/api/spanfinder#set_annotations
"""
offset = 0
for i, doc in enumerate(docs):
doc.spans[self.cfg["spans_key"]] = []
starts = []
ends = []
doc_scores = scores[offset : offset + len(doc)]
for token, token_score in zip(doc, doc_scores):
if token_score[0] >= self.cfg["threshold"]:
starts.append(token.i)
if token_score[1] >= self.cfg["threshold"]:
ends.append(token.i)
for start in starts:
for end in ends:
span_length = end + 1 - start
if span_length < 1:
continue
if (
self.cfg["min_length"] is None
or self.cfg["min_length"] <= span_length
) and (
self.cfg["max_length"] is None
or span_length <= self.cfg["max_length"]
):
doc.spans[self.cfg["spans_key"]].append(doc[start : end + 1])
offset += len(doc)
def update(
self,
examples: Iterable[Example],
*,
drop: float = 0.0,
sgd: Optional[Optimizer] = None,
losses: Optional[Dict[str, float]] = None,
) -> Dict[str, float]:
"""Learn from a batch of documents and gold-standard information,
updating the pipe's model. Delegates to predict and get_loss.
examples (Iterable[Example]): A batch of Example objects.
drop (float): The dropout rate.
sgd (Optional[thinc.api.Optimizer]): The optimizer.
losses (Optional[Dict[str, float]]): Optional record of the loss during
training. Updated using the component name as the key.
RETURNS (Dict[str, float]): The updated losses dictionary.
DOCS: https://spacy.io/api/spanfinder#update
"""
if losses is None:
losses = {}
losses.setdefault(self.name, 0.0)
predicted = [eg.predicted for eg in examples]
set_dropout_rate(self.model, drop)
scores, backprop_scores = self.model.begin_update(predicted)
loss, d_scores = self.get_loss(examples, scores)
backprop_scores(d_scores)
if sgd is not None:
self.finish_update(sgd)
losses[self.name] += loss
return losses
def get_loss(self, examples, scores) -> Tuple[float, Floats2d]:
"""Find the loss and gradient of loss for the batch of documents and
their predicted scores.
examples (Iterable[Examples]): The batch of examples.
scores: Scores representing the model's predictions.
RETURNS (Tuple[float, Floats2d]): The loss and the gradient.
DOCS: https://spacy.io/api/spanfinder#get_loss
"""
truths, masks = self._get_aligned_truth_scores(examples, self.model.ops)
d_scores = scores - self.model.ops.asarray2f(truths)
d_scores *= masks
loss = float((d_scores**2).sum())
return loss, d_scores
def _get_aligned_truth_scores(self, examples, ops) -> Tuple[Floats2d, Floats2d]:
"""Align scores of the predictions to the references for calculating
the loss.
"""
truths = []
masks = []
for eg in examples:
if eg.x.text != eg.y.text:
raise ValueError(Errors.E1054.format(component="span_finder"))
n_tokens = len(eg.predicted)
truth = ops.xp.zeros((n_tokens, 2), dtype="float32")
mask = ops.xp.ones((n_tokens, 2), dtype="float32")
if self.cfg["spans_key"] in eg.reference.spans:
for span in eg.reference.spans[self.cfg["spans_key"]]:
ref_start_char, ref_end_char = _char_indices(span)
pred_span = eg.predicted.char_span(
ref_start_char, ref_end_char, alignment_mode="expand"
)
pred_start_char, pred_end_char = _char_indices(pred_span)
start_match = pred_start_char == ref_start_char
end_match = pred_end_char == ref_end_char
if start_match:
truth[pred_span[0].i, 0] = 1
else:
mask[pred_span[0].i, 0] = 0
if end_match:
truth[pred_span[-1].i, 1] = 1
else:
mask[pred_span[-1].i, 1] = 0
truths.append(truth)
masks.append(mask)
truths = ops.xp.concatenate(truths, axis=0)
masks = ops.xp.concatenate(masks, axis=0)
return truths, masks
def initialize(
self,
get_examples: Callable[[], Iterable[Example]],
*,
nlp: Optional[Language] = None,
) -> None:
"""Initialize the pipe for training, using a representative set
of data examples.
get_examples (Callable[[], Iterable[Example]]): Function that
returns a representative sample of gold-standard Example objects.
nlp (Optional[Language]): The current nlp object the component is part
of.
DOCS: https://spacy.io/api/spanfinder#initialize
"""
subbatch: List[Example] = []
for eg in get_examples():
if len(subbatch) < 10:
subbatch.append(eg)
if subbatch:
docs = [eg.reference for eg in subbatch]
Y, _ = self._get_aligned_truth_scores(subbatch, self.model.ops)
self.model.initialize(X=docs, Y=Y)
else:
self.model.initialize()

View File

@ -1,22 +1,20 @@
from typing import List, Dict, Callable, Tuple, Optional, Iterable, Any, cast, Union
from dataclasses import dataclass
from functools import partial
from thinc.api import Config, Model, get_current_ops, set_dropout_rate, Ops
from thinc.api import Optimizer
from thinc.types import Ragged, Ints2d, Floats2d
from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple, Union, cast
import numpy
from thinc.api import Config, Model, Ops, Optimizer, get_current_ops, set_dropout_rate
from thinc.types import Floats2d, Ints1d, Ints2d, Ragged
from ..compat import Protocol, runtime_checkable
from ..scorer import Scorer
from ..language import Language
from .trainable_pipe import TrainablePipe
from ..tokens import Doc, SpanGroup, Span
from ..vocab import Vocab
from ..training import Example, validate_examples
from ..errors import Errors
from ..language import Language
from ..scorer import Scorer
from ..tokens import Doc, Span, SpanGroup
from ..training import Example, validate_examples
from ..util import registry
from ..vocab import Vocab
from .trainable_pipe import TrainablePipe
spancat_default_config = """
[model]
@ -33,8 +31,8 @@ hidden_size = 128
[model.tok2vec.embed]
@architectures = "spacy.MultiHashEmbed.v2"
width = 96
rows = [5000, 2000, 1000, 1000]
attrs = ["ORTH", "PREFIX", "SUFFIX", "SHAPE"]
rows = [5000, 1000, 2500, 1000]
attrs = ["NORM", "PREFIX", "SUFFIX", "SHAPE"]
include_static_vectors = false
[model.tok2vec.encode]
@ -71,6 +69,7 @@ maxout_pieces = 3
depth = 4
"""
DEFAULT_SPANS_KEY = "sc"
DEFAULT_SPANCAT_MODEL = Config().from_str(spancat_default_config)["model"]
DEFAULT_SPANCAT_SINGLELABEL_MODEL = Config().from_str(
spancat_singlelabel_default_config
@ -112,6 +111,29 @@ def ngram_suggester(
return output
def preset_spans_suggester(
docs: Iterable[Doc], spans_key: str, *, ops: Optional[Ops] = None
) -> Ragged:
if ops is None:
ops = get_current_ops()
spans = []
lengths = []
for doc in docs:
length = 0
if doc.spans[spans_key]:
for span in doc.spans[spans_key]:
spans.append([span.start, span.end])
length += 1
lengths.append(length)
lengths_array = cast(Ints1d, ops.asarray(lengths, dtype="i"))
if len(spans) > 0:
output = Ragged(ops.asarray(spans, dtype="i"), lengths_array)
else:
output = Ragged(ops.xp.zeros((0, 0), dtype="i"), lengths_array)
return output
@registry.misc("spacy.ngram_suggester.v1")
def build_ngram_suggester(sizes: List[int]) -> Suggester:
"""Suggest all spans of the given lengths. Spans are returned as a ragged
@ -130,12 +152,20 @@ def build_ngram_range_suggester(min_size: int, max_size: int) -> Suggester:
return build_ngram_suggester(sizes)
@registry.misc("spacy.preset_spans_suggester.v1")
def build_preset_spans_suggester(spans_key: str) -> Suggester:
"""Suggest all spans that are already stored in doc.spans[spans_key].
This is useful when an upstream component is used to set the spans
on the Doc such as a SpanRuler or SpanFinder."""
return partial(preset_spans_suggester, spans_key=spans_key)
@Language.factory(
"spancat",
assigns=["doc.spans"],
default_config={
"threshold": 0.5,
"spans_key": "sc",
"spans_key": DEFAULT_SPANS_KEY,
"max_positive": None,
"model": DEFAULT_SPANCAT_MODEL,
"suggester": {"@misc": "spacy.ngram_suggester.v1", "sizes": [1, 2, 3]},
@ -199,7 +229,7 @@ def make_spancat(
"spancat_singlelabel",
assigns=["doc.spans"],
default_config={
"spans_key": "sc",
"spans_key": DEFAULT_SPANS_KEY,
"model": DEFAULT_SPANCAT_SINGLELABEL_MODEL,
"negative_weight": 1.0,
"suggester": {"@misc": "spacy.ngram_suggester.v1", "sizes": [1, 2, 3]},

View File

@ -121,20 +121,30 @@ class Scorer:
nlp.add_pipe(pipe)
self.nlp = nlp
def score(self, examples: Iterable[Example]) -> Dict[str, Any]:
def score(
self, examples: Iterable[Example], *, per_component: bool = False
) -> Dict[str, Any]:
"""Evaluate a list of Examples.
examples (Iterable[Example]): The predicted annotations + correct annotations.
per_component (bool): Whether to return the scores keyed by component
name. Defaults to False.
RETURNS (Dict): A dictionary of scores.
DOCS: https://spacy.io/api/scorer#score
"""
scores = {}
if hasattr(self.nlp.tokenizer, "score"):
scores.update(self.nlp.tokenizer.score(examples, **self.cfg)) # type: ignore
if per_component:
scores["tokenizer"] = self.nlp.tokenizer.score(examples, **self.cfg)
else:
scores.update(self.nlp.tokenizer.score(examples, **self.cfg)) # type: ignore
for name, component in self.nlp.pipeline:
if hasattr(component, "score"):
scores.update(component.score(examples, **self.cfg))
if per_component:
scores[name] = component.score(examples, **self.cfg)
else:
scores.update(component.score(examples, **self.cfg))
return scores
@staticmethod

View File

@ -291,6 +291,11 @@ def ml_tokenizer():
return get_lang_class("ml")().tokenizer
@pytest.fixture(scope="session")
def ms_tokenizer():
return get_lang_class("ms")().tokenizer
@pytest.fixture(scope="session")
def nb_tokenizer():
return get_lang_class("nb")().tokenizer

View File

@ -93,6 +93,21 @@ def test_span_group_copy(doc):
assert span_group.attrs["key"] == "value"
assert list(span_group) != list(clone)
# can't copy if the character offsets don't align to tokens
doc2 = Doc(doc.vocab, words=[t.text + "x" for t in doc])
with pytest.raises(ValueError):
span_group.copy(doc=doc2)
# can copy with valid character offsets despite different tokenization
doc3 = doc.copy()
with doc3.retokenize() as retokenizer:
retokenizer.merge(doc3[0:2])
retokenizer.merge(doc3[3:6])
span_group = SpanGroup(doc, spans=[doc[0:6], doc[3:6]])
for span1, span2 in zip(span_group, span_group.copy(doc=doc3)):
assert span1.start_char == span2.start_char
assert span1.end_char == span2.end_char
def test_span_group_set_item(doc, other_doc):
span_group = doc.spans["SPANS"]
@ -253,3 +268,12 @@ def test_span_group_typing(doc: Doc):
for i, span in enumerate(span_group):
assert span == span_group[i] == spans[i]
filter_spans(span_group)
def test_span_group_init_doc(en_tokenizer):
"""Test that all spans must come from the specified doc."""
doc1 = en_tokenizer("a b c")
doc2 = en_tokenizer("a b c")
span_group = SpanGroup(doc1, spans=[doc1[0:1], doc1[1:2]])
with pytest.raises(ValueError):
span_group = SpanGroup(doc1, spans=[doc1[0:1], doc2[1:2]])

View File

View File

@ -0,0 +1,8 @@
import pytest
def test_noun_chunks_is_parsed_ms(ms_tokenizer):
"""Test that noun_chunks raises Value Error for 'ms' language if Doc is not parsed."""
doc = ms_tokenizer("sebelas")
with pytest.raises(ValueError):
list(doc.noun_chunks)

View File

@ -0,0 +1,112 @@
import pytest
@pytest.mark.parametrize("text", ["(Ma'arif)"])
def test_ms_tokenizer_splits_no_special(id_tokenizer, text):
tokens = id_tokenizer(text)
assert len(tokens) == 3
@pytest.mark.parametrize("text", ["Ma'arif"])
def test_ms_tokenizer_splits_no_punct(id_tokenizer, text):
tokens = id_tokenizer(text)
assert len(tokens) == 1
@pytest.mark.parametrize("text", ["(Ma'arif"])
def test_ms_tokenizer_splits_prefix_punct(id_tokenizer, text):
tokens = id_tokenizer(text)
assert len(tokens) == 2
@pytest.mark.parametrize("text", ["Ma'arif)"])
def test_ms_tokenizer_splits_suffix_punct(id_tokenizer, text):
tokens = id_tokenizer(text)
assert len(tokens) == 2
@pytest.mark.parametrize("text", ["(Ma'arif)"])
def test_ms_tokenizer_splits_even_wrap(id_tokenizer, text):
tokens = id_tokenizer(text)
assert len(tokens) == 3
@pytest.mark.parametrize("text", ["(Ma'arif?)"])
def test_tokenizer_splits_uneven_wrap(id_tokenizer, text):
tokens = id_tokenizer(text)
assert len(tokens) == 4
@pytest.mark.parametrize("text,length", [("S.Kom.", 1), ("SKom.", 2), ("(S.Kom.", 2)])
def test_ms_tokenizer_splits_prefix_interact(id_tokenizer, text, length):
tokens = id_tokenizer(text)
assert len(tokens) == length
@pytest.mark.parametrize("text", ["S.Kom.)"])
def test_ms_tokenizer_splits_suffix_interact(id_tokenizer, text):
tokens = id_tokenizer(text)
assert len(tokens) == 2
@pytest.mark.parametrize("text", ["(S.Kom.)"])
def test_ms_tokenizer_splits_even_wrap_interact(id_tokenizer, text):
tokens = id_tokenizer(text)
assert len(tokens) == 3
@pytest.mark.parametrize("text", ["(S.Kom.?)"])
def test_ms_tokenizer_splits_uneven_wrap_interact(id_tokenizer, text):
tokens = id_tokenizer(text)
assert len(tokens) == 4
@pytest.mark.parametrize(
"text,length",
[("kerana", 1), ("Mahathir-Anwar", 3), ("Tun Dr. Ismail-Abdul Rahman", 6)],
)
def test_my_tokenizer_splits_hyphens(ms_tokenizer, text, length):
tokens = ms_tokenizer(text)
assert len(tokens) == length
@pytest.mark.parametrize("text", ["0.1-13.5", "0.0-0.1", "103.27-300"])
def test_ms_tokenizer_splits_numeric_range(id_tokenizer, text):
tokens = id_tokenizer(text)
assert len(tokens) == 3
@pytest.mark.parametrize("text", ["ini.Sani", "Halo.Malaysia"])
def test_ms_tokenizer_splits_period_infix(id_tokenizer, text):
tokens = id_tokenizer(text)
assert len(tokens) == 3
@pytest.mark.parametrize("text", ["Halo,Malaysia", "satu,dua"])
def test_ms_tokenizer_splits_comma_infix(id_tokenizer, text):
tokens = id_tokenizer(text)
assert len(tokens) == 3
assert tokens[0].text == text.split(",")[0]
assert tokens[1].text == ","
assert tokens[2].text == text.split(",")[1]
@pytest.mark.parametrize("text", ["halo...Malaysia", "dia...pergi"])
def test_ms_tokenizer_splits_ellipsis_infix(id_tokenizer, text):
tokens = id_tokenizer(text)
assert len(tokens) == 3
def test_ms_tokenizer_splits_double_hyphen_infix(id_tokenizer):
tokens = id_tokenizer("Arsene Wenger--pengurus Arsenal--mengadakan sidang media.")
assert len(tokens) == 10
assert tokens[0].text == "Arsene"
assert tokens[1].text == "Wenger"
assert tokens[2].text == "--"
assert tokens[3].text == "pengurus"
assert tokens[4].text == "Arsenal"
assert tokens[5].text == "--"
assert tokens[6].text == "mengadakan"
assert tokens[7].text == "sidang"
assert tokens[8].text == "media"
assert tokens[9].text == "."

View File

@ -0,0 +1,8 @@
import pytest
from spacy.lang.ms.lex_attrs import like_num
@pytest.mark.parametrize("word", ["sebelas"])
def test_ms_lex_attrs_capitals(word):
assert like_num(word)
assert like_num(word.upper())

View File

@ -728,9 +728,9 @@ def test_neg_annotation(neg_key):
ner.add_label("ORG")
example = Example.from_dict(neg_doc, {"entities": [(7, 17, "PERSON")]})
example.reference.spans[neg_key] = [
Span(neg_doc, 2, 4, "ORG"),
Span(neg_doc, 2, 3, "PERSON"),
Span(neg_doc, 1, 4, "PERSON"),
Span(example.reference, 2, 4, "ORG"),
Span(example.reference, 2, 3, "PERSON"),
Span(example.reference, 1, 4, "PERSON"),
]
optimizer = nlp.initialize()
@ -755,7 +755,7 @@ def test_neg_annotation_conflict(neg_key):
ner.add_label("PERSON")
ner.add_label("LOC")
example = Example.from_dict(neg_doc, {"entities": [(7, 17, "PERSON")]})
example.reference.spans[neg_key] = [Span(neg_doc, 2, 4, "PERSON")]
example.reference.spans[neg_key] = [Span(example.reference, 2, 4, "PERSON")]
assert len(example.reference.ents) == 1
assert example.reference.ents[0].text == "Shaka Khan"
assert example.reference.ents[0].label_ == "PERSON"
@ -788,7 +788,7 @@ def test_beam_valid_parse(neg_key):
doc = Doc(nlp.vocab, words=tokens)
example = Example.from_dict(doc, {"ner": iob})
neg_span = Span(doc, 50, 53, "ORG")
neg_span = Span(example.reference, 50, 53, "ORG")
example.reference.spans[neg_key] = [neg_span]
optimizer = nlp.initialize()

View File

@ -0,0 +1,242 @@
import pytest
from thinc.api import Config
from spacy.language import Language
from spacy.lang.en import English
from spacy.pipeline.span_finder import span_finder_default_config
from spacy.tokens import Doc
from spacy.training import Example
from spacy import util
from spacy.util import registry
from spacy.util import fix_random_seed, make_tempdir
SPANS_KEY = "pytest"
TRAIN_DATA = [
("Who is Shaka Khan?", {"spans": {SPANS_KEY: [(7, 17)]}}),
(
"I like London and Berlin.",
{"spans": {SPANS_KEY: [(7, 13), (18, 24)]}},
),
]
TRAIN_DATA_OVERLAPPING = [
("Who is Shaka Khan?", {"spans": {SPANS_KEY: [(7, 17)]}}),
(
"I like London and Berlin",
{"spans": {SPANS_KEY: [(7, 13), (18, 24), (7, 24)]}},
),
("", {"spans": {SPANS_KEY: []}}),
]
def make_examples(nlp, data=TRAIN_DATA):
train_examples = []
for t in data:
eg = Example.from_dict(nlp.make_doc(t[0]), t[1])
train_examples.append(eg)
return train_examples
@pytest.mark.parametrize(
"tokens_predicted, tokens_reference, reference_truths",
[
(
["Mon", ".", "-", "June", "16"],
["Mon.", "-", "June", "16"],
[(0, 0), (0, 0), (0, 0), (1, 1), (0, 0)],
),
(
["Mon.", "-", "J", "une", "16"],
["Mon.", "-", "June", "16"],
[(0, 0), (0, 0), (1, 0), (0, 1), (0, 0)],
),
(
["Mon", ".", "-", "June", "16"],
["Mon.", "-", "June", "1", "6"],
[(0, 0), (0, 0), (0, 0), (1, 1), (0, 0)],
),
(
["Mon.", "-J", "un", "e 16"],
["Mon.", "-", "June", "16"],
[(0, 0), (0, 0), (0, 0), (0, 0)],
),
pytest.param(
["Mon.-June", "16"],
["Mon.", "-", "June", "16"],
[(0, 1), (0, 0)],
),
pytest.param(
["Mon.-", "June", "16"],
["Mon.", "-", "J", "une", "16"],
[(0, 0), (1, 1), (0, 0)],
),
pytest.param(
["Mon.-", "June 16"],
["Mon.", "-", "June", "16"],
[(0, 0), (1, 0)],
),
],
)
def test_loss_alignment_example(tokens_predicted, tokens_reference, reference_truths):
nlp = Language()
predicted = Doc(
nlp.vocab, words=tokens_predicted, spaces=[False] * len(tokens_predicted)
)
reference = Doc(
nlp.vocab, words=tokens_reference, spaces=[False] * len(tokens_reference)
)
example = Example(predicted, reference)
example.reference.spans[SPANS_KEY] = [example.reference.char_span(5, 9)]
span_finder = nlp.add_pipe("span_finder", config={"spans_key": SPANS_KEY})
nlp.initialize()
ops = span_finder.model.ops
if predicted.text != reference.text:
with pytest.raises(
ValueError, match="must match between reference and predicted"
):
span_finder._get_aligned_truth_scores([example], ops)
return
truth_scores, masks = span_finder._get_aligned_truth_scores([example], ops)
assert len(truth_scores) == len(tokens_predicted)
ops.xp.testing.assert_array_equal(truth_scores, ops.xp.asarray(reference_truths))
def test_span_finder_model():
nlp = Language()
docs = [nlp("This is an example."), nlp("This is the second example.")]
docs[0].spans[SPANS_KEY] = [docs[0][3:4]]
docs[1].spans[SPANS_KEY] = [docs[1][3:5]]
total_tokens = 0
for doc in docs:
total_tokens += len(doc)
config = Config().from_str(span_finder_default_config).interpolate()
model = registry.resolve(config)["model"]
model.initialize(X=docs)
predictions = model.predict(docs)
assert len(predictions) == total_tokens
assert len(predictions[0]) == 2
def test_span_finder_component():
nlp = Language()
docs = [nlp("This is an example."), nlp("This is the second example.")]
docs[0].spans[SPANS_KEY] = [docs[0][3:4]]
docs[1].spans[SPANS_KEY] = [docs[1][3:5]]
span_finder = nlp.add_pipe("span_finder", config={"spans_key": SPANS_KEY})
nlp.initialize()
docs = list(span_finder.pipe(docs))
assert SPANS_KEY in docs[0].spans
@pytest.mark.parametrize(
"min_length, max_length, span_count",
[(0, 0, 0), (None, None, 8), (2, None, 6), (None, 1, 2), (2, 3, 2)],
)
def test_set_annotations_span_lengths(min_length, max_length, span_count):
nlp = Language()
doc = nlp("Me and Jenny goes together like peas and carrots.")
if min_length == 0 and max_length == 0:
with pytest.raises(ValueError, match="Both 'min_length' and 'max_length'"):
span_finder = nlp.add_pipe(
"span_finder",
config={
"max_length": max_length,
"min_length": min_length,
"spans_key": SPANS_KEY,
},
)
return
span_finder = nlp.add_pipe(
"span_finder",
config={
"max_length": max_length,
"min_length": min_length,
"spans_key": SPANS_KEY,
},
)
nlp.initialize()
# Starts [Me, Jenny, peas]
# Ends [Jenny, peas, carrots]
scores = [
(1, 0),
(0, 0),
(1, 1),
(0, 0),
(0, 0),
(0, 0),
(1, 1),
(0, 0),
(0, 1),
(0, 0),
]
span_finder.set_annotations([doc], scores)
assert doc.spans[SPANS_KEY]
assert len(doc.spans[SPANS_KEY]) == span_count
# Assert below will fail when max_length is set to 0
if max_length is None:
max_length = float("inf")
if min_length is None:
min_length = 1
assert all(min_length <= len(span) <= max_length for span in doc.spans[SPANS_KEY])
def test_overfitting_IO():
# Simple test to try and quickly overfit the span_finder component - ensuring the ML models work correctly
fix_random_seed(0)
nlp = English()
span_finder = nlp.add_pipe("span_finder", config={"spans_key": SPANS_KEY})
train_examples = make_examples(nlp)
optimizer = nlp.initialize(get_examples=lambda: train_examples)
assert span_finder.model.get_dim("nO") == 2
for i in range(50):
losses = {}
nlp.update(train_examples, sgd=optimizer, losses=losses)
assert losses["span_finder"] < 0.001
# test the trained model
test_text = "I like London and Berlin"
doc = nlp(test_text)
spans = doc.spans[SPANS_KEY]
assert len(spans) == 3
assert set([span.text for span in spans]) == {
"London",
"Berlin",
"London and Berlin",
}
# Also test the results are still the same after IO
with make_tempdir() as tmp_dir:
nlp.to_disk(tmp_dir)
nlp2 = util.load_model_from_path(tmp_dir)
doc2 = nlp2(test_text)
spans2 = doc2.spans[SPANS_KEY]
assert len(spans2) == 3
assert set([span.text for span in spans2]) == {
"London",
"Berlin",
"London and Berlin",
}
# Test scoring
scores = nlp.evaluate(train_examples)
assert f"span_finder_{SPANS_KEY}_f" in scores
# It's not perfect 1.0 F1 because it's designed to overgenerate for now.
assert scores[f"span_finder_{SPANS_KEY}_p"] == 0.75
assert scores[f"span_finder_{SPANS_KEY}_r"] == 1.0
# also test that the spancat works for just a single entity in a sentence
doc = nlp("London")
assert len(doc.spans[SPANS_KEY]) == 1

View File

@ -406,6 +406,21 @@ def test_ngram_sizes(en_tokenizer):
assert_array_equal(OPS.to_numpy(ngrams_3.lengths), [0, 1, 3, 6, 9])
def test_preset_spans_suggester():
nlp = Language()
docs = [nlp("This is an example."), nlp("This is the second example.")]
docs[0].spans[SPAN_KEY] = [docs[0][3:4]]
docs[1].spans[SPAN_KEY] = [docs[1][0:4], docs[1][3:5]]
suggester = registry.misc.get("spacy.preset_spans_suggester.v1")(spans_key=SPAN_KEY)
candidates = suggester(docs)
assert type(candidates) == Ragged
assert len(candidates) == 2
assert list(candidates.dataXd[0]) == [3, 4]
assert list(candidates.dataXd[1]) == [0, 4]
assert list(candidates.dataXd[2]) == [3, 5]
assert list(candidates.lengths) == [1, 2]
def test_overfitting_IO():
# Simple test to try and quickly overfit the spancat component - ensuring the ML models work correctly
fix_random_seed(0)
@ -428,7 +443,7 @@ def test_overfitting_IO():
spans = doc.spans[SPAN_KEY]
assert len(spans) == 2
assert len(spans.attrs["scores"]) == 2
assert min(spans.attrs["scores"]) > 0.9
assert min(spans.attrs["scores"]) > 0.8
assert set([span.text for span in spans]) == {"London", "Berlin"}
assert set([span.label_ for span in spans]) == {"LOC"}
@ -440,7 +455,7 @@ def test_overfitting_IO():
spans2 = doc2.spans[SPAN_KEY]
assert len(spans2) == 2
assert len(spans2.attrs["scores"]) == 2
assert min(spans2.attrs["scores"]) > 0.9
assert min(spans2.attrs["scores"]) > 0.8
assert set([span.text for span in spans2]) == {"London", "Berlin"}
assert set([span.label_ for span in spans2]) == {"LOC"}

View File

@ -72,7 +72,7 @@ def entity_linker():
def create_kb(vocab):
kb = InMemoryLookupKB(vocab, entity_vector_length=1)
kb.add_entity("test", 0.0, zeros((1, 1), dtype="f"))
kb.add_entity("test", 0.0, zeros((1,), dtype="f"))
return kb
entity_linker = nlp.add_pipe("entity_linker")

View File

@ -103,6 +103,8 @@ def test_debug_data_trainable_lemmatizer_cli(en_vocab):
# project tests
CFG_FILE = "myconfig.cfg"
SAMPLE_PROJECT = {
"title": "Sample project",
"description": "This is a project for testing",
@ -128,13 +130,8 @@ SAMPLE_PROJECT = {
{
"name": "create",
"help": "make a file",
"script": ["touch abc.txt"],
"outputs": ["abc.txt"],
},
{
"name": "clean",
"help": "remove test file",
"script": ["rm abc.txt"],
"script": [f"python -m spacy init config {CFG_FILE}"],
"outputs": [f"{CFG_FILE}"],
},
],
}
@ -175,7 +172,7 @@ def test_project_assets(project_dir):
def test_project_run(project_dir):
# make sure dry run works
test_file = project_dir / "abc.txt"
test_file = project_dir / CFG_FILE
result = CliRunner().invoke(
app, ["project", "run", "--dry", "create", str(project_dir)]
)
@ -223,14 +220,13 @@ def test_project_push_pull(project_dir):
proj_text = srsly.yaml_dumps(proj)
(project_dir / "project.yml").write_text(proj_text)
test_file = project_dir / "abc.txt"
test_file = project_dir / CFG_FILE
result = CliRunner().invoke(app, ["project", "run", "create", str(project_dir)])
assert result.exit_code == 0
assert test_file.is_file()
result = CliRunner().invoke(app, ["project", "push", remote, str(project_dir)])
assert result.exit_code == 0
result = CliRunner().invoke(app, ["project", "run", "clean", str(project_dir)])
assert result.exit_code == 0
test_file.unlink()
assert not test_file.exists()
result = CliRunner().invoke(app, ["project", "pull", remote, str(project_dir)])
assert result.exit_code == 0

View File

@ -115,6 +115,14 @@ def test_tokenization(sented_doc):
assert scores["token_r"] == approx(0.33333333)
assert scores["token_f"] == 0.4
# per-component scoring
scorer = Scorer()
scores = scorer.score([example], per_component=True)
assert scores["tokenizer"]["token_acc"] == 0.5
assert scores["tokenizer"]["token_p"] == 0.5
assert scores["tokenizer"]["token_r"] == approx(0.33333333)
assert scores["tokenizer"]["token_f"] == 0.4
def test_sents(sented_doc):
scorer = Scorer()
@ -278,6 +286,13 @@ def test_tag_score(tagged_doc):
assert results["morph_per_feat"]["Poss"]["f"] == 0.0
assert results["morph_per_feat"]["Number"]["f"] == approx(0.72727272)
# per-component scoring
scorer = Scorer()
results = scorer.score([example], per_component=True)
assert results["tagger"]["tag_acc"] == 0.9
assert results["morphologizer"]["pos_acc"] == 0.9
assert results["morphologizer"]["morph_acc"] == approx(0.8)
def test_partial_annotation(en_tokenizer):
pred_doc = en_tokenizer("a b c d e")
@ -423,14 +438,14 @@ def test_score_spans():
return doc.spans[span_key]
# Predict exactly the same, but overlapping spans will be discarded
pred.spans[key] = spans
pred.spans[key] = gold.spans[key].copy(doc=pred)
eg = Example(pred, gold)
scores = Scorer.score_spans([eg], attr=key, getter=span_getter)
assert scores[f"{key}_p"] == 1.0
assert scores[f"{key}_r"] < 1.0
# Allow overlapping, now both precision and recall should be 100%
pred.spans[key] = spans
pred.spans[key] = gold.spans[key].copy(doc=pred)
eg = Example(pred, gold)
scores = Scorer.score_spans([eg], attr=key, getter=span_getter, allow_overlap=True)
assert scores[f"{key}_p"] == 1.0

View File

@ -1264,12 +1264,14 @@ cdef class Doc:
other.user_span_hooks = dict(self.user_span_hooks)
other.length = self.length
other.max_length = self.max_length
other.spans = self.spans.copy(doc=other)
buff_size = other.max_length + (PADDING*2)
assert buff_size > 0
tokens = <TokenC*>other.mem.alloc(buff_size, sizeof(TokenC))
memcpy(tokens, self.c - PADDING, buff_size * sizeof(TokenC))
other.c = &tokens[PADDING]
# copy spans after setting tokens so that SpanGroup.copy can verify
# that the start/end offsets are valid
other.spans = self.spans.copy(doc=other)
return other
def to_disk(self, path, *, exclude=tuple()):

View File

@ -1,10 +1,12 @@
from typing import Callable, Protocol, Iterator, Optional, Union, Tuple, Any, overload
from thinc.types import Floats1d, Ints2d, FloatsXd
from typing import Any, Callable, Iterator, Optional, Protocol, Tuple, Union, overload
from thinc.types import Floats1d, FloatsXd, Ints2d
from ..lexeme import Lexeme
from ..vocab import Vocab
from .doc import Doc
from .token import Token
from .underscore import Underscore
from ..lexeme import Lexeme
from ..vocab import Vocab
class SpanMethod(Protocol):
def __call__(self: Span, *args: Any, **kwargs: Any) -> Any: ... # type: ignore[misc]
@ -51,7 +53,12 @@ class Span:
kb_id: Union[str, int] = ...,
span_id: Union[str, int] = ...,
) -> None: ...
def __richcmp__(self, other: Span, op: int) -> bool: ...
def __lt__(self, other: Any) -> bool: ...
def __le__(self, other: Any) -> bool: ...
def __eq__(self, other: Any) -> bool: ...
def __ne__(self, other: Any) -> bool: ...
def __gt__(self, other: Any) -> bool: ...
def __ge__(self, other: Any) -> bool: ...
def __hash__(self) -> int: ...
def __len__(self) -> int: ...
def __repr__(self) -> str: ...

View File

@ -1,4 +1,5 @@
from typing import Any, Dict, Iterable, Optional
from typing import Any, Dict, Iterable, Iterator, Optional
from .doc import Doc
from .span import Span
@ -18,7 +19,7 @@ class SpanGroup:
def doc(self) -> Doc: ...
@property
def has_overlap(self) -> bool: ...
def __iter__(self): ...
def __iter__(self) -> Iterator[Span]: ...
def __len__(self) -> int: ...
def append(self, span: Span) -> None: ...
def extend(self, spans: Iterable[Span]) -> None: ...

View File

@ -52,6 +52,8 @@ cdef class SpanGroup:
if len(spans) :
self.c.reserve(len(spans))
for span in spans:
if doc is not span.doc:
raise ValueError(Errors.E855.format(obj="span"))
self.push_back(span.c)
def __repr__(self):
@ -261,11 +263,22 @@ cdef class SpanGroup:
"""
if doc is None:
doc = self.doc
if doc is self.doc:
spans = list(self)
else:
spans = [doc.char_span(span.start_char, span.end_char, label=span.label_, kb_id=span.kb_id, span_id=span.id) for span in self]
for i, span in enumerate(spans):
if span is None:
raise ValueError(Errors.E1052.format(i=i))
if span.kb_id in self.doc.vocab.strings:
doc.vocab.strings.add(span.kb_id_)
if span.id in span.doc.vocab.strings:
doc.vocab.strings.add(span.id_)
return SpanGroup(
doc,
name=self.name,
attrs=deepcopy(self.attrs),
spans=list(self),
spans=spans,
)
def _concat(

View File

@ -133,10 +133,11 @@ def init_vocab(
logger.info("Added vectors: %s", vectors)
# warn if source model vectors are not identical
sourced_vectors_hashes = nlp.meta.pop("_sourced_vectors_hashes", {})
vectors_hash = hash(nlp.vocab.vectors.to_bytes(exclude=["strings"]))
for sourced_component, sourced_vectors_hash in sourced_vectors_hashes.items():
if vectors_hash != sourced_vectors_hash:
warnings.warn(Warnings.W113.format(name=sourced_component))
if len(sourced_vectors_hashes) > 0:
vectors_hash = hash(nlp.vocab.vectors.to_bytes(exclude=["strings"]))
for sourced_component, sourced_vectors_hash in sourced_vectors_hashes.items():
if vectors_hash != sourced_vectors_hash:
warnings.warn(Warnings.W113.format(name=sourced_component))
logger.info("Finished initializing nlp object")

View File

@ -1,11 +1,13 @@
from typing import TYPE_CHECKING
from typing import Optional, Any, Iterable, Dict, Callable, Sequence, List
from .compat import Protocol, runtime_checkable
from thinc.api import Optimizer, Model
if TYPE_CHECKING:
from .training import Example
from .language import Language
@runtime_checkable
@ -32,7 +34,7 @@ class InitializableComponent(Protocol):
def initialize(
self,
get_examples: Callable[[], Iterable["Example"]],
nlp: Iterable["Example"],
nlp: "Language",
**kwargs: Any
):
...

View File

@ -1163,18 +1163,19 @@ skew. To render a sample of dependency parses in a HTML file using the
$ python -m spacy benchmark accuracy [model] [data_path] [--output] [--code] [--gold-preproc] [--gpu-id] [--displacy-path] [--displacy-limit]
```
| Name | Description |
| ----------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| `model` | Pipeline to evaluate. Can be a package or a path to a data directory. ~~str (positional)~~ |
| `data_path` | Location of evaluation data in spaCy's [binary format](/api/data-formats#training). ~~Path (positional)~~ |
| `--output`, `-o` | Output JSON file for metrics. If not set, no metrics will be exported. ~~Optional[Path] \(option)~~ |
| `--code`, `-c` <Tag variant="new">3</Tag> | Path to Python file with additional code to be imported. Allows [registering custom functions](/usage/training#custom-functions) for new architectures. ~~Optional[Path] \(option)~~ |
| `--gold-preproc`, `-G` | Use gold preprocessing. ~~bool (flag)~~ |
| `--gpu-id`, `-g` | GPU to use, if any. Defaults to `-1` for CPU. ~~int (option)~~ |
| `--displacy-path`, `-dp` | Directory to output rendered parses as HTML. If not set, no visualizations will be generated. ~~Optional[Path] \(option)~~ |
| `--displacy-limit`, `-dl` | Number of parses to generate per file. Defaults to `25`. Keep in mind that a significantly higher number might cause the `.html` files to render slowly. ~~int (option)~~ |
| `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ |
| **CREATES** | Training results and optional metrics and visualizations. |
| Name | Description |
| ---------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| `model` | Pipeline to evaluate. Can be a package or a path to a data directory. ~~str (positional)~~ |
| `data_path` | Location of evaluation data in spaCy's [binary format](/api/data-formats#training). ~~Path (positional)~~ |
| `--output`, `-o` | Output JSON file for metrics. If not set, no metrics will be exported. ~~Optional[Path] \(option)~~ |
| `--code`, `-c` <Tag variant="new">3</Tag> | Path to Python file with additional code to be imported. Allows [registering custom functions](/usage/training#custom-functions) for new architectures. ~~Optional[Path] \(option)~~ |
| `--gold-preproc`, `-G` | Use gold preprocessing. ~~bool (flag)~~ |
| `--gpu-id`, `-g` | GPU to use, if any. Defaults to `-1` for CPU. ~~int (option)~~ |
| `--displacy-path`, `-dp` | Directory to output rendered parses as HTML. If not set, no visualizations will be generated. ~~Optional[Path] \(option)~~ |
| `--displacy-limit`, `-dl` | Number of parses to generate per file. Defaults to `25`. Keep in mind that a significantly higher number might cause the `.html` files to render slowly. ~~int (option)~~ |
| `--per-component`, `-P` <Tag variant="new">3.6</Tag> | Whether to return the scores keyed by component name. Defaults to `False`. ~~bool (flag)~~ |
| `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ |
| **CREATES** | Training results and optional metrics and visualizations. |
### speed {id="benchmark-speed", version="3.5", tag="command"}
@ -1220,7 +1221,7 @@ $ python -m spacy apply [model] [data-path] [output-file] [--code] [--text-key]
| ------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| `model` | Pipeline to apply to the data. Can be a package or a path to a data directory. ~~str (positional)~~ |
| `data_path` | Location of data to be evaluated in spaCy's [binary format](/api/data-formats#training), jsonl, or plain text. ~~Path (positional)~~ |
| `output-file`, `-o` | Output `DocBin` path. ~~str (positional)~~ |
| `output-file` | Output `DocBin` path. ~~str (positional)~~ |
| `--code`, `-c` | Path to Python file with additional code to be imported. Allows [registering custom functions](/usage/training#custom-functions) for new architectures. ~~Optional[Path] \(option)~~ |
| `--text-key`, `-tk` | The key for `.jsonl` files to use to grab the texts from. Defaults to `text`. ~~Optional[str] \(option)~~ |
| `--force-overwrite`, `-F` | If the provided `output-file` already exists, then force `apply` to overwrite it. If this is `False` (default) then quits with a warning instead. ~~bool (flag)~~ |
@ -1640,7 +1641,7 @@ with [`spacy package`](/api/cli#package) and `--build wheel`. For more details,
see the spaCy project [integration](/usage/projects#huggingface_hub).
```bash
$ python -m spacy huggingface-hub push [whl_path] [--org] [--msg] [--local-repo] [--verbose]
$ python -m spacy huggingface-hub push [whl_path] [--org] [--msg] [--verbose]
```
> #### Example
@ -1654,6 +1655,5 @@ $ python -m spacy huggingface-hub push [whl_path] [--org] [--msg] [--local-repo]
| `whl_path` | The path to the `.whl` file packaged with [`spacy package`](https://spacy.io/api/cli#package). ~~Path(positional)~~ |
| `--org`, `-o` | Optional name of organization to which the pipeline should be uploaded. ~~str (option)~~ |
| `--msg`, `-m` | Commit message to use for update. Defaults to `"Update spaCy pipeline"`. ~~str (option)~~ |
| `--local-repo`, `-l` | Local path to the model repository (will be created if it doesn't exist). Defaults to `hub` in the current working directory. ~~Path (option)~~ |
| `--verbose`, `-V` | Output additional info for debugging, e.g. the full generated hub metadata. ~~bool (flag)~~ |
| **UPLOADS** | The pipeline to the hub. |

View File

@ -64,7 +64,7 @@ architectures and their arguments and hyperparameters.
| `use_gold_ents` | Whether to copy entities from the gold docs or not. Defaults to `True`. If `False`, entities must be set in the training data or by an annotating component in the pipeline. ~~int~~ |
| `get_candidates` | Function that generates plausible candidates for a given `Span` object. Defaults to [CandidateGenerator](/api/architectures#CandidateGenerator), a function looking up exact, case-dependent aliases in the KB. ~~Callable[[KnowledgeBase, Span], Iterable[Candidate]]~~ |
| `get_candidates_batch` <Tag variant="new">3.5</Tag> | Function that generates plausible candidates for a given batch of `Span` objects. Defaults to [CandidateBatchGenerator](/api/architectures#CandidateBatchGenerator), a function looking up exact, case-dependent aliases in the KB. ~~Callable[[KnowledgeBase, Iterable[Span]], Iterable[Iterable[Candidate]]]~~ |
| `generate_empty_kb` <Tag variant="new">3.6</Tag> | Function that generates an empty `KnowledgeBase` object. Defaults to [`spacy.EmptyKB.v2`](/api/architectures#EmptyKB), which generates an empty [`InMemoryLookupKB`](/api/inmemorylookupkb). ~~Callable[[Vocab, int], KnowledgeBase]~~ |
| `generate_empty_kb` <Tag variant="new">3.5.1</Tag> | Function that generates an empty `KnowledgeBase` object. Defaults to [`spacy.EmptyKB.v2`](/api/architectures#EmptyKB), which generates an empty [`InMemoryLookupKB`](/api/inmemorylookupkb). ~~Callable[[Vocab, int], KnowledgeBase]~~ |
| `overwrite` <Tag variant="new">3.2</Tag> | Whether existing annotation is overwritten. Defaults to `True`. ~~bool~~ |
| `scorer` <Tag variant="new">3.2</Tag> | The scoring method. Defaults to [`Scorer.score_links`](/api/scorer#score_links). ~~Optional[Callable]~~ |
| `threshold` <Tag variant="new">3.4</Tag> | Confidence threshold for entity predictions. The default of `None` implies that all predictions are accepted, otherwise those with a score beneath the treshold are discarded. If there are no predictions with scores above the threshold, the linked entity is `NIL`. ~~Optional[float]~~ |

View File

@ -382,15 +382,16 @@ objects instead of tuples of `Doc` and `GoldParse` objects.
> print(scores)
> ```
| Name | Description |
| --------------- | ---------------------------------------------------------------------------------------------------------------------------------------------- |
| `examples` | A batch of [`Example`](/api/example) objects to learn from. ~~Iterable[Example]~~ |
| _keyword-only_ | |
| `batch_size` | The batch size to use. ~~Optional[int]~~ |
| `scorer` | Optional [`Scorer`](/api/scorer) to use. If not passed in, a new one will be created. ~~Optional[Scorer]~~ |
| `component_cfg` | Optional dictionary of keyword arguments for components, keyed by component names. Defaults to `None`. ~~Optional[Dict[str, Dict[str, Any]]]~~ |
| `scorer_cfg` | Optional dictionary of keyword arguments for the `Scorer`. Defaults to `None`. ~~Optional[Dict[str, Any]]~~ |
| **RETURNS** | A dictionary of evaluation scores. ~~Dict[str, Union[float, Dict[str, float]]]~~ |
| Name | Description |
| -------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------- |
| `examples` | A batch of [`Example`](/api/example) objects to learn from. ~~Iterable[Example]~~ |
| _keyword-only_ | |
| `batch_size` | The batch size to use. ~~Optional[int]~~ |
| `scorer` | Optional [`Scorer`](/api/scorer) to use. If not passed in, a new one will be created. ~~Optional[Scorer]~~ |
| `component_cfg` | Optional dictionary of keyword arguments for components, keyed by component names. Defaults to `None`. ~~Optional[Dict[str, Dict[str, Any]]]~~ |
| `scorer_cfg` | Optional dictionary of keyword arguments for the `Scorer`. Defaults to `None`. ~~Optional[Dict[str, Any]]~~ |
| `per_component` <Tag variant="new">3.6</Tag> | Whether to return the scores keyed by component name. Defaults to `False`. ~~bool~~ |
| **RETURNS** | A dictionary of evaluation scores. ~~Dict[str, Union[float, Dict[str, float]]]~~ |
## Language.use_params {id="use_params",tag="contextmanager, method"}

View File

@ -213,11 +213,11 @@ Retrieve values for a feature by field.
> assert morph.get("Feat1") == ["Val1", "Val2"]
> ```
| Name | Description |
| -------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------ |
| `field` | The field to retrieve. ~~str~~ |
| `default` <Tag variant="new">3.6</Tag> | The value to return if the field is not present. If unset or `None`, the default return value is `[]`. ~~Optional[List[str]]~~ |
| **RETURNS** | A list of the individual features. ~~List[str]~~ |
| Name | Description |
| ---------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------ |
| `field` | The field to retrieve. ~~str~~ |
| `default` <Tag variant="new">3.5.3</Tag> | The value to return if the field is not present. If unset or `None`, the default return value is `[]`. ~~Optional[List[str]]~~ |
| **RETURNS** | A list of the individual features. ~~List[str]~~ |
### MorphAnalysis.to_dict {id="morphanalysis-to_dict",tag="method"}

View File

@ -33,7 +33,7 @@ Create a new `Scorer`.
| `default_lang` | The language to use for a default pipeline if `nlp` is not provided. Defaults to `xx`. ~~str~~ |
| `default_pipeline` | The pipeline components to use for a default pipeline if `nlp` is not provided. Defaults to `("senter", "tagger", "morphologizer", "parser", "ner", "textcat")`. ~~Iterable[string]~~ |
| _keyword-only_ | |
| `\*\*kwargs` | Any additional settings to pass on to the individual scoring methods. ~~Any~~ |
| `**kwargs` | Any additional settings to pass on to the individual scoring methods. ~~Any~~ |
## Scorer.score {id="score",tag="method"}
@ -67,10 +67,12 @@ core pipeline components, the individual score names start with the `Token` or
> scores = scorer.score(examples)
> ```
| Name | Description |
| ----------- | ------------------------------------------------------------------------------------------------------------------- |
| `examples` | The `Example` objects holding both the predictions and the correct gold-standard annotations. ~~Iterable[Example]~~ |
| **RETURNS** | A dictionary of scores. ~~Dict[str, Union[float, Dict[str, float]]]~~ |
| Name | Description |
| -------------------------------------------- | ------------------------------------------------------------------------------------------------------------------- |
| `examples` | The `Example` objects holding both the predictions and the correct gold-standard annotations. ~~Iterable[Example]~~ |
| _keyword-only_ | |
| `per_component` <Tag variant="new">3.6</Tag> | Whether to return the scores keyed by component name. Defaults to `False`. ~~bool~~ |
| **RETURNS** | A dictionary of scores. ~~Dict[str, Union[float, Dict[str, float]]]~~ |
## Scorer.score_tokenization {id="score_tokenization",tag="staticmethod",version="3"}

View File

@ -105,7 +105,7 @@ architectures and their arguments and hyperparameters.
>
> # Construction via add_pipe with custom model
> config = {"model": {"@architectures": "my_spancat"}}
> parser = nlp.add_pipe("spancat", config=config)
> spancat = nlp.add_pipe("spancat", config=config)
>
> # Construction from class
> from spacy.pipeline import SpanCategorizer
@ -524,3 +524,22 @@ has two columns, indicating the start and end position.
| `min_size` | The minimal phrase lengths to suggest (inclusive). ~~[int]~~ |
| `max_size` | The maximal phrase lengths to suggest (exclusive). ~~[int]~~ |
| **CREATES** | The suggester function. ~~Callable[[Iterable[Doc], Optional[Ops]], Ragged]~~ |
### spacy.preset_spans_suggester.v1 {id="preset_spans_suggester"}
> #### Example Config
>
> ```ini
> [components.spancat.suggester]
> @misc = "spacy.preset_spans_suggester.v1"
> spans_key = "my_spans"
> ```
Suggest all spans that are already stored in doc.spans[spans_key]. This is
useful when an upstream component is used to set the spans on the Doc such as a
[`SpanRuler`](/api/spanruler) or [`SpanFinder`](/api/spanfinder).
| Name | Description |
| ----------- | ----------------------------------------------------------------------------- |
| `spans_key` | Key of [`Doc.spans`](/api/doc/#spans) that provides spans to suggest. ~~str~~ |
| **CREATES** | The suggester function. ~~Callable[[Iterable[Doc], Optional[Ops]], Ragged]~~ |

View File

@ -0,0 +1,372 @@
---
title: SpanFinder
tag: class,experimental
source: spacy/pipeline/span_finder.py
version: 3.6
teaser:
'Pipeline component for identifying potentially overlapping spans of text'
api_base_class: /api/pipe
api_string_name: span_finder
api_trainable: true
---
The span finder identifies potentially overlapping, unlabeled spans. It
identifies tokens that start or end spans and annotates unlabeled spans between
starts and ends, with optional filters for min and max span length. It is
intended for use in combination with a component like
[`SpanCategorizer`](/api/spancategorizer) that may further filter or label the
spans. Predicted spans will be saved in a [`SpanGroup`](/api/spangroup) on the
doc under `doc.spans[spans_key]`, where `spans_key` is a component config
setting.
## Assigned Attributes {id="assigned-attributes"}
Predictions will be saved to `Doc.spans[spans_key]` as a
[`SpanGroup`](/api/spangroup).
`spans_key` defaults to `"sc"`, but can be passed as a parameter. The
`span_finder` component will overwrite any existing spans under the spans key
`doc.spans[spans_key]`.
| Location | Value |
| ---------------------- | ---------------------------------- |
| `Doc.spans[spans_key]` | The unlabeled spans. ~~SpanGroup~~ |
## Config and implementation {id="config"}
The default config is defined by the pipeline component factory and describes
how the component should be configured. You can override its settings via the
`config` argument on [`nlp.add_pipe`](/api/language#add_pipe) or in your
[`config.cfg` for training](/usage/training#config). See the
[model architectures](/api/architectures) documentation for details on the
architectures and their arguments and hyperparameters.
> #### Example
>
> ```python
> from spacy.pipeline.span_finder import DEFAULT_SPAN_FINDER_MODEL
> config = {
> "threshold": 0.5,
> "spans_key": "my_spans",
> "max_length": None,
> "min_length": None,
> "model": DEFAULT_SPAN_FINDER_MODEL,
> }
> nlp.add_pipe("span_finder", config=config)
> ```
| Setting | Description |
| ------------ | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `model` | A model instance that is given a list of documents and predicts a probability for each token. ~~Model[List[Doc], Floats2d]~~ |
| `spans_key` | Key of the [`Doc.spans`](/api/doc#spans) dict to save the spans under. During initialization and training, the component will look for spans on the reference document under the same key. Defaults to `"sc"`. ~~str~~ |
| `threshold` | Minimum probability to consider a prediction positive. Defaults to `0.5`. ~~float~~ |
| `max_length` | Maximum length of the produced spans, defaults to `None` meaning unlimited length. ~~Optional[int]~~ |
| `min_length` | Minimum length of the produced spans, defaults to `None` meaning shortest span length is 1. ~~Optional[int]~~ |
| `scorer` | The scoring method. Defaults to [`Scorer.score_spans`](/api/scorer#score_spans) for `Doc.spans[spans_key]` with overlapping spans allowed. ~~Optional[Callable]~~ |
```python
%%GITHUB_SPACY/spacy/pipeline/span_finder.py
```
## SpanFinder.\_\_init\_\_ {id="init",tag="method"}
> #### Example
>
> ```python
> # Construction via add_pipe with default model
> span_finder = nlp.add_pipe("span_finder")
>
> # Construction via add_pipe with custom model
> config = {"model": {"@architectures": "my_span_finder"}}
> span_finder = nlp.add_pipe("span_finder", config=config)
>
> # Construction from class
> from spacy.pipeline import SpanFinder
> span_finder = SpanFinder(nlp.vocab, model)
> ```
Create a new pipeline instance. In your application, you would normally use a
shortcut for this and instantiate the component using its string name and
[`nlp.add_pipe`](/api/language#create_pipe).
| Name | Description |
| -------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `vocab` | The shared vocabulary. ~~Vocab~~ |
| `model` | A model instance that is given a list of documents and predicts a probability for each token. ~~Model[List[Doc], Floats2d]~~ |
| `name` | String name of the component instance. Used to add entries to the `losses` during training. ~~str~~ |
| _keyword-only_ | |
| `spans_key` | Key of the [`Doc.spans`](/api/doc#spans) dict to save the spans under. During initialization and training, the component will look for spans on the reference document under the same key. Defaults to `"sc"`. ~~str~~ |
| `threshold` | Minimum probability to consider a prediction positive. Defaults to `0.5`. ~~float~~ |
| `max_length` | Maximum length of the produced spans, defaults to `None` meaning unlimited length. ~~Optional[int]~~ |
| `min_length` | Minimum length of the produced spans, defaults to `None` meaning shortest span length is 1. ~~Optional[int]~~ |
| `scorer` | The scoring method. Defaults to [`Scorer.score_spans`](/api/scorer#score_spans) for `Doc.spans[spans_key]` with overlapping spans allowed. ~~Optional[Callable]~~ |
## SpanFinder.\_\_call\_\_ {id="call",tag="method"}
Apply the pipe to one document. The document is modified in place, and returned.
This usually happens under the hood when the `nlp` object is called on a text
and all pipeline components are applied to the `Doc` in order. Both
[`__call__`](/api/spanfinder#call) and [`pipe`](/api/spanfinder#pipe) delegate
to the [`predict`](/api/spanfinder#predict) and
[`set_annotations`](/api/spanfinder#set_annotations) methods.
> #### Example
>
> ```python
> doc = nlp("This is a sentence.")
> span_finder = nlp.add_pipe("span_finder")
> # This usually happens under the hood
> processed = span_finder(doc)
> ```
| Name | Description |
| ----------- | -------------------------------- |
| `doc` | The document to process. ~~Doc~~ |
| **RETURNS** | The processed document. ~~Doc~~ |
## SpanFinder.pipe {id="pipe",tag="method"}
Apply the pipe to a stream of documents. This usually happens under the hood
when the `nlp` object is called on a text and all pipeline components are
applied to the `Doc` in order. Both [`__call__`](/api/spanfinder#call) and
[`pipe`](/api/spanfinder#pipe) delegate to the
[`predict`](/api/spanfinder#predict) and
[`set_annotations`](/api/spanfinder#set_annotations) methods.
> #### Example
>
> ```python
> span_finder = nlp.add_pipe("span_finder")
> for doc in span_finder.pipe(docs, batch_size=50):
> pass
> ```
| Name | Description |
| -------------- | ------------------------------------------------------------- |
| `stream` | A stream of documents. ~~Iterable[Doc]~~ |
| _keyword-only_ | |
| `batch_size` | The number of documents to buffer. Defaults to `128`. ~~int~~ |
| **YIELDS** | The processed documents in order. ~~Doc~~ |
## SpanFinder.initialize {id="initialize",tag="method"}
Initialize the component for training. `get_examples` should be a function that
returns an iterable of [`Example`](/api/example) objects. **At least one example
should be supplied.** The data examples are used to **initialize the model** of
the component and can either be the full training data or a representative
sample. Initialization includes validating the network and
[inferring missing shapes](https://thinc.ai/docs/usage-models#validation) This
method is typically called by [`Language.initialize`](/api/language#initialize)
and lets you customize arguments it receives via the
[`[initialize.components]`](/api/data-formats#config-initialize) block in the
config.
> #### Example
>
> ```python
> span_finder = nlp.add_pipe("span_finder")
> span_finder.initialize(lambda: examples, nlp=nlp)
> ```
| Name | Description |
| -------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. Must contain at least one `Example`. ~~Callable[[], Iterable[Example]]~~ |
| _keyword-only_ | |
| `nlp` | The current `nlp` object. Defaults to `None`. ~~Optional[Language]~~ |
## SpanFinder.predict {id="predict",tag="method"}
Apply the component's model to a batch of [`Doc`](/api/doc) objects without
modifying them.
> #### Example
>
> ```python
> span_finder = nlp.add_pipe("span_finder")
> scores = span_finder.predict([doc1, doc2])
> ```
| Name | Description |
| ----------- | ------------------------------------------- |
| `docs` | The documents to predict. ~~Iterable[Doc]~~ |
| **RETURNS** | The model's prediction for each document. |
## SpanFinder.set_annotations {id="set_annotations",tag="method"}
Modify a batch of [`Doc`](/api/doc) objects using pre-computed scores.
> #### Example
>
> ```python
> span_finder = nlp.add_pipe("span_finder")
> scores = span_finder.predict(docs)
> span_finder.set_annotations(docs, scores)
> ```
| Name | Description |
| -------- | ---------------------------------------------------- |
| `docs` | The documents to modify. ~~Iterable[Doc]~~ |
| `scores` | The scores to set, produced by `SpanFinder.predict`. |
## SpanFinder.update {id="update",tag="method"}
Learn from a batch of [`Example`](/api/example) objects containing the
predictions and gold-standard annotations, and update the component's model.
Delegates to [`predict`](/api/spanfinder#predict) and
[`get_loss`](/api/spanfinder#get_loss).
> #### Example
>
> ```python
> span_finder = nlp.add_pipe("span_finder")
> optimizer = nlp.initialize()
> losses = span_finder.update(examples, sgd=optimizer)
> ```
| Name | Description |
| -------------- | ------------------------------------------------------------------------------------------------------------------------ |
| `examples` | A batch of [`Example`](/api/example) objects to learn from. ~~Iterable[Example]~~ |
| _keyword-only_ | |
| `drop` | The dropout rate. ~~float~~ |
| `sgd` | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~ |
| `losses` | Optional record of the loss during training. Updated using the component name as the key. ~~Optional[Dict[str, float]]~~ |
| **RETURNS** | The updated `losses` dictionary. ~~Dict[str, float]~~ |
## SpanFinder.get_loss {id="get_loss",tag="method"}
Find the loss and gradient of loss for the batch of documents and their
predicted scores.
> #### Example
>
> ```python
> span_finder = nlp.add_pipe("span_finder")
> scores = span_finder.predict([eg.predicted for eg in examples])
> loss, d_loss = span_finder.get_loss(examples, scores)
> ```
| Name | Description |
| -------------- | ------------------------------------------------------------------------------ |
| `examples` | The batch of examples. ~~Iterable[Example]~~ |
| `spans_scores` | Scores representing the model's predictions. ~~Tuple[Ragged, Floats2d]~~ |
| **RETURNS** | The loss and the gradient, i.e. `(loss, gradient)`. ~~Tuple[float, Floats2d]~~ |
## SpanFinder.create_optimizer {id="create_optimizer",tag="method"}
Create an optimizer for the pipeline component.
> #### Example
>
> ```python
> span_finder = nlp.add_pipe("span_finder")
> optimizer = span_finder.create_optimizer()
> ```
| Name | Description |
| ----------- | ---------------------------- |
| **RETURNS** | The optimizer. ~~Optimizer~~ |
## SpanFinder.use_params {id="use_params",tag="method, contextmanager"}
Modify the pipe's model to use the given parameter values.
> #### Example
>
> ```python
> span_finder = nlp.add_pipe("span_finder")
> with span_finder.use_params(optimizer.averages):
> span_finder.to_disk("/best_model")
> ```
| Name | Description |
| -------- | -------------------------------------------------- |
| `params` | The parameter values to use in the model. ~~dict~~ |
## SpanFinder.to_disk {id="to_disk",tag="method"}
Serialize the pipe to disk.
> #### Example
>
> ```python
> span_finder = nlp.add_pipe("span_finder")
> span_finder.to_disk("/path/to/span_finder")
> ```
| Name | Description |
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------ |
| `path` | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
| _keyword-only_ | |
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
## SpanFinder.from_disk {id="from_disk",tag="method"}
Load the pipe from disk. Modifies the object in place and returns it.
> #### Example
>
> ```python
> span_finder = nlp.add_pipe("span_finder")
> span_finder.from_disk("/path/to/span_finder")
> ```
| Name | Description |
| -------------- | ----------------------------------------------------------------------------------------------- |
| `path` | A path to a directory. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
| _keyword-only_ | |
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
| **RETURNS** | The modified `SpanFinder` object. ~~SpanFinder~~ |
## SpanFinder.to_bytes {id="to_bytes",tag="method"}
> #### Example
>
> ```python
> span_finder = nlp.add_pipe("span_finder")
> span_finder_bytes = span_finder.to_bytes()
> ```
Serialize the pipe to a bytestring.
| Name | Description |
| -------------- | ------------------------------------------------------------------------------------------- |
| _keyword-only_ | |
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
| **RETURNS** | The serialized form of the `SpanFinder` object. ~~bytes~~ |
## SpanFinder.from_bytes {id="from_bytes",tag="method"}
Load the pipe from a bytestring. Modifies the object in place and returns it.
> #### Example
>
> ```python
> span_finder_bytes = span_finder.to_bytes()
> span_finder = nlp.add_pipe("span_finder")
> span_finder.from_bytes(span_finder_bytes)
> ```
| Name | Description |
| -------------- | ------------------------------------------------------------------------------------------- |
| `bytes_data` | The data to load from. ~~bytes~~ |
| _keyword-only_ | |
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
| **RETURNS** | The `SpanFinder` object. ~~SpanFinder~~ |
## Serialization fields {id="serialization-fields"}
During serialization, spaCy will export several data fields used to restore
different aspects of the object. If needed, you can exclude them from
serialization by passing in the string names via the `exclude` argument.
> #### Example
>
> ```python
> data = span_finder.to_disk("/path", exclude=["vocab"])
> ```
| Name | Description |
| ------- | -------------------------------------------------------------- |
| `vocab` | The shared [`Vocab`](/api/vocab). |
| `cfg` | The config file. You usually don't want to exclude this. |
| `model` | The binary model data. You usually don't want to exclude this. |

View File

@ -469,7 +469,7 @@ factories.
| `optimizers` | Registry for functions that create [optimizers](https://thinc.ai/docs/api-optimizers). |
| `readers` | Registry for file and data readers, including training and evaluation data readers like [`Corpus`](/api/corpus). |
| `schedules` | Registry for functions that create [schedules](https://thinc.ai/docs/api-schedules). |
| `scorers` | Registry for functions that create scoring methods for user with the [`Scorer`](/api/scorer). Scoring methods are called with `Iterable[Example]` and arbitrary `\*\*kwargs` and return scores as `Dict[str, Any]`. |
| `scorers` | Registry for functions that create scoring methods for user with the [`Scorer`](/api/scorer). Scoring methods are called with `Iterable[Example]` and arbitrary `**kwargs` and return scores as `Dict[str, Any]`. |
| `tokenizers` | Registry for tokenizer factories. Registered functions should return a callback that receives the `nlp` object and returns a [`Tokenizer`](/api/tokenizer) or a custom callable. |
### spacy-transformers registry {id="registry-transformers"}

View File

@ -259,6 +259,26 @@ source code and recompiling frequently.
$ python setup.py develop
```
#### Visual Studio Code extension
![spaCy extension demo](/images/spacy-extension-demo.gif)
The [spaCy VSCode Extension](https://github.com/explosion/spacy-vscode) provides
additional tooling and features for working with spaCy's config files. Version
1.0.0 includes hover descriptions for registry functions, variables, and section
names within the config as an installable extension.
1. Install a supported version of Python on your system (`>=3.7`)
2. Install the
[Python Extension for Visual Studio Code](https://code.visualstudio.com/docs/python/python-tutorial)
3. Create a
[virtual python environment](https://docs.python.org/3/library/venv.html)
4. Install all python requirements (`spaCy >= 3.4.0` & `pygls >= 1.0.0`)
5. Install
[spaCy extension for Visual Studio Code](https://marketplace.visualstudio.com/items?itemName=Explosion.spacy-extension)
6. Select your python environment
7. You are ready to work with `.cfg` files in spaCy!
### Building an executable {id="executable"}
The spaCy repository includes a [`Makefile`](%%GITHUB_SPACY/Makefile) that

View File

@ -56,14 +56,19 @@ wrap. So if you come across this problem, especially when using custom labels,
you'll have to increase the `distance` setting in the `options` to allow longer
arcs.
Moreover, you might need to modify the `offset_x` argument depending on the shape
of your document. Otherwise, the left part of the document may overflow beyond the
container's border.
</Infobox>
| Argument | Description |
| --------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `compact` | "Compact mode" with square arrows that takes up less space. Defaults to `False`. ~~bool~~ |
| `color` | Text color. Can be provided in any CSS legal format as a string e.g.: `"#00ff00"`, `"rgb(0, 255, 0)"`, `"hsl(120, 100%, 50%)"` and `"green"` all correspond to the color green (without transparency). Defaults to `"#000000"`. ~~str~~ |
| `bg` | Background color. Can be provided in any CSS legal format as a string e.g.: `"#00ff00"`, `"rgb(0, 255, 0)"`, `"hsl(120, 100%, 50%)"` and `"green"` all correspond to the color green (without transparency). Defaults to `"#ffffff"`. ~~str~~ |
| `font` | Font name or font family for all text. Defaults to `"Arial"`. ~~str~~ |
| Argument | Description |
| ---------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `compact` | "Compact mode" with square arrows that takes up less space. Defaults to `False`. ~~bool~~ |
| `color` | Text color. Can be provided in any CSS legal format as a string e.g.: `"#00ff00"`, `"rgb(0, 255, 0)"`, `"hsl(120, 100%, 50%)"` and `"green"` all correspond to the color green (without transparency). Defaults to `"#000000"`. ~~str~~ |
| `bg` | Background color. Can be provided in any CSS legal format as a string e.g.: `"#00ff00"`, `"rgb(0, 255, 0)"`, `"hsl(120, 100%, 50%)"` and `"green"` all correspond to the color green (without transparency). Defaults to `"#ffffff"`. ~~str~~ |
| `font` | Font name or font family for all text. Defaults to `"Arial"`. ~~str~~ |
| `offset_x` | Spacing on left side of the SVG in px. You might need to tweak this setting for long texts. Defaults to `50`. ~~int~~ |
For a list of all available options, see the
[`displacy` API documentation](/api/top-level#displacy_options).

View File

@ -264,6 +264,11 @@
"code": "mr",
"name": "Marathi"
},
{
"code": "ms",
"name": "Malay",
"has_examples": true
},
{
"code": "nb",
"name": "Norwegian Bokmål",

View File

@ -106,6 +106,7 @@
{ "text": "SentenceRecognizer", "url": "/api/sentencerecognizer" },
{ "text": "Sentencizer", "url": "/api/sentencizer" },
{ "text": "SpanCategorizer", "url": "/api/spancategorizer" },
{ "text": "SpanFinder", "url": "/api/spanfinder" },
{ "text": "SpanResolver", "url": "/api/span-resolver" },
{ "text": "SpanRuler", "url": "/api/spanruler" },
{ "text": "Tagger", "url": "/api/tagger" },

View File

@ -1,5 +1,72 @@
{
"resources": [
{
"id": "spacy-vscode",
"title": "spaCy Visual Studio Code Extension",
"thumb": "https://raw.githubusercontent.com/explosion/spacy-vscode/main/icon.png",
"slogan": "Work with spaCy's config files in VS Code",
"description": "The spaCy VS Code Extension provides additional tooling and features for working with spaCy's config files. Version 1.0.0 includes hover descriptions for registry functions, variables, and section names within the config as an installable extension.",
"url": "https://marketplace.visualstudio.com/items?itemName=Explosion.spacy-extension",
"github": "explosion/spacy-vscode",
"code_language": "python",
"author": "Explosion",
"author_links": {
"twitter": "@explosion_ai",
"github": "explosion"
},
"category": ["extension"],
"tags": []
},
{
"id": "parsigs",
"title": "parsigs",
"slogan": "Structuring prescriptions text made simple using spaCy",
"description": "Parsigs is an open-source project that aims to extract the relevant dosage information from prescriptions text without compromising the patient's privacy.\n\nNotice you also need to install the model in order to use the package: `pip install https://huggingface.co/royashcenazi/en_parsigs/resolve/main/en_parsigs-any-py3-none-any.whl`",
"github": "royashcenazi/parsigs",
"pip": "parsigs",
"code_language": "python",
"author": "Roy Ashcenazi",
"code_example": [
"# You'll need to install the trained model, see instructions in the description section",
"from parsigs.parse_sig_api import StructuredSig, SigParser",
"sig_parser = SigParser()",
"",
"sig = 'Take 1 tablet of ibuprofen 200mg 3 times every day for 3 weeks'",
"parsed_sig = sig_parser.parse(sig)"
],
"author_links": {
"github": "royashcenazi"
},
"category": ["model", "research", "biomedical"],
"tags": ["sigs", "prescription","pharma"]
},
{
"id": "latincy",
"title": "LatinCy",
"thumb": "https://raw.githubusercontent.com/diyclassics/la_core_web_lg/main/latincy-logo.png",
"slogan": "Synthetic trained spaCy pipelines for Latin NLP",
"description": "Set of trained general purpose Latin-language 'core' pipelines for use with spaCy. The models are trained on a large amount of available Latin data, including all five of the Latin Universal Dependency treebanks, which have been preprocessed to be compatible with each other.",
"url": "https://huggingface.co/latincy",
"code_example": [
"# pip install https://huggingface.co/latincy/la_core_web_lg/resolve/main/la_core_web_lg-any-py3-none-any.whl",
"import spacy",
"nlp = spacy.load('la_core_web_lg')",
"doc = nlp('Haec narrantur a poetis de Perseo')",
"",
"print(f'{doc[0].text}, {doc[0].norm_}, {doc[0].lemma_}, {doc[0].pos_}')",
"",
"# > Haec, haec, hic, DET"
],
"code_language": "python",
"author": "Patrick J. Burns",
"author_links": {
"twitter": "@diyclassics",
"github": "diyclassics",
"website": "https://diyclassics.github.io/"
},
"category": ["pipeline", "research"],
"tags": ["latin"]
},
{
"id": "spacy-wasm",
"title": "spacy-wasm",
@ -334,7 +401,7 @@
},
{
"id": "spacypdfreader",
"title": "spadypdfreader",
"title": "spacypdfreader",
"category": ["pipeline"],
"tags": ["PDF"],
"slogan": "Easy PDF to text to spaCy text extraction in Python.",
@ -351,7 +418,7 @@
},
"code_example": [
"import spacy",
"from spacypdfreader import pdf_reader",
"from spacypdfreader.spacypdfreader import pdf_reader",
"",
"nlp = spacy.load('en_core_web_sm')",
"doc = pdf_reader('tests/data/test_pdf_01.pdf', nlp)",
@ -2810,6 +2877,58 @@
"tags": ["coreference", "multi-lingual", "cross-lingual", "allennlp"],
"spacy_version": 3
},
{
"id": "adeptaugmentations",
"title": "Adept Augmentations",
"slogan": " A Python library aimed at dissecting and augmenting NER training data for a few-shot scenario.",
"description": "EntitySwapAugmenter takes either a `datasets.Dataset` or a `spacy.tokens.DocBin`. Additionally, it is optional to provide a set of labels. It initially creates a knowledge base of entities belonging to a certain label. When running `augmenter.augment()` for N runs, it then creates N new sentences with random swaps of the original entities with an entity of the same corresponding label from the knowledge base.\n\nFor example, assuming that we have knowledge base for `PERSONS`, `LOCATIONS` and `PRODUCTS`. We can then create additional data for the sentence \"Momofuko Ando created instant noodles in Osaka.\" using `augmenter.augment(N=2)`, resulting in \"David created instant noodles in Madrid.\" or \"Tom created Adept Augmentations in the Netherlands\".",
"github": "argilla-io/adept-augmentations",
"pip": "adept-augmentations",
"thumb": "https://raw.githubusercontent.com/argilla-io/adept-augmentations/main/logo.png",
"code_example": [
"from adept_augmentations import EntitySwapAugmenter",
"import spacy",
"from spacy.tokens import Doc, DocBin",
"nlp = spacy.blank(\"en\")",
"",
"# Create some example golden data",
"example_data = [",
" (\"Apple is looking at buying U.K. startup for $1 billion\", [(0, 5, \"ORG\"), (27, 31, \"LOC\"), (44, 54, \"MONEY\")]),",
" (\"Microsoft acquires GitHub for $7.5 billion\", [(0, 9, \"ORG\"), (19, 25, \"ORG\"), (30, 42, \"MONEY\")]),",
"]",
"",
"# Create a new DocBin",
"nlp = spacy.blank(\"en\")",
"docs = []",
"for entry in example_data:",
" doc = Doc(nlp.vocab, words=entry[0].split())",
" doc.ents = [doc.char_span(ent[0], ent[1], label=ent[2]) for ent in entry[1]]",
" docs.append(doc)",
"golden_dataset = DocBin(docs=docs)",
"",
"# Augment Data",
"augmented_dataset = EntitySwapAugmenter(golden_dataset).augment(4)",
"for doc in augmented_dataset.get_docs(nlp.vocab):",
" print(doc.text)",
"",
"# GitHub is looking at buying U.K. startup for $ 7.5 billion",
"# Microsoft is looking at buying U.K. startup for $ 1 billion",
"# Microsoft is looking at buying U.K. startup for $ 7.5 billion",
"# GitHub is looking at buying U.K. startup for $ 1 billion",
"# Microsoft acquires Apple for $ 7.5 billion",
"# Apple acquires Microsoft for $ 1 billion",
"# Microsoft acquires Microsoft for $ 7.5 billion",
"# GitHub acquires GitHub for $ 1 billion"
],
"author": "David Berenstein",
"author_links": {
"github": "davidberenstein1957",
"website": "https://www.linkedin.com/in/david-berenstein-1bab11105/"
},
"category": ["standalone"],
"tags": ["ner", "few-shot", "augmentation", "datasets", "training"],
"spacy_version": 3
},
{
"id": "blackstone",
"title": "Blackstone",
@ -4162,6 +4281,37 @@
},
"category": ["pipeline", "research"],
"tags": ["Thai"]
},
{
"id": "vetiver",
"title": "Vetiver",
"slogan": "Version, share, deploy, and monitor models.",
"description": "The goal of vetiver is to provide fluent tooling to version, deploy, and monitor a trained model. Functions handle creating model objects, versioning models, predicting from a remote API endpoint, deploying Dockerfiles, and more.",
"github": "rstudio/vetiver-python",
"pip": "vetiver",
"code_example": [
"import spacy",
"from vetiver import VetiverModel, VetiverAPI",
"",
"# If you use this model, you'll need to download it first:",
"# python -m spacy download en_core_web_md",
"nlp = spacy.load('en_core_web_md')",
"# Create deployable model object with your nlp Language object",
"v = VetiverModel(nlp, model_name = 'my_model')",
"# Try out your API endpoint locally",
"VetiverAPI(v).run()"
],
"code_language": "python",
"url": "https://vetiver.rstudio.com/",
"thumb": "https://raw.githubusercontent.com/rstudio/vetiver-python/main/docs/figures/square-logo.svg",
"author": "Posit, PBC",
"author_links": {
"twitter": "posit_pbc",
"github": "rstudio",
"website": "https://posit.co/"
},
"category": ["apis", "standalone"],
"tags": ["apis", "deployment"]
}
],

Binary file not shown.

After

Width:  |  Height:  |  Size: 9.4 MiB