calculate gradient for entity encoding

This commit is contained in:
svlandeg 2019-05-15 02:23:08 +02:00
parent 2713abc651
commit 9ffe5437ae
2 changed files with 88 additions and 39 deletions

View File

@ -26,9 +26,10 @@ from spacy.tokens import Doc
class EL_Model(): class EL_Model():
INPUT_DIM = 300 INPUT_DIM = 300
OUTPUT_DIM = 5 # 96 OUTPUT_DIM = 96
PRINT_LOSS = True PRINT_LOSS = False
PRINT_F = True PRINT_F = True
EPS = 0.0000000005
labels = ["MATCH", "NOMATCH"] labels = ["MATCH", "NOMATCH"]
name = "entity_linker" name = "entity_linker"
@ -71,12 +72,12 @@ class EL_Model():
instance_count = 0 instance_count = 0
for article_id, inst_cluster_set in train_instances.items(): for article_id, inst_cluster_set in train_instances.items():
print("article", article_id) # print("article", article_id)
article_doc = train_doc[article_id] article_doc = train_doc[article_id]
pos_ex_list = list() pos_ex_list = list()
neg_exs_list = list() neg_exs_list = list()
for inst_cluster in inst_cluster_set: for inst_cluster in inst_cluster_set:
print("inst_cluster", inst_cluster) # print("inst_cluster", inst_cluster)
instance_count += 1 instance_count += 1
pos_ex_list.append(train_pos.get(inst_cluster)) pos_ex_list.append(train_pos.get(inst_cluster))
neg_exs_list.append(train_neg.get(inst_cluster, [])) neg_exs_list.append(train_neg.get(inst_cluster, []))
@ -143,19 +144,19 @@ class EL_Model():
conv_depth = 1 conv_depth = 1
cnn_maxout_pieces = 3 cnn_maxout_pieces = 3
with Model.define_operators({">>": chain, "**": clone}): with Model.define_operators({">>": chain, "**": clone}):
encoder = SpacyVectors \
>> flatten_add_lengths \
>> ParametricAttention(in_width)\
>> Pooling(mean_pool) \
>> Residual(zero_init(Maxout(in_width, in_width))) \
>> zero_init(Affine(out_width, in_width, drop_factor=0.0))
# encoder = SpacyVectors \ # encoder = SpacyVectors \
# >> flatten_add_lengths \ # >> flatten_add_lengths \
# >> with_getitem(0, Affine(in_width, in_width)) \ # >> ParametricAttention(in_width)\
# >> ParametricAttention(in_width) \ # >> Pooling(mean_pool) \
# >> Pooling(sum_pool) \ # >> Residual(zero_init(Maxout(in_width, in_width))) \
# >> Residual(ReLu(in_width, in_width)) ** conv_depth \ # >> zero_init(Affine(out_width, in_width, drop_factor=0.0))
# >> zero_init(Affine(out_width, in_width, drop_factor=0.0)) encoder = SpacyVectors \
>> flatten_add_lengths \
>> with_getitem(0, Affine(in_width, in_width)) \
>> ParametricAttention(in_width) \
>> Pooling(sum_pool) \
>> Residual(ReLu(in_width, in_width)) ** conv_depth \
>> zero_init(Affine(out_width, in_width, drop_factor=0.0))
# >> zero_init(Affine(nr_class, width, drop_factor=0.0)) # >> zero_init(Affine(nr_class, width, drop_factor=0.0))
# >> logistic # >> logistic
@ -178,20 +179,16 @@ class EL_Model():
return sgd return sgd
def update(self, article_doc, true_entity_list, false_entities_list, drop=0., losses=None): def update(self, article_doc, true_entity_list, false_entities_list, drop=0., losses=None):
doc_encoding, article_bp = self.article_encoder.begin_update([article_doc], drop=drop)
doc_encoding = doc_encoding[0]
# print("doc", doc_encoding)
for i, true_entity in enumerate(true_entity_list): for i, true_entity in enumerate(true_entity_list):
for cnt in range(10): try:
#try:
false_vectors = list() false_vectors = list()
false_entities = false_entities_list[i] false_entities = false_entities_list[i]
if len(false_entities) > 0: if len(false_entities) > 0:
# TODO: batch per doc # TODO: batch per doc
doc_encoding, article_bp = self.article_encoder.begin_update([article_doc], drop=drop)
doc_encoding = doc_encoding[0]
print()
print(cnt)
print("doc", doc_encoding)
for false_entity in false_entities: for false_entity in false_entities:
# TODO: one call only to begin_update ? # TODO: one call only to begin_update ?
@ -201,6 +198,7 @@ class EL_Model():
true_entity_encoding, true_entity_bp = self.entity_encoder.begin_update([true_entity], drop=drop) true_entity_encoding, true_entity_bp = self.entity_encoder.begin_update([true_entity], drop=drop)
true_entity_encoding = true_entity_encoding[0] true_entity_encoding = true_entity_encoding[0]
# true_gradient = self._calculate_true_gradient(doc_encoding, true_entity_encoding)
all_vectors = [true_entity_encoding] all_vectors = [true_entity_encoding]
all_vectors.extend(false_vectors) all_vectors.extend(false_vectors)
@ -208,29 +206,37 @@ class EL_Model():
# consensus_encoding = self._calculate_consensus(doc_encoding, true_entity_encoding) # consensus_encoding = self._calculate_consensus(doc_encoding, true_entity_encoding)
true_prob = self._calculate_probability(doc_encoding, true_entity_encoding, all_vectors) true_prob = self._calculate_probability(doc_encoding, true_entity_encoding, all_vectors)
print("true", true_prob, true_entity_encoding) # print("true", true_prob, true_entity_encoding)
# print("true gradient", true_gradient)
# print()
all_probs = [true_prob] all_probs = [true_prob]
for false_vector in false_vectors: for false_vector in false_vectors:
false_prob = self._calculate_probability(doc_encoding, false_vector, all_vectors) false_prob = self._calculate_probability(doc_encoding, false_vector, all_vectors)
print("false", false_prob, false_vector) # print("false", false_prob, false_vector)
# print("false gradient", false_gradient)
# print()
all_probs.append(false_prob) all_probs.append(false_prob)
loss = self._calculate_loss(true_prob, all_probs).astype(np.float32) loss = self._calculate_loss(true_prob, all_probs).astype(np.float32)
if self.PRINT_LOSS: if self.PRINT_LOSS:
print("loss", round(loss, 5)) print(round(loss, 5))
doc_gradient = self._calculate_doc_gradient(loss, doc_encoding, true_entity_encoding, false_vectors) #doc_gradient = self._calculate_doc_gradient(loss, doc_encoding, true_entity_encoding, false_vectors)
print("doc_gradient", doc_gradient) entity_gradient = self._calculate_entity_gradient(doc_encoding, true_entity_encoding, false_vectors)
article_bp([doc_gradient.astype(np.float32)], sgd=self.sgd_article) # print("entity_gradient", entity_gradient)
#except Exception as e: # print("doc_gradient", doc_gradient)
#pass # article_bp([doc_gradient.astype(np.float32)], sgd=self.sgd_article)
true_entity_bp([entity_gradient.astype(np.float32)], sgd=self.sgd_entity)
#true_entity_bp([true_gradient.astype(np.float32)], sgd=self.sgd_entity)
except Exception as e:
pass
# TODO: FIX # TODO: FIX
def _calculate_consensus(self, vector1, vector2): def _calculate_consensus(self, vector1, vector2):
if len(vector1) != len(vector2): if len(vector1) != len(vector2):
raise ValueError("To calculate consenus, both vectors should be of equal length") raise ValueError("To calculate consensus, both vectors should be of equal length")
avg = (vector2 + vector1) / 2 avg = (vector2 + vector1) / 2
return avg return avg
@ -246,12 +252,11 @@ class EL_Model():
for v in allvectors: for v in allvectors:
e_sum += self._calculate_dot_exp(v, vector1_t) e_sum += self._calculate_dot_exp(v, vector1_t)
return float(e / e_sum) return float(e / (self.EPS + e_sum))
@staticmethod def _calculate_loss(self, true_prob, all_probs):
def _calculate_loss(true_prob, all_probs):
""" all_probs should include true_prob ! """ """ all_probs should include true_prob ! """
return -1 * np.log(true_prob / sum(all_probs)) return -1 * np.log((self.EPS + true_prob) / (self.EPS + sum(all_probs)))
@staticmethod @staticmethod
def _calculate_doc_gradient(loss, doc_vector, true_vector, false_vectors): def _calculate_doc_gradient(loss, doc_vector, true_vector, false_vectors):
@ -276,9 +281,53 @@ class EL_Model():
return gradient return gradient
def _calculate_true_gradient(self, doc_vector, entity_vector):
# sum_entity_vector = sum(entity_vector)
# gradient = [-sum_entity_vector/(self.EPS + np.exp(doc_vector[i] * entity_vector[i])) for i in range(len(doc_vector))]
gradient = [1 / (self.EPS + np.exp(doc_vector[i] * entity_vector[i])) for i in range(len(doc_vector))]
return np.asarray(gradient)
def _calculate_entity_gradient(self, doc_vector, true_vector, false_vectors):
entity_gradient = list()
prob_true = list()
false_prob_list = list()
for i in range(len(true_vector)):
doc_i = np.asarray([doc_vector[i]])
true_i = np.asarray([true_vector[i]])
falses_i = np.asarray([[fv[i]] for fv in false_vectors])
all_i = [true_i]
all_i.extend(falses_i)
prob_true_i = self._calculate_probability(doc_i, true_i, all_i)
prob_true.append(prob_true_i)
false_list = list()
all_probs_i = [prob_true_i]
for false_vector in falses_i:
false_prob_i = self._calculate_probability(doc_i, false_vector, all_i)
all_probs_i.append(false_prob_i)
false_list.append(false_prob_i)
false_prob_list.append(false_list)
sign_loss_i = 1
if doc_vector[i] * true_vector[i] < 0:
sign_loss_i = -1
loss_i = sign_loss_i * self._calculate_loss(prob_true_i, all_probs_i).astype(np.float32)
entity_gradient.append(loss_i)
# print("prob_true", prob_true)
# print("false_prob_list", false_prob_list)
return np.asarray(entity_gradient)
@staticmethod @staticmethod
def _calculate_dot_exp(vector1, vector2_transposed): def _calculate_dot_exp(vector1, vector2_transposed):
e = np.exp(vector1.dot(vector2_transposed)) dot_product = vector1.dot(vector2_transposed)
dot_product = min(50, dot_product)
# dot_product = max(-10000, dot_product)
# print("DOT", dot_product)
e = np.exp(dot_product)
# print("E", e)
return e return e
def _get_training_data(self, training_dir, entity_descr_output, dev, limit, to_print): def _get_training_data(self, training_dir, entity_descr_output, dev, limit, to_print):

View File

@ -111,7 +111,7 @@ if __name__ == "__main__":
print("STEP 6: training ", datetime.datetime.now()) print("STEP 6: training ", datetime.datetime.now())
my_nlp = spacy.load('en_core_web_md') my_nlp = spacy.load('en_core_web_md')
trainer = EL_Model(kb=my_kb, nlp=my_nlp) trainer = EL_Model(kb=my_kb, nlp=my_nlp)
trainer.train_model(training_dir=TRAINING_DIR, entity_descr_output=ENTITY_DESCR, trainlimit=1, devlimit=5) trainer.train_model(training_dir=TRAINING_DIR, entity_descr_output=ENTITY_DESCR, trainlimit=1500, devlimit=50)
print() print()
# STEP 7: apply the EL algorithm on the dev dataset # STEP 7: apply the EL algorithm on the dev dataset