mirror of
https://github.com/explosion/spaCy.git
synced 2025-07-11 08:42:28 +03:00
Move TextCatCNN docs to legacy, in prep for moving to spacy-legacy
This commit is contained in:
parent
71aa6f4628
commit
9fb573e255
|
@ -55,6 +55,7 @@ redirects = [
|
||||||
{from = "/models/comparison", to = "/models", force = true},
|
{from = "/models/comparison", to = "/models", force = true},
|
||||||
{from = "/api/#section-cython", to = "/api/cython", force = true},
|
{from = "/api/#section-cython", to = "/api/cython", force = true},
|
||||||
{from = "/api/#cython", to = "/api/cython", force = true},
|
{from = "/api/#cython", to = "/api/cython", force = true},
|
||||||
|
{from = "/api/architectures#TextCatCNN", to = "/api/legacy#TextCatCNN_v2", force = true},
|
||||||
{from = "/api/sentencesegmenter", to="/api/sentencizer"},
|
{from = "/api/sentencesegmenter", to="/api/sentencizer"},
|
||||||
{from = "/universe", to = "/universe/project/:id", query = {id = ":id"}, force = true},
|
{from = "/universe", to = "/universe/project/:id", query = {id = ":id"}, force = true},
|
||||||
{from = "/universe", to = "/universe/category/:category", query = {category = ":category"}, force = true},
|
{from = "/universe", to = "/universe/category/:category", query = {category = ":category"}, force = true},
|
||||||
|
|
|
@ -1018,49 +1018,6 @@ but used an internal `tok2vec` instead of taking it as argument:
|
||||||
|
|
||||||
</Accordion>
|
</Accordion>
|
||||||
|
|
||||||
### spacy.TextCatCNN.v2 {id="TextCatCNN"}
|
|
||||||
|
|
||||||
> #### Example Config
|
|
||||||
>
|
|
||||||
> ```ini
|
|
||||||
> [model]
|
|
||||||
> @architectures = "spacy.TextCatCNN.v2"
|
|
||||||
> exclusive_classes = false
|
|
||||||
> nO = null
|
|
||||||
>
|
|
||||||
> [model.tok2vec]
|
|
||||||
> @architectures = "spacy.HashEmbedCNN.v2"
|
|
||||||
> pretrained_vectors = null
|
|
||||||
> width = 96
|
|
||||||
> depth = 4
|
|
||||||
> embed_size = 2000
|
|
||||||
> window_size = 1
|
|
||||||
> maxout_pieces = 3
|
|
||||||
> subword_features = true
|
|
||||||
> ```
|
|
||||||
|
|
||||||
A neural network model where token vectors are calculated using a CNN. The
|
|
||||||
vectors are mean pooled and used as features in a feed-forward network. This
|
|
||||||
architecture is usually less accurate than the ensemble, but runs faster.
|
|
||||||
|
|
||||||
This model is identical to [TexCatReduce.v1](#TextCatReduce) with
|
|
||||||
`use_reduce_mean=true`, `use_reduce_first=false` and `use_reduce_max=false`.
|
|
||||||
|
|
||||||
| Name | Description |
|
|
||||||
| ------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
|
||||||
| `exclusive_classes` | Whether or not categories are mutually exclusive. ~~bool~~ |
|
|
||||||
| `tok2vec` | The [`tok2vec`](#tok2vec) layer of the model. ~~Model~~ |
|
|
||||||
| `nO` | Output dimension, determined by the number of different labels. If not set, the [`TextCategorizer`](/api/textcategorizer) component will set it when `initialize` is called. ~~Optional[int]~~ |
|
|
||||||
| **CREATES** | The model using the architecture. ~~Model[List[Doc], Floats2d]~~ |
|
|
||||||
|
|
||||||
<Accordion title="spacy.TextCatCNN.v1 definition" spaced>
|
|
||||||
|
|
||||||
[TextCatCNN.v1](/api/legacy#TextCatCNN_v1) had the exact same signature, but was
|
|
||||||
not yet resizable. Since v2, new labels can be added to this component, even
|
|
||||||
after training.
|
|
||||||
|
|
||||||
</Accordion>
|
|
||||||
|
|
||||||
### spacy.TextCatBOW.v3 {id="TextCatBOW"}
|
### spacy.TextCatBOW.v3 {id="TextCatBOW"}
|
||||||
|
|
||||||
> #### Example Config
|
> #### Example Config
|
||||||
|
|
|
@ -162,7 +162,10 @@ network has an internal CNN Tok2Vec layer and uses attention.
|
||||||
|
|
||||||
Since `spacy.TextCatCNN.v2`, this architecture has become resizable, which means
|
Since `spacy.TextCatCNN.v2`, this architecture has become resizable, which means
|
||||||
that you can add labels to a previously trained textcat. `TextCatCNN` v1 did not
|
that you can add labels to a previously trained textcat. `TextCatCNN` v1 did not
|
||||||
yet support that.
|
yet support that. `TextCatCNN` has been replaced by the more general
|
||||||
|
[`TextCatReduce`](/api/architectures#TextCatReduce) layer. `TextCatCNN` is
|
||||||
|
identical to `TextCatReduce` with `use_reduce_mean=true`,
|
||||||
|
`use_reduce_first=false` and `use_reduce_max=false`.
|
||||||
|
|
||||||
> #### Example Config
|
> #### Example Config
|
||||||
>
|
>
|
||||||
|
@ -194,6 +197,51 @@ architecture is usually less accurate than the ensemble, but runs faster.
|
||||||
| `nO` | Output dimension, determined by the number of different labels. If not set, the [`TextCategorizer`](/api/textcategorizer) component will set it when `initialize` is called. ~~Optional[int]~~ |
|
| `nO` | Output dimension, determined by the number of different labels. If not set, the [`TextCategorizer`](/api/textcategorizer) component will set it when `initialize` is called. ~~Optional[int]~~ |
|
||||||
| **CREATES** | The model using the architecture. ~~Model[List[Doc], Floats2d]~~ |
|
| **CREATES** | The model using the architecture. ~~Model[List[Doc], Floats2d]~~ |
|
||||||
|
|
||||||
|
### spacy.TextCatCNN.v2 {id="TextCatCNN_v2"}
|
||||||
|
|
||||||
|
> #### Example Config
|
||||||
|
>
|
||||||
|
> ```ini
|
||||||
|
> [model]
|
||||||
|
> @architectures = "spacy.TextCatCNN.v2"
|
||||||
|
> exclusive_classes = false
|
||||||
|
> nO = null
|
||||||
|
>
|
||||||
|
> [model.tok2vec]
|
||||||
|
> @architectures = "spacy.HashEmbedCNN.v2"
|
||||||
|
> pretrained_vectors = null
|
||||||
|
> width = 96
|
||||||
|
> depth = 4
|
||||||
|
> embed_size = 2000
|
||||||
|
> window_size = 1
|
||||||
|
> maxout_pieces = 3
|
||||||
|
> subword_features = true
|
||||||
|
> ```
|
||||||
|
|
||||||
|
A neural network model where token vectors are calculated using a CNN. The
|
||||||
|
vectors are mean pooled and used as features in a feed-forward network. This
|
||||||
|
architecture is usually less accurate than the ensemble, but runs faster.
|
||||||
|
|
||||||
|
`TextCatCNN` has been replaced by the more general
|
||||||
|
[`TextCatReduce`](/api/architectures#TextCatReduce) layer. `TextCatCNN` is
|
||||||
|
identical to `TextCatReduce` with `use_reduce_mean=true`,
|
||||||
|
`use_reduce_first=false` and `use_reduce_max=false`.
|
||||||
|
|
||||||
|
| Name | Description |
|
||||||
|
| ------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||||
|
| `exclusive_classes` | Whether or not categories are mutually exclusive. ~~bool~~ |
|
||||||
|
| `tok2vec` | The [`tok2vec`](#tok2vec) layer of the model. ~~Model~~ |
|
||||||
|
| `nO` | Output dimension, determined by the number of different labels. If not set, the [`TextCategorizer`](/api/textcategorizer) component will set it when `initialize` is called. ~~Optional[int]~~ |
|
||||||
|
| **CREATES** | The model using the architecture. ~~Model[List[Doc], Floats2d]~~ |
|
||||||
|
|
||||||
|
<Accordion title="spacy.TextCatCNN.v1 definition" spaced>
|
||||||
|
|
||||||
|
[TextCatCNN.v1](/api/legacy#TextCatCNN_v1) had the exact same signature, but was
|
||||||
|
not yet resizable. Since v2, new labels can be added to this component, even
|
||||||
|
after training.
|
||||||
|
|
||||||
|
</Accordion>
|
||||||
|
|
||||||
### spacy.TextCatBOW.v1 {id="TextCatBOW_v1"}
|
### spacy.TextCatBOW.v1 {id="TextCatBOW_v1"}
|
||||||
|
|
||||||
Since `spacy.TextCatBOW.v2`, this architecture has become resizable, which means
|
Since `spacy.TextCatBOW.v2`, this architecture has become resizable, which means
|
||||||
|
|
Loading…
Reference in New Issue
Block a user