Add SpanRuler component (#9880)

* Add SpanRuler component

Add a `SpanRuler` component similar to `EntityRuler` that saves a list
of matched spans to `Doc.spans[spans_key]`. The matches from the token
and phrase matchers are deduplicated and sorted before assignment but
are not otherwise filtered.

* Update spacy/pipeline/span_ruler.py

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>

* Fix cast

* Add self.key property

* Use number of patterns as length

* Remove patterns kwarg from init

* Update spacy/tests/pipeline/test_span_ruler.py

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>

* Add options for spans filter and setting to ents

* Add `spans_filter` option as a registered function'
* Make `spans_key` optional and if `None`, set to `doc.ents` instead of
`doc.spans[spans_key]`.

* Update and generalize tests

* Add test for setting doc.ents, fix key property type

* Fix typing

* Allow independent doc.spans and doc.ents

* If `spans_key` is set, set `doc.spans` with `spans_filter`.
* If `annotate_ents` is set, set `doc.ents` with `ents_fitler`.
  * Use `util.filter_spans` by default as `ents_filter`.
  * Use a custom warning if the filter does not work for `doc.ents`.

* Enable use of SpanC.id in Span

* Support id in SpanRuler as Span.id

* Update types

* `id` can only be provided as string (already by `PatternType`
definition)

* Update all uses of Span.id/ent_id in Doc

* Rename Span id kwarg to span_id

* Update types and docs

* Add ents filter to mimic EntityRuler overwrite_ents

* Refactor `ents_filter` to take `entities, spans` args for more
  filtering options
* Give registered filters more descriptive names
* Allow registered `filter_spans` filter
  (`spacy.first_longest_spans_filter.v1`) to take any number of
  `Iterable[Span]` objects as args so it can be used for spans filter
  or ents filter

* Implement future entity ruler as span ruler

Implement a compatible `entity_ruler` as `future_entity_ruler` using
`SpanRuler` as the underlying component:
* Add `sort_key` and `sort_reverse` to allow the sorting behavior to be
  customized. (Necessary for the same sorting/filtering as in
  `EntityRuler`.)
* Implement `overwrite_overlapping_ents_filter` and
  `preserve_existing_ents_filter` to support
  `EntityRuler.overwrite_ents` settings.
* Add `remove_by_id` to support `EntityRuler.remove` functionality.
* Refactor `entity_ruler` tests to parametrize all tests to test both
  `entity_ruler` and `future_entity_ruler`
* Implement `SpanRuler.token_patterns` and `SpanRuler.phrase_patterns`
  properties.

Additional changes:

* Move all config settings to top-level attributes to avoid duplicating
  settings in the config vs. `span_ruler/cfg`. (Also avoids a lot of
  casting.)

* Format

* Fix filter make method name

* Refactor to use same error for removing by label or ID

* Also provide existing spans to spans filter

* Support ids property

* Remove token_patterns and phrase_patterns

* Update docstrings

* Add span ruler docs

* Fix types

* Apply suggestions from code review

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>

* Move sorting into filters

* Check for all tokens in seen tokens in entity ruler filters

* Remove registered sort key

* Set Token.ent_id in a backwards-compatible way in Doc.set_ents

* Remove sort options from API docs

* Update docstrings

* Rename entity ruler filters

* Fix and parameterize scoring

* Add id to Span API docs

* Fix typo in API docs

* Include explicit labeled=True for scorer

Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
This commit is contained in:
Adriane Boyd 2022-06-02 13:12:53 +02:00 committed by GitHub
parent f7507c2327
commit a322d6d5f2
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
16 changed files with 1772 additions and 133 deletions

View File

@ -532,6 +532,8 @@ class Errors(metaclass=ErrorsWithCodes):
E202 = ("Unsupported {name} mode '{mode}'. Supported modes: {modes}.") E202 = ("Unsupported {name} mode '{mode}'. Supported modes: {modes}.")
# New errors added in v3.x # New errors added in v3.x
E854 = ("Unable to set doc.ents. Check that the 'ents_filter' does not "
"permit overlapping spans.")
E855 = ("Invalid {obj}: {obj} is not from the same doc.") E855 = ("Invalid {obj}: {obj} is not from the same doc.")
E856 = ("Error accessing span at position {i}: out of bounds in span group " E856 = ("Error accessing span at position {i}: out of bounds in span group "
"of length {length}.") "of length {length}.")
@ -903,8 +905,8 @@ class Errors(metaclass=ErrorsWithCodes):
E1022 = ("Words must be of type str or int, but input is of type '{wtype}'") E1022 = ("Words must be of type str or int, but input is of type '{wtype}'")
E1023 = ("Couldn't read EntityRuler from the {path}. This file doesn't " E1023 = ("Couldn't read EntityRuler from the {path}. This file doesn't "
"exist.") "exist.")
E1024 = ("A pattern with ID \"{ent_id}\" is not present in EntityRuler " E1024 = ("A pattern with {attr_type} '{label}' is not present in "
"patterns.") "'{component}' patterns.")
E1025 = ("Cannot intify the value '{value}' as an IOB string. The only " E1025 = ("Cannot intify the value '{value}' as an IOB string. The only "
"supported values are: 'I', 'O', 'B' and ''") "supported values are: 'I', 'O', 'B' and ''")
E1026 = ("Edit tree has an invalid format:\n{errors}") E1026 = ("Edit tree has an invalid format:\n{errors}")

View File

@ -13,6 +13,7 @@ from .sentencizer import Sentencizer
from .tagger import Tagger from .tagger import Tagger
from .textcat import TextCategorizer from .textcat import TextCategorizer
from .spancat import SpanCategorizer from .spancat import SpanCategorizer
from .span_ruler import SpanRuler
from .textcat_multilabel import MultiLabel_TextCategorizer from .textcat_multilabel import MultiLabel_TextCategorizer
from .tok2vec import Tok2Vec from .tok2vec import Tok2Vec
from .functions import merge_entities, merge_noun_chunks, merge_subtokens from .functions import merge_entities, merge_noun_chunks, merge_subtokens
@ -30,6 +31,7 @@ __all__ = [
"SentenceRecognizer", "SentenceRecognizer",
"Sentencizer", "Sentencizer",
"SpanCategorizer", "SpanCategorizer",
"SpanRuler",
"Tagger", "Tagger",
"TextCategorizer", "TextCategorizer",
"Tok2Vec", "Tok2Vec",

View File

@ -180,10 +180,7 @@ class EntityRuler(Pipe):
if start not in seen_tokens and end - 1 not in seen_tokens: if start not in seen_tokens and end - 1 not in seen_tokens:
if match_id in self._ent_ids: if match_id in self._ent_ids:
label, ent_id = self._ent_ids[match_id] label, ent_id = self._ent_ids[match_id]
span = Span(doc, start, end, label=label) span = Span(doc, start, end, label=label, span_id=ent_id)
if ent_id:
for token in span:
token.ent_id_ = ent_id
else: else:
span = Span(doc, start, end, label=match_id) span = Span(doc, start, end, label=match_id)
new_entities.append(span) new_entities.append(span)
@ -357,7 +354,9 @@ class EntityRuler(Pipe):
(label, eid) for (label, eid) in self._ent_ids.values() if eid == ent_id (label, eid) for (label, eid) in self._ent_ids.values() if eid == ent_id
] ]
if not label_id_pairs: if not label_id_pairs:
raise ValueError(Errors.E1024.format(ent_id=ent_id)) raise ValueError(
Errors.E1024.format(attr_type="ID", label=ent_id, component=self.name)
)
created_labels = [ created_labels = [
self._create_label(label, eid) for (label, eid) in label_id_pairs self._create_label(label, eid) for (label, eid) in label_id_pairs
] ]

View File

@ -0,0 +1,569 @@
from typing import Optional, Union, List, Dict, Tuple, Iterable, Any, Callable
from typing import Sequence, Set, cast
import warnings
from functools import partial
from pathlib import Path
import srsly
from .pipe import Pipe
from ..training import Example
from ..language import Language
from ..errors import Errors, Warnings
from ..util import ensure_path, SimpleFrozenList, registry
from ..tokens import Doc, Span
from ..scorer import Scorer
from ..matcher import Matcher, PhraseMatcher
from .. import util
PatternType = Dict[str, Union[str, List[Dict[str, Any]]]]
DEFAULT_SPANS_KEY = "ruler"
@Language.factory(
"future_entity_ruler",
assigns=["doc.ents"],
default_config={
"phrase_matcher_attr": None,
"validate": False,
"overwrite_ents": False,
"scorer": {"@scorers": "spacy.entity_ruler_scorer.v1"},
"ent_id_sep": "__unused__",
},
default_score_weights={
"ents_f": 1.0,
"ents_p": 0.0,
"ents_r": 0.0,
"ents_per_type": None,
},
)
def make_entity_ruler(
nlp: Language,
name: str,
phrase_matcher_attr: Optional[Union[int, str]],
validate: bool,
overwrite_ents: bool,
scorer: Optional[Callable],
ent_id_sep: str,
):
if overwrite_ents:
ents_filter = prioritize_new_ents_filter
else:
ents_filter = prioritize_existing_ents_filter
return SpanRuler(
nlp,
name,
spans_key=None,
spans_filter=None,
annotate_ents=True,
ents_filter=ents_filter,
phrase_matcher_attr=phrase_matcher_attr,
validate=validate,
overwrite=False,
scorer=scorer,
)
@Language.factory(
"span_ruler",
assigns=["doc.spans"],
default_config={
"spans_key": DEFAULT_SPANS_KEY,
"spans_filter": None,
"annotate_ents": False,
"ents_filter": {"@misc": "spacy.first_longest_spans_filter.v1"},
"phrase_matcher_attr": None,
"validate": False,
"overwrite": True,
"scorer": {
"@scorers": "spacy.overlapping_labeled_spans_scorer.v1",
"spans_key": DEFAULT_SPANS_KEY,
},
},
default_score_weights={
f"spans_{DEFAULT_SPANS_KEY}_f": 1.0,
f"spans_{DEFAULT_SPANS_KEY}_p": 0.0,
f"spans_{DEFAULT_SPANS_KEY}_r": 0.0,
f"spans_{DEFAULT_SPANS_KEY}_per_type": None,
},
)
def make_span_ruler(
nlp: Language,
name: str,
spans_key: Optional[str],
spans_filter: Optional[Callable[[Iterable[Span], Iterable[Span]], Iterable[Span]]],
annotate_ents: bool,
ents_filter: Callable[[Iterable[Span], Iterable[Span]], Iterable[Span]],
phrase_matcher_attr: Optional[Union[int, str]],
validate: bool,
overwrite: bool,
scorer: Optional[Callable],
):
return SpanRuler(
nlp,
name,
spans_key=spans_key,
spans_filter=spans_filter,
annotate_ents=annotate_ents,
ents_filter=ents_filter,
phrase_matcher_attr=phrase_matcher_attr,
validate=validate,
overwrite=overwrite,
scorer=scorer,
)
def prioritize_new_ents_filter(
entities: Iterable[Span], spans: Iterable[Span]
) -> List[Span]:
"""Merge entities and spans into one list without overlaps by allowing
spans to overwrite any entities that they overlap with. Intended to
replicate the overwrite_ents=True behavior from the EntityRuler.
entities (Iterable[Span]): The entities, already filtered for overlaps.
spans (Iterable[Span]): The spans to merge, may contain overlaps.
RETURNS (List[Span]): Filtered list of non-overlapping spans.
"""
get_sort_key = lambda span: (span.end - span.start, -span.start)
spans = sorted(spans, key=get_sort_key, reverse=True)
entities = list(entities)
new_entities = []
seen_tokens: Set[int] = set()
for span in spans:
start = span.start
end = span.end
if all(token.i not in seen_tokens for token in span):
new_entities.append(span)
entities = [e for e in entities if not (e.start < end and e.end > start)]
seen_tokens.update(range(start, end))
return entities + new_entities
@registry.misc("spacy.prioritize_new_ents_filter.v1")
def make_prioritize_new_ents_filter():
return prioritize_new_ents_filter
def prioritize_existing_ents_filter(
entities: Iterable[Span], spans: Iterable[Span]
) -> List[Span]:
"""Merge entities and spans into one list without overlaps by prioritizing
existing entities. Intended to replicate the overwrite_ents=False behavior
from the EntityRuler.
entities (Iterable[Span]): The entities, already filtered for overlaps.
spans (Iterable[Span]): The spans to merge, may contain overlaps.
RETURNS (List[Span]): Filtered list of non-overlapping spans.
"""
get_sort_key = lambda span: (span.end - span.start, -span.start)
spans = sorted(spans, key=get_sort_key, reverse=True)
entities = list(entities)
new_entities = []
seen_tokens: Set[int] = set()
seen_tokens.update(*(range(ent.start, ent.end) for ent in entities))
for span in spans:
start = span.start
end = span.end
if all(token.i not in seen_tokens for token in span):
new_entities.append(span)
seen_tokens.update(range(start, end))
return entities + new_entities
@registry.misc("spacy.prioritize_existing_ents_filter.v1")
def make_preverse_existing_ents_filter():
return prioritize_existing_ents_filter
def overlapping_labeled_spans_score(
examples: Iterable[Example], *, spans_key=DEFAULT_SPANS_KEY, **kwargs
) -> Dict[str, Any]:
kwargs = dict(kwargs)
attr_prefix = f"spans_"
kwargs.setdefault("attr", f"{attr_prefix}{spans_key}")
kwargs.setdefault("allow_overlap", True)
kwargs.setdefault("labeled", True)
kwargs.setdefault(
"getter", lambda doc, key: doc.spans.get(key[len(attr_prefix) :], [])
)
kwargs.setdefault("has_annotation", lambda doc: spans_key in doc.spans)
return Scorer.score_spans(examples, **kwargs)
@registry.scorers("spacy.overlapping_labeled_spans_scorer.v1")
def make_overlapping_labeled_spans_scorer(spans_key: str = DEFAULT_SPANS_KEY):
return partial(overlapping_labeled_spans_score, spans_key=spans_key)
class SpanRuler(Pipe):
"""The SpanRuler lets you add spans to the `Doc.spans` using token-based
rules or exact phrase matches.
DOCS: https://spacy.io/api/spanruler
USAGE: https://spacy.io/usage/rule-based-matching#spanruler
"""
def __init__(
self,
nlp: Language,
name: str = "span_ruler",
*,
spans_key: Optional[str] = DEFAULT_SPANS_KEY,
spans_filter: Optional[
Callable[[Iterable[Span], Iterable[Span]], Iterable[Span]]
] = None,
annotate_ents: bool = False,
ents_filter: Callable[
[Iterable[Span], Iterable[Span]], Iterable[Span]
] = util.filter_chain_spans,
phrase_matcher_attr: Optional[Union[int, str]] = None,
validate: bool = False,
overwrite: bool = False,
scorer: Optional[Callable] = partial(
overlapping_labeled_spans_score, spans_key=DEFAULT_SPANS_KEY
),
) -> None:
"""Initialize the span ruler. If patterns are supplied here, they
need to be a list of dictionaries with a `"label"` and `"pattern"`
key. A pattern can either be a token pattern (list) or a phrase pattern
(string). For example: `{'label': 'ORG', 'pattern': 'Apple'}`.
nlp (Language): The shared nlp object to pass the vocab to the matchers
and process phrase patterns.
name (str): Instance name of the current pipeline component. Typically
passed in automatically from the factory when the component is
added. Used to disable the current span ruler while creating
phrase patterns with the nlp object.
spans_key (Optional[str]): The spans key to save the spans under. If
`None`, no spans are saved. Defaults to "ruler".
spans_filter (Optional[Callable[[Iterable[Span], Iterable[Span]], List[Span]]):
The optional method to filter spans before they are assigned to
doc.spans. Defaults to `None`.
annotate_ents (bool): Whether to save spans to doc.ents. Defaults to
`False`.
ents_filter (Callable[[Iterable[Span], Iterable[Span]], List[Span]]):
The method to filter spans before they are assigned to doc.ents.
Defaults to `util.filter_chain_spans`.
phrase_matcher_attr (Optional[Union[int, str]]): Token attribute to
match on, passed to the internal PhraseMatcher as `attr`. Defaults
to `None`.
validate (bool): Whether patterns should be validated, passed to
Matcher and PhraseMatcher as `validate`.
overwrite (bool): Whether to remove any existing spans under this spans
key if `spans_key` is set, and/or to remove any ents under `doc.ents` if
`annotate_ents` is set. Defaults to `True`.
scorer (Optional[Callable]): The scoring method. Defaults to
spacy.pipeline.span_ruler.overlapping_labeled_spans_score.
DOCS: https://spacy.io/api/spanruler#init
"""
self.nlp = nlp
self.name = name
self.spans_key = spans_key
self.annotate_ents = annotate_ents
self.phrase_matcher_attr = phrase_matcher_attr
self.validate = validate
self.overwrite = overwrite
self.spans_filter = spans_filter
self.ents_filter = ents_filter
self.scorer = scorer
self._match_label_id_map: Dict[int, Dict[str, str]] = {}
self.clear()
def __len__(self) -> int:
"""The number of all labels added to the span ruler."""
return len(self._patterns)
def __contains__(self, label: str) -> bool:
"""Whether a label is present in the patterns."""
for label_id in self._match_label_id_map.values():
if label_id["label"] == label:
return True
return False
@property
def key(self) -> Optional[str]:
"""Key of the doc.spans dict to save the spans under."""
return self.spans_key
def __call__(self, doc: Doc) -> Doc:
"""Find matches in document and add them as entities.
doc (Doc): The Doc object in the pipeline.
RETURNS (Doc): The Doc with added entities, if available.
DOCS: https://spacy.io/api/spanruler#call
"""
error_handler = self.get_error_handler()
try:
matches = self.match(doc)
self.set_annotations(doc, matches)
return doc
except Exception as e:
return error_handler(self.name, self, [doc], e)
def match(self, doc: Doc):
self._require_patterns()
with warnings.catch_warnings():
warnings.filterwarnings("ignore", message="\\[W036")
matches = cast(
List[Tuple[int, int, int]],
list(self.matcher(doc)) + list(self.phrase_matcher(doc)),
)
deduplicated_matches = set(
Span(
doc,
start,
end,
label=self._match_label_id_map[m_id]["label"],
span_id=self._match_label_id_map[m_id]["id"],
)
for m_id, start, end in matches
if start != end
)
return sorted(list(deduplicated_matches))
def set_annotations(self, doc, matches):
"""Modify the document in place"""
# set doc.spans if spans_key is set
if self.key:
spans = []
if self.key in doc.spans and not self.overwrite:
spans = doc.spans[self.key]
spans.extend(
self.spans_filter(spans, matches) if self.spans_filter else matches
)
doc.spans[self.key] = spans
# set doc.ents if annotate_ents is set
if self.annotate_ents:
spans = []
if not self.overwrite:
spans = list(doc.ents)
spans = self.ents_filter(spans, matches)
try:
doc.ents = sorted(spans)
except ValueError:
raise ValueError(Errors.E854)
@property
def labels(self) -> Tuple[str, ...]:
"""All labels present in the match patterns.
RETURNS (set): The string labels.
DOCS: https://spacy.io/api/spanruler#labels
"""
return tuple(sorted(set([cast(str, p["label"]) for p in self._patterns])))
@property
def ids(self) -> Tuple[str, ...]:
"""All IDs present in the match patterns.
RETURNS (set): The string IDs.
DOCS: https://spacy.io/api/spanruler#ids
"""
return tuple(
sorted(set([cast(str, p.get("id")) for p in self._patterns]) - set([None]))
)
def initialize(
self,
get_examples: Callable[[], Iterable[Example]],
*,
nlp: Optional[Language] = None,
patterns: Optional[Sequence[PatternType]] = None,
):
"""Initialize the pipe for training.
get_examples (Callable[[], Iterable[Example]]): Function that
returns a representative sample of gold-standard Example objects.
nlp (Language): The current nlp object the component is part of.
patterns (Optional[Iterable[PatternType]]): The list of patterns.
DOCS: https://spacy.io/api/spanruler#initialize
"""
self.clear()
if patterns:
self.add_patterns(patterns) # type: ignore[arg-type]
@property
def patterns(self) -> List[PatternType]:
"""Get all patterns that were added to the span ruler.
RETURNS (list): The original patterns, one dictionary per pattern.
DOCS: https://spacy.io/api/spanruler#patterns
"""
return self._patterns
def add_patterns(self, patterns: List[PatternType]) -> None:
"""Add patterns to the span ruler. A pattern can either be a token
pattern (list of dicts) or a phrase pattern (string). For example:
{'label': 'ORG', 'pattern': 'Apple'}
{'label': 'ORG', 'pattern': 'Apple', 'id': 'apple'}
{'label': 'GPE', 'pattern': [{'lower': 'san'}, {'lower': 'francisco'}]}
patterns (list): The patterns to add.
DOCS: https://spacy.io/api/spanruler#add_patterns
"""
# disable the nlp components after this one in case they haven't been
# initialized / deserialized yet
try:
current_index = -1
for i, (name, pipe) in enumerate(self.nlp.pipeline):
if self == pipe:
current_index = i
break
subsequent_pipes = [pipe for pipe in self.nlp.pipe_names[current_index:]]
except ValueError:
subsequent_pipes = []
with self.nlp.select_pipes(disable=subsequent_pipes):
phrase_pattern_labels = []
phrase_pattern_texts = []
for entry in patterns:
p_label = cast(str, entry["label"])
p_id = cast(str, entry.get("id", ""))
label = repr((p_label, p_id))
self._match_label_id_map[self.nlp.vocab.strings.as_int(label)] = {
"label": p_label,
"id": p_id,
}
if isinstance(entry["pattern"], str):
phrase_pattern_labels.append(label)
phrase_pattern_texts.append(entry["pattern"])
elif isinstance(entry["pattern"], list):
self.matcher.add(label, [entry["pattern"]])
else:
raise ValueError(Errors.E097.format(pattern=entry["pattern"]))
self._patterns.append(entry)
for label, pattern in zip(
phrase_pattern_labels,
self.nlp.pipe(phrase_pattern_texts),
):
self.phrase_matcher.add(label, [pattern])
def clear(self) -> None:
"""Reset all patterns.
RETURNS: None
DOCS: https://spacy.io/api/spanruler#clear
"""
self._patterns: List[PatternType] = []
self.matcher: Matcher = Matcher(self.nlp.vocab, validate=self.validate)
self.phrase_matcher: PhraseMatcher = PhraseMatcher(
self.nlp.vocab,
attr=self.phrase_matcher_attr,
validate=self.validate,
)
def remove(self, label: str) -> None:
"""Remove a pattern by its label.
label (str): Label of the pattern to be removed.
RETURNS: None
DOCS: https://spacy.io/api/spanruler#remove
"""
if label not in self:
raise ValueError(
Errors.E1024.format(attr_type="label", label=label, component=self.name)
)
self._patterns = [p for p in self._patterns if p["label"] != label]
for m_label in self._match_label_id_map:
if self._match_label_id_map[m_label]["label"] == label:
m_label_str = self.nlp.vocab.strings.as_string(m_label)
if m_label_str in self.phrase_matcher:
self.phrase_matcher.remove(m_label_str)
if m_label_str in self.matcher:
self.matcher.remove(m_label_str)
def remove_by_id(self, pattern_id: str) -> None:
"""Remove a pattern by its pattern ID.
pattern_id (str): ID of the pattern to be removed.
RETURNS: None
DOCS: https://spacy.io/api/spanruler#remove_by_id
"""
orig_len = len(self)
self._patterns = [p for p in self._patterns if p.get("id") != pattern_id]
if orig_len == len(self):
raise ValueError(
Errors.E1024.format(
attr_type="ID", label=pattern_id, component=self.name
)
)
for m_label in self._match_label_id_map:
if self._match_label_id_map[m_label]["id"] == pattern_id:
m_label_str = self.nlp.vocab.strings.as_string(m_label)
if m_label_str in self.phrase_matcher:
self.phrase_matcher.remove(m_label_str)
if m_label_str in self.matcher:
self.matcher.remove(m_label_str)
def _require_patterns(self) -> None:
"""Raise a warning if this component has no patterns defined."""
if len(self) == 0:
warnings.warn(Warnings.W036.format(name=self.name))
def from_bytes(
self, bytes_data: bytes, *, exclude: Iterable[str] = SimpleFrozenList()
) -> "SpanRuler":
"""Load the span ruler from a bytestring.
bytes_data (bytes): The bytestring to load.
RETURNS (SpanRuler): The loaded span ruler.
DOCS: https://spacy.io/api/spanruler#from_bytes
"""
self.clear()
deserializers = {
"patterns": lambda b: self.add_patterns(srsly.json_loads(b)),
}
util.from_bytes(bytes_data, deserializers, exclude)
return self
def to_bytes(self, *, exclude: Iterable[str] = SimpleFrozenList()) -> bytes:
"""Serialize the span ruler to a bytestring.
RETURNS (bytes): The serialized patterns.
DOCS: https://spacy.io/api/spanruler#to_bytes
"""
serializers = {
"patterns": lambda: srsly.json_dumps(self.patterns),
}
return util.to_bytes(serializers, exclude)
def from_disk(
self, path: Union[str, Path], *, exclude: Iterable[str] = SimpleFrozenList()
) -> "SpanRuler":
"""Load the span ruler from a directory.
path (Union[str, Path]): A path to a directory.
RETURNS (SpanRuler): The loaded span ruler.
DOCS: https://spacy.io/api/spanruler#from_disk
"""
self.clear()
path = ensure_path(path)
deserializers = {
"patterns": lambda p: self.add_patterns(srsly.read_jsonl(p)),
}
util.from_disk(path, deserializers, {})
return self
def to_disk(
self, path: Union[str, Path], *, exclude: Iterable[str] = SimpleFrozenList()
) -> None:
"""Save the span ruler patterns to a directory.
path (Union[str, Path]): A path to a directory.
DOCS: https://spacy.io/api/spanruler#to_disk
"""
path = ensure_path(path)
serializers = {
"patterns": lambda p: srsly.write_jsonl(p, self.patterns),
}
util.to_disk(path, serializers, {})

View File

@ -428,10 +428,19 @@ def test_span_string_label_kb_id(doc):
assert span.kb_id == doc.vocab.strings["Q342"] assert span.kb_id == doc.vocab.strings["Q342"]
def test_span_string_label_id(doc):
span = Span(doc, 0, 1, label="hello", span_id="Q342")
assert span.label_ == "hello"
assert span.label == doc.vocab.strings["hello"]
assert span.id_ == "Q342"
assert span.id == doc.vocab.strings["Q342"]
def test_span_attrs_writable(doc): def test_span_attrs_writable(doc):
span = Span(doc, 0, 1) span = Span(doc, 0, 1)
span.label_ = "label" span.label_ = "label"
span.kb_id_ = "kb_id" span.kb_id_ = "kb_id"
span.id_ = "id"
def test_span_ents_property(doc): def test_span_ents_property(doc):
@ -619,6 +628,9 @@ def test_span_comparison(doc):
assert Span(doc, 0, 4, "LABEL", kb_id="KB_ID") <= Span(doc, 1, 3) assert Span(doc, 0, 4, "LABEL", kb_id="KB_ID") <= Span(doc, 1, 3)
assert Span(doc, 1, 3) > Span(doc, 0, 4, "LABEL", kb_id="KB_ID") assert Span(doc, 1, 3) > Span(doc, 0, 4, "LABEL", kb_id="KB_ID")
assert Span(doc, 1, 3) >= Span(doc, 0, 4, "LABEL", kb_id="KB_ID") assert Span(doc, 1, 3) >= Span(doc, 0, 4, "LABEL", kb_id="KB_ID")
# Different id
assert Span(doc, 1, 3, span_id="AAA") < Span(doc, 1, 3, span_id="BBB")
# fmt: on # fmt: on

View File

@ -5,12 +5,15 @@ from spacy.tokens import Doc, Span
from spacy.language import Language from spacy.language import Language
from spacy.lang.en import English from spacy.lang.en import English
from spacy.pipeline import EntityRuler, EntityRecognizer, merge_entities from spacy.pipeline import EntityRuler, EntityRecognizer, merge_entities
from spacy.pipeline import SpanRuler
from spacy.pipeline.ner import DEFAULT_NER_MODEL from spacy.pipeline.ner import DEFAULT_NER_MODEL
from spacy.errors import MatchPatternError from spacy.errors import MatchPatternError
from spacy.tests.util import make_tempdir from spacy.tests.util import make_tempdir
from thinc.api import NumpyOps, get_current_ops from thinc.api import NumpyOps, get_current_ops
ENTITY_RULERS = ["entity_ruler", "future_entity_ruler"]
@pytest.fixture @pytest.fixture
def nlp(): def nlp():
@ -37,12 +40,14 @@ def add_ent_component(doc):
@pytest.mark.issue(3345) @pytest.mark.issue(3345)
def test_issue3345(): @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
def test_issue3345(entity_ruler_factory):
"""Test case where preset entity crosses sentence boundary.""" """Test case where preset entity crosses sentence boundary."""
nlp = English() nlp = English()
doc = Doc(nlp.vocab, words=["I", "live", "in", "New", "York"]) doc = Doc(nlp.vocab, words=["I", "live", "in", "New", "York"])
doc[4].is_sent_start = True doc[4].is_sent_start = True
ruler = EntityRuler(nlp, patterns=[{"label": "GPE", "pattern": "New York"}]) ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
ruler.add_patterns([{"label": "GPE", "pattern": "New York"}])
cfg = {"model": DEFAULT_NER_MODEL} cfg = {"model": DEFAULT_NER_MODEL}
model = registry.resolve(cfg, validate=True)["model"] model = registry.resolve(cfg, validate=True)["model"]
ner = EntityRecognizer(doc.vocab, model) ner = EntityRecognizer(doc.vocab, model)
@ -60,13 +65,18 @@ def test_issue3345():
@pytest.mark.issue(4849) @pytest.mark.issue(4849)
def test_issue4849(): @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
def test_issue4849(entity_ruler_factory):
nlp = English() nlp = English()
patterns = [ patterns = [
{"label": "PERSON", "pattern": "joe biden", "id": "joe-biden"}, {"label": "PERSON", "pattern": "joe biden", "id": "joe-biden"},
{"label": "PERSON", "pattern": "bernie sanders", "id": "bernie-sanders"}, {"label": "PERSON", "pattern": "bernie sanders", "id": "bernie-sanders"},
] ]
ruler = nlp.add_pipe("entity_ruler", config={"phrase_matcher_attr": "LOWER"}) ruler = nlp.add_pipe(
entity_ruler_factory,
name="entity_ruler",
config={"phrase_matcher_attr": "LOWER"},
)
ruler.add_patterns(patterns) ruler.add_patterns(patterns)
text = """ text = """
The left is starting to take aim at Democratic front-runner Joe Biden. The left is starting to take aim at Democratic front-runner Joe Biden.
@ -86,10 +96,11 @@ def test_issue4849():
@pytest.mark.issue(5918) @pytest.mark.issue(5918)
def test_issue5918(): @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
def test_issue5918(entity_ruler_factory):
# Test edge case when merging entities. # Test edge case when merging entities.
nlp = English() nlp = English()
ruler = nlp.add_pipe("entity_ruler") ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
patterns = [ patterns = [
{"label": "ORG", "pattern": "Digicon Inc"}, {"label": "ORG", "pattern": "Digicon Inc"},
{"label": "ORG", "pattern": "Rotan Mosle Inc's"}, {"label": "ORG", "pattern": "Rotan Mosle Inc's"},
@ -114,9 +125,10 @@ def test_issue5918():
@pytest.mark.issue(8168) @pytest.mark.issue(8168)
def test_issue8168(): @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
def test_issue8168(entity_ruler_factory):
nlp = English() nlp = English()
ruler = nlp.add_pipe("entity_ruler") ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
patterns = [ patterns = [
{"label": "ORG", "pattern": "Apple"}, {"label": "ORG", "pattern": "Apple"},
{ {
@ -131,14 +143,17 @@ def test_issue8168():
}, },
] ]
ruler.add_patterns(patterns) ruler.add_patterns(patterns)
doc = nlp("San Francisco San Fran")
assert ruler._ent_ids == {8043148519967183733: ("GPE", "san-francisco")} assert all(t.ent_id_ == "san-francisco" for t in doc)
@pytest.mark.issue(8216) @pytest.mark.issue(8216)
def test_entity_ruler_fix8216(nlp, patterns): @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
def test_entity_ruler_fix8216(nlp, patterns, entity_ruler_factory):
"""Test that patterns don't get added excessively.""" """Test that patterns don't get added excessively."""
ruler = nlp.add_pipe("entity_ruler", config={"validate": True}) ruler = nlp.add_pipe(
entity_ruler_factory, name="entity_ruler", config={"validate": True}
)
ruler.add_patterns(patterns) ruler.add_patterns(patterns)
pattern_count = sum(len(mm) for mm in ruler.matcher._patterns.values()) pattern_count = sum(len(mm) for mm in ruler.matcher._patterns.values())
assert pattern_count > 0 assert pattern_count > 0
@ -147,13 +162,16 @@ def test_entity_ruler_fix8216(nlp, patterns):
assert after_count == pattern_count assert after_count == pattern_count
def test_entity_ruler_init(nlp, patterns): @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
ruler = EntityRuler(nlp, patterns=patterns) def test_entity_ruler_init(nlp, patterns, entity_ruler_factory):
ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
ruler.add_patterns(patterns)
assert len(ruler) == len(patterns) assert len(ruler) == len(patterns)
assert len(ruler.labels) == 4 assert len(ruler.labels) == 4
assert "HELLO" in ruler assert "HELLO" in ruler
assert "BYE" in ruler assert "BYE" in ruler
ruler = nlp.add_pipe("entity_ruler") nlp.remove_pipe("entity_ruler")
ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
ruler.add_patterns(patterns) ruler.add_patterns(patterns)
doc = nlp("hello world bye bye") doc = nlp("hello world bye bye")
assert len(doc.ents) == 2 assert len(doc.ents) == 2
@ -161,20 +179,23 @@ def test_entity_ruler_init(nlp, patterns):
assert doc.ents[1].label_ == "BYE" assert doc.ents[1].label_ == "BYE"
def test_entity_ruler_no_patterns_warns(nlp): @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
ruler = EntityRuler(nlp) def test_entity_ruler_no_patterns_warns(nlp, entity_ruler_factory):
ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
assert len(ruler) == 0 assert len(ruler) == 0
assert len(ruler.labels) == 0 assert len(ruler.labels) == 0
nlp.add_pipe("entity_ruler") nlp.remove_pipe("entity_ruler")
nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
assert nlp.pipe_names == ["entity_ruler"] assert nlp.pipe_names == ["entity_ruler"]
with pytest.warns(UserWarning): with pytest.warns(UserWarning):
doc = nlp("hello world bye bye") doc = nlp("hello world bye bye")
assert len(doc.ents) == 0 assert len(doc.ents) == 0
def test_entity_ruler_init_patterns(nlp, patterns): @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
def test_entity_ruler_init_patterns(nlp, patterns, entity_ruler_factory):
# initialize with patterns # initialize with patterns
ruler = nlp.add_pipe("entity_ruler") ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
assert len(ruler.labels) == 0 assert len(ruler.labels) == 0
ruler.initialize(lambda: [], patterns=patterns) ruler.initialize(lambda: [], patterns=patterns)
assert len(ruler.labels) == 4 assert len(ruler.labels) == 4
@ -186,7 +207,7 @@ def test_entity_ruler_init_patterns(nlp, patterns):
nlp.config["initialize"]["components"]["entity_ruler"] = { nlp.config["initialize"]["components"]["entity_ruler"] = {
"patterns": {"@misc": "entity_ruler_patterns"} "patterns": {"@misc": "entity_ruler_patterns"}
} }
ruler = nlp.add_pipe("entity_ruler") ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
assert len(ruler.labels) == 0 assert len(ruler.labels) == 0
nlp.initialize() nlp.initialize()
assert len(ruler.labels) == 4 assert len(ruler.labels) == 4
@ -195,18 +216,20 @@ def test_entity_ruler_init_patterns(nlp, patterns):
assert doc.ents[1].label_ == "BYE" assert doc.ents[1].label_ == "BYE"
def test_entity_ruler_init_clear(nlp, patterns): @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
def test_entity_ruler_init_clear(nlp, patterns, entity_ruler_factory):
"""Test that initialization clears patterns.""" """Test that initialization clears patterns."""
ruler = nlp.add_pipe("entity_ruler") ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
ruler.add_patterns(patterns) ruler.add_patterns(patterns)
assert len(ruler.labels) == 4 assert len(ruler.labels) == 4
ruler.initialize(lambda: []) ruler.initialize(lambda: [])
assert len(ruler.labels) == 0 assert len(ruler.labels) == 0
def test_entity_ruler_clear(nlp, patterns): @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
def test_entity_ruler_clear(nlp, patterns, entity_ruler_factory):
"""Test that initialization clears patterns.""" """Test that initialization clears patterns."""
ruler = nlp.add_pipe("entity_ruler") ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
ruler.add_patterns(patterns) ruler.add_patterns(patterns)
assert len(ruler.labels) == 4 assert len(ruler.labels) == 4
doc = nlp("hello world") doc = nlp("hello world")
@ -218,8 +241,9 @@ def test_entity_ruler_clear(nlp, patterns):
assert len(doc.ents) == 0 assert len(doc.ents) == 0
def test_entity_ruler_existing(nlp, patterns): @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
ruler = nlp.add_pipe("entity_ruler") def test_entity_ruler_existing(nlp, patterns, entity_ruler_factory):
ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
ruler.add_patterns(patterns) ruler.add_patterns(patterns)
nlp.add_pipe("add_ent", before="entity_ruler") nlp.add_pipe("add_ent", before="entity_ruler")
doc = nlp("OH HELLO WORLD bye bye") doc = nlp("OH HELLO WORLD bye bye")
@ -228,8 +252,11 @@ def test_entity_ruler_existing(nlp, patterns):
assert doc.ents[1].label_ == "BYE" assert doc.ents[1].label_ == "BYE"
def test_entity_ruler_existing_overwrite(nlp, patterns): @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
ruler = nlp.add_pipe("entity_ruler", config={"overwrite_ents": True}) def test_entity_ruler_existing_overwrite(nlp, patterns, entity_ruler_factory):
ruler = nlp.add_pipe(
entity_ruler_factory, name="entity_ruler", config={"overwrite_ents": True}
)
ruler.add_patterns(patterns) ruler.add_patterns(patterns)
nlp.add_pipe("add_ent", before="entity_ruler") nlp.add_pipe("add_ent", before="entity_ruler")
doc = nlp("OH HELLO WORLD bye bye") doc = nlp("OH HELLO WORLD bye bye")
@ -239,8 +266,11 @@ def test_entity_ruler_existing_overwrite(nlp, patterns):
assert doc.ents[1].label_ == "BYE" assert doc.ents[1].label_ == "BYE"
def test_entity_ruler_existing_complex(nlp, patterns): @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
ruler = nlp.add_pipe("entity_ruler", config={"overwrite_ents": True}) def test_entity_ruler_existing_complex(nlp, patterns, entity_ruler_factory):
ruler = nlp.add_pipe(
entity_ruler_factory, name="entity_ruler", config={"overwrite_ents": True}
)
ruler.add_patterns(patterns) ruler.add_patterns(patterns)
nlp.add_pipe("add_ent", before="entity_ruler") nlp.add_pipe("add_ent", before="entity_ruler")
doc = nlp("foo foo bye bye") doc = nlp("foo foo bye bye")
@ -251,8 +281,11 @@ def test_entity_ruler_existing_complex(nlp, patterns):
assert len(doc.ents[1]) == 2 assert len(doc.ents[1]) == 2
def test_entity_ruler_entity_id(nlp, patterns): @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
ruler = nlp.add_pipe("entity_ruler", config={"overwrite_ents": True}) def test_entity_ruler_entity_id(nlp, patterns, entity_ruler_factory):
ruler = nlp.add_pipe(
entity_ruler_factory, name="entity_ruler", config={"overwrite_ents": True}
)
ruler.add_patterns(patterns) ruler.add_patterns(patterns)
doc = nlp("Apple is a technology company") doc = nlp("Apple is a technology company")
assert len(doc.ents) == 1 assert len(doc.ents) == 1
@ -260,18 +293,21 @@ def test_entity_ruler_entity_id(nlp, patterns):
assert doc.ents[0].ent_id_ == "a1" assert doc.ents[0].ent_id_ == "a1"
def test_entity_ruler_cfg_ent_id_sep(nlp, patterns): @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
def test_entity_ruler_cfg_ent_id_sep(nlp, patterns, entity_ruler_factory):
config = {"overwrite_ents": True, "ent_id_sep": "**"} config = {"overwrite_ents": True, "ent_id_sep": "**"}
ruler = nlp.add_pipe("entity_ruler", config=config) ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler", config=config)
ruler.add_patterns(patterns) ruler.add_patterns(patterns)
assert "TECH_ORG**a1" in ruler.phrase_patterns
doc = nlp("Apple is a technology company") doc = nlp("Apple is a technology company")
if isinstance(ruler, EntityRuler):
assert "TECH_ORG**a1" in ruler.phrase_patterns
assert len(doc.ents) == 1 assert len(doc.ents) == 1
assert doc.ents[0].label_ == "TECH_ORG" assert doc.ents[0].label_ == "TECH_ORG"
assert doc.ents[0].ent_id_ == "a1" assert doc.ents[0].ent_id_ == "a1"
def test_entity_ruler_serialize_bytes(nlp, patterns): @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
def test_entity_ruler_serialize_bytes(nlp, patterns, entity_ruler_factory):
ruler = EntityRuler(nlp, patterns=patterns) ruler = EntityRuler(nlp, patterns=patterns)
assert len(ruler) == len(patterns) assert len(ruler) == len(patterns)
assert len(ruler.labels) == 4 assert len(ruler.labels) == 4
@ -288,7 +324,10 @@ def test_entity_ruler_serialize_bytes(nlp, patterns):
assert sorted(new_ruler.labels) == sorted(ruler.labels) assert sorted(new_ruler.labels) == sorted(ruler.labels)
def test_entity_ruler_serialize_phrase_matcher_attr_bytes(nlp, patterns): @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
def test_entity_ruler_serialize_phrase_matcher_attr_bytes(
nlp, patterns, entity_ruler_factory
):
ruler = EntityRuler(nlp, phrase_matcher_attr="LOWER", patterns=patterns) ruler = EntityRuler(nlp, phrase_matcher_attr="LOWER", patterns=patterns)
assert len(ruler) == len(patterns) assert len(ruler) == len(patterns)
assert len(ruler.labels) == 4 assert len(ruler.labels) == 4
@ -303,8 +342,9 @@ def test_entity_ruler_serialize_phrase_matcher_attr_bytes(nlp, patterns):
assert new_ruler.phrase_matcher_attr == "LOWER" assert new_ruler.phrase_matcher_attr == "LOWER"
def test_entity_ruler_validate(nlp): @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
ruler = EntityRuler(nlp) def test_entity_ruler_validate(nlp, entity_ruler_factory):
ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
validated_ruler = EntityRuler(nlp, validate=True) validated_ruler = EntityRuler(nlp, validate=True)
valid_pattern = {"label": "HELLO", "pattern": [{"LOWER": "HELLO"}]} valid_pattern = {"label": "HELLO", "pattern": [{"LOWER": "HELLO"}]}
@ -322,32 +362,35 @@ def test_entity_ruler_validate(nlp):
validated_ruler.add_patterns([invalid_pattern]) validated_ruler.add_patterns([invalid_pattern])
def test_entity_ruler_properties(nlp, patterns): @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
def test_entity_ruler_properties(nlp, patterns, entity_ruler_factory):
ruler = EntityRuler(nlp, patterns=patterns, overwrite_ents=True) ruler = EntityRuler(nlp, patterns=patterns, overwrite_ents=True)
assert sorted(ruler.labels) == sorted(["HELLO", "BYE", "COMPLEX", "TECH_ORG"]) assert sorted(ruler.labels) == sorted(["HELLO", "BYE", "COMPLEX", "TECH_ORG"])
assert sorted(ruler.ent_ids) == ["a1", "a2"] assert sorted(ruler.ent_ids) == ["a1", "a2"]
def test_entity_ruler_overlapping_spans(nlp): @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
ruler = EntityRuler(nlp) def test_entity_ruler_overlapping_spans(nlp, entity_ruler_factory):
ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
patterns = [ patterns = [
{"label": "FOOBAR", "pattern": "foo bar"}, {"label": "FOOBAR", "pattern": "foo bar"},
{"label": "BARBAZ", "pattern": "bar baz"}, {"label": "BARBAZ", "pattern": "bar baz"},
] ]
ruler.add_patterns(patterns) ruler.add_patterns(patterns)
doc = ruler(nlp.make_doc("foo bar baz")) doc = nlp("foo bar baz")
assert len(doc.ents) == 1 assert len(doc.ents) == 1
assert doc.ents[0].label_ == "FOOBAR" assert doc.ents[0].label_ == "FOOBAR"
@pytest.mark.parametrize("n_process", [1, 2]) @pytest.mark.parametrize("n_process", [1, 2])
def test_entity_ruler_multiprocessing(nlp, n_process): @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
def test_entity_ruler_multiprocessing(nlp, n_process, entity_ruler_factory):
if isinstance(get_current_ops, NumpyOps) or n_process < 2: if isinstance(get_current_ops, NumpyOps) or n_process < 2:
texts = ["I enjoy eating Pizza Hut pizza."] texts = ["I enjoy eating Pizza Hut pizza."]
patterns = [{"label": "FASTFOOD", "pattern": "Pizza Hut", "id": "1234"}] patterns = [{"label": "FASTFOOD", "pattern": "Pizza Hut", "id": "1234"}]
ruler = nlp.add_pipe("entity_ruler") ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
ruler.add_patterns(patterns) ruler.add_patterns(patterns)
for doc in nlp.pipe(texts, n_process=2): for doc in nlp.pipe(texts, n_process=2):
@ -355,8 +398,9 @@ def test_entity_ruler_multiprocessing(nlp, n_process):
assert ent.ent_id_ == "1234" assert ent.ent_id_ == "1234"
def test_entity_ruler_serialize_jsonl(nlp, patterns): @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
ruler = nlp.add_pipe("entity_ruler") def test_entity_ruler_serialize_jsonl(nlp, patterns, entity_ruler_factory):
ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
ruler.add_patterns(patterns) ruler.add_patterns(patterns)
with make_tempdir() as d: with make_tempdir() as d:
ruler.to_disk(d / "test_ruler.jsonl") ruler.to_disk(d / "test_ruler.jsonl")
@ -365,8 +409,9 @@ def test_entity_ruler_serialize_jsonl(nlp, patterns):
ruler.from_disk(d / "non_existing.jsonl") # read from a bad jsonl file ruler.from_disk(d / "non_existing.jsonl") # read from a bad jsonl file
def test_entity_ruler_serialize_dir(nlp, patterns): @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
ruler = nlp.add_pipe("entity_ruler") def test_entity_ruler_serialize_dir(nlp, patterns, entity_ruler_factory):
ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
ruler.add_patterns(patterns) ruler.add_patterns(patterns)
with make_tempdir() as d: with make_tempdir() as d:
ruler.to_disk(d / "test_ruler") ruler.to_disk(d / "test_ruler")
@ -375,52 +420,65 @@ def test_entity_ruler_serialize_dir(nlp, patterns):
ruler.from_disk(d / "non_existing_dir") # read from a bad directory ruler.from_disk(d / "non_existing_dir") # read from a bad directory
def test_entity_ruler_remove_basic(nlp): @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
ruler = EntityRuler(nlp) def test_entity_ruler_remove_basic(nlp, entity_ruler_factory):
ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
patterns = [ patterns = [
{"label": "PERSON", "pattern": "Duygu", "id": "duygu"}, {"label": "PERSON", "pattern": "Dina", "id": "dina"},
{"label": "ORG", "pattern": "ACME", "id": "acme"}, {"label": "ORG", "pattern": "ACME", "id": "acme"},
{"label": "ORG", "pattern": "ACM"}, {"label": "ORG", "pattern": "ACM"},
] ]
ruler.add_patterns(patterns) ruler.add_patterns(patterns)
doc = ruler(nlp.make_doc("Duygu went to school")) doc = nlp("Dina went to school")
assert len(ruler.patterns) == 3 assert len(ruler.patterns) == 3
assert len(doc.ents) == 1 assert len(doc.ents) == 1
if isinstance(ruler, EntityRuler):
assert "PERSON||dina" in ruler.phrase_matcher
assert doc.ents[0].label_ == "PERSON" assert doc.ents[0].label_ == "PERSON"
assert doc.ents[0].text == "Duygu" assert doc.ents[0].text == "Dina"
assert "PERSON||duygu" in ruler.phrase_matcher if isinstance(ruler, EntityRuler):
ruler.remove("duygu") ruler.remove("dina")
doc = ruler(nlp.make_doc("Duygu went to school")) else:
ruler.remove_by_id("dina")
doc = nlp("Dina went to school")
assert len(doc.ents) == 0 assert len(doc.ents) == 0
assert "PERSON||duygu" not in ruler.phrase_matcher if isinstance(ruler, EntityRuler):
assert "PERSON||dina" not in ruler.phrase_matcher
assert len(ruler.patterns) == 2 assert len(ruler.patterns) == 2
def test_entity_ruler_remove_same_id_multiple_patterns(nlp): @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
ruler = EntityRuler(nlp) def test_entity_ruler_remove_same_id_multiple_patterns(nlp, entity_ruler_factory):
ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
patterns = [ patterns = [
{"label": "PERSON", "pattern": "Duygu", "id": "duygu"}, {"label": "PERSON", "pattern": "Dina", "id": "dina"},
{"label": "ORG", "pattern": "DuyguCorp", "id": "duygu"}, {"label": "ORG", "pattern": "DinaCorp", "id": "dina"},
{"label": "ORG", "pattern": "ACME", "id": "acme"}, {"label": "ORG", "pattern": "ACME", "id": "acme"},
] ]
ruler.add_patterns(patterns) ruler.add_patterns(patterns)
doc = ruler(nlp.make_doc("Duygu founded DuyguCorp and ACME.")) doc = nlp("Dina founded DinaCorp and ACME.")
assert len(ruler.patterns) == 3 assert len(ruler.patterns) == 3
assert "PERSON||duygu" in ruler.phrase_matcher if isinstance(ruler, EntityRuler):
assert "ORG||duygu" in ruler.phrase_matcher assert "PERSON||dina" in ruler.phrase_matcher
assert "ORG||dina" in ruler.phrase_matcher
assert len(doc.ents) == 3 assert len(doc.ents) == 3
ruler.remove("duygu") if isinstance(ruler, EntityRuler):
doc = ruler(nlp.make_doc("Duygu founded DuyguCorp and ACME.")) ruler.remove("dina")
else:
ruler.remove_by_id("dina")
doc = nlp("Dina founded DinaCorp and ACME.")
assert len(ruler.patterns) == 1 assert len(ruler.patterns) == 1
assert "PERSON||duygu" not in ruler.phrase_matcher if isinstance(ruler, EntityRuler):
assert "ORG||duygu" not in ruler.phrase_matcher assert "PERSON||dina" not in ruler.phrase_matcher
assert "ORG||dina" not in ruler.phrase_matcher
assert len(doc.ents) == 1 assert len(doc.ents) == 1
def test_entity_ruler_remove_nonexisting_pattern(nlp): @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
ruler = EntityRuler(nlp) def test_entity_ruler_remove_nonexisting_pattern(nlp, entity_ruler_factory):
ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
patterns = [ patterns = [
{"label": "PERSON", "pattern": "Duygu", "id": "duygu"}, {"label": "PERSON", "pattern": "Dina", "id": "dina"},
{"label": "ORG", "pattern": "ACME", "id": "acme"}, {"label": "ORG", "pattern": "ACME", "id": "acme"},
{"label": "ORG", "pattern": "ACM"}, {"label": "ORG", "pattern": "ACM"},
] ]
@ -428,82 +486,109 @@ def test_entity_ruler_remove_nonexisting_pattern(nlp):
assert len(ruler.patterns) == 3 assert len(ruler.patterns) == 3
with pytest.raises(ValueError): with pytest.raises(ValueError):
ruler.remove("nepattern") ruler.remove("nepattern")
assert len(ruler.patterns) == 3 if isinstance(ruler, SpanRuler):
with pytest.raises(ValueError):
ruler.remove_by_id("nepattern")
def test_entity_ruler_remove_several_patterns(nlp):
ruler = EntityRuler(nlp) @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
def test_entity_ruler_remove_several_patterns(nlp, entity_ruler_factory):
ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
patterns = [ patterns = [
{"label": "PERSON", "pattern": "Duygu", "id": "duygu"}, {"label": "PERSON", "pattern": "Dina", "id": "dina"},
{"label": "ORG", "pattern": "ACME", "id": "acme"}, {"label": "ORG", "pattern": "ACME", "id": "acme"},
{"label": "ORG", "pattern": "ACM"}, {"label": "ORG", "pattern": "ACM"},
] ]
ruler.add_patterns(patterns) ruler.add_patterns(patterns)
doc = ruler(nlp.make_doc("Duygu founded her company ACME.")) doc = nlp("Dina founded her company ACME.")
assert len(ruler.patterns) == 3 assert len(ruler.patterns) == 3
assert len(doc.ents) == 2 assert len(doc.ents) == 2
assert doc.ents[0].label_ == "PERSON" assert doc.ents[0].label_ == "PERSON"
assert doc.ents[0].text == "Duygu" assert doc.ents[0].text == "Dina"
assert doc.ents[1].label_ == "ORG" assert doc.ents[1].label_ == "ORG"
assert doc.ents[1].text == "ACME" assert doc.ents[1].text == "ACME"
ruler.remove("duygu") if isinstance(ruler, EntityRuler):
doc = ruler(nlp.make_doc("Duygu founded her company ACME")) ruler.remove("dina")
else:
ruler.remove_by_id("dina")
doc = nlp("Dina founded her company ACME")
assert len(ruler.patterns) == 2 assert len(ruler.patterns) == 2
assert len(doc.ents) == 1 assert len(doc.ents) == 1
assert doc.ents[0].label_ == "ORG" assert doc.ents[0].label_ == "ORG"
assert doc.ents[0].text == "ACME" assert doc.ents[0].text == "ACME"
ruler.remove("acme") if isinstance(ruler, EntityRuler):
doc = ruler(nlp.make_doc("Duygu founded her company ACME")) ruler.remove("acme")
else:
ruler.remove_by_id("acme")
doc = nlp("Dina founded her company ACME")
assert len(ruler.patterns) == 1 assert len(ruler.patterns) == 1
assert len(doc.ents) == 0 assert len(doc.ents) == 0
def test_entity_ruler_remove_patterns_in_a_row(nlp): @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
ruler = EntityRuler(nlp) def test_entity_ruler_remove_patterns_in_a_row(nlp, entity_ruler_factory):
ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
patterns = [ patterns = [
{"label": "PERSON", "pattern": "Duygu", "id": "duygu"}, {"label": "PERSON", "pattern": "Dina", "id": "dina"},
{"label": "ORG", "pattern": "ACME", "id": "acme"}, {"label": "ORG", "pattern": "ACME", "id": "acme"},
{"label": "DATE", "pattern": "her birthday", "id": "bday"}, {"label": "DATE", "pattern": "her birthday", "id": "bday"},
{"label": "ORG", "pattern": "ACM"}, {"label": "ORG", "pattern": "ACM"},
] ]
ruler.add_patterns(patterns) ruler.add_patterns(patterns)
doc = ruler(nlp.make_doc("Duygu founded her company ACME on her birthday")) doc = nlp("Dina founded her company ACME on her birthday")
assert len(doc.ents) == 3 assert len(doc.ents) == 3
assert doc.ents[0].label_ == "PERSON" assert doc.ents[0].label_ == "PERSON"
assert doc.ents[0].text == "Duygu" assert doc.ents[0].text == "Dina"
assert doc.ents[1].label_ == "ORG" assert doc.ents[1].label_ == "ORG"
assert doc.ents[1].text == "ACME" assert doc.ents[1].text == "ACME"
assert doc.ents[2].label_ == "DATE" assert doc.ents[2].label_ == "DATE"
assert doc.ents[2].text == "her birthday" assert doc.ents[2].text == "her birthday"
ruler.remove("duygu") if isinstance(ruler, EntityRuler):
ruler.remove("acme") ruler.remove("dina")
ruler.remove("bday") ruler.remove("acme")
doc = ruler(nlp.make_doc("Duygu went to school")) ruler.remove("bday")
else:
ruler.remove_by_id("dina")
ruler.remove_by_id("acme")
ruler.remove_by_id("bday")
doc = nlp("Dina went to school")
assert len(doc.ents) == 0 assert len(doc.ents) == 0
def test_entity_ruler_remove_all_patterns(nlp): @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
ruler = EntityRuler(nlp) def test_entity_ruler_remove_all_patterns(nlp, entity_ruler_factory):
ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
patterns = [ patterns = [
{"label": "PERSON", "pattern": "Duygu", "id": "duygu"}, {"label": "PERSON", "pattern": "Dina", "id": "dina"},
{"label": "ORG", "pattern": "ACME", "id": "acme"}, {"label": "ORG", "pattern": "ACME", "id": "acme"},
{"label": "DATE", "pattern": "her birthday", "id": "bday"}, {"label": "DATE", "pattern": "her birthday", "id": "bday"},
] ]
ruler.add_patterns(patterns) ruler.add_patterns(patterns)
assert len(ruler.patterns) == 3 assert len(ruler.patterns) == 3
ruler.remove("duygu") if isinstance(ruler, EntityRuler):
ruler.remove("dina")
else:
ruler.remove_by_id("dina")
assert len(ruler.patterns) == 2 assert len(ruler.patterns) == 2
ruler.remove("acme") if isinstance(ruler, EntityRuler):
ruler.remove("acme")
else:
ruler.remove_by_id("acme")
assert len(ruler.patterns) == 1 assert len(ruler.patterns) == 1
ruler.remove("bday") if isinstance(ruler, EntityRuler):
ruler.remove("bday")
else:
ruler.remove_by_id("bday")
assert len(ruler.patterns) == 0 assert len(ruler.patterns) == 0
with pytest.warns(UserWarning): with pytest.warns(UserWarning):
doc = ruler(nlp.make_doc("Duygu founded her company ACME on her birthday")) doc = nlp("Dina founded her company ACME on her birthday")
assert len(doc.ents) == 0 assert len(doc.ents) == 0
def test_entity_ruler_remove_and_add(nlp): @pytest.mark.parametrize("entity_ruler_factory", ENTITY_RULERS)
ruler = EntityRuler(nlp) def test_entity_ruler_remove_and_add(nlp, entity_ruler_factory):
ruler = nlp.add_pipe(entity_ruler_factory, name="entity_ruler")
patterns = [{"label": "DATE", "pattern": "last time"}] patterns = [{"label": "DATE", "pattern": "last time"}]
ruler.add_patterns(patterns) ruler.add_patterns(patterns)
doc = ruler( doc = ruler(
@ -524,7 +609,10 @@ def test_entity_ruler_remove_and_add(nlp):
assert doc.ents[0].text == "last time" assert doc.ents[0].text == "last time"
assert doc.ents[1].label_ == "DATE" assert doc.ents[1].label_ == "DATE"
assert doc.ents[1].text == "this time" assert doc.ents[1].text == "this time"
ruler.remove("ttime") if isinstance(ruler, EntityRuler):
ruler.remove("ttime")
else:
ruler.remove_by_id("ttime")
doc = ruler( doc = ruler(
nlp.make_doc("I saw him last time we met, this time he brought some flowers") nlp.make_doc("I saw him last time we met, this time he brought some flowers")
) )
@ -547,7 +635,10 @@ def test_entity_ruler_remove_and_add(nlp):
) )
assert len(ruler.patterns) == 3 assert len(ruler.patterns) == 3
assert len(doc.ents) == 3 assert len(doc.ents) == 3
ruler.remove("ttime") if isinstance(ruler, EntityRuler):
ruler.remove("ttime")
else:
ruler.remove_by_id("ttime")
doc = ruler( doc = ruler(
nlp.make_doc( nlp.make_doc(
"I saw him last time we met, this time he brought some flowers, another time some chocolate." "I saw him last time we met, this time he brought some flowers, another time some chocolate."

View File

@ -0,0 +1,465 @@
import pytest
import spacy
from spacy import registry
from spacy.errors import MatchPatternError
from spacy.tokens import Span
from spacy.training import Example
from spacy.tests.util import make_tempdir
from thinc.api import NumpyOps, get_current_ops
@pytest.fixture
@registry.misc("span_ruler_patterns")
def patterns():
return [
{"label": "HELLO", "pattern": "hello world", "id": "hello1"},
{"label": "BYE", "pattern": [{"LOWER": "bye"}, {"LOWER": "bye"}]},
{"label": "HELLO", "pattern": [{"ORTH": "HELLO"}], "id": "hello2"},
{"label": "COMPLEX", "pattern": [{"ORTH": "foo", "OP": "*"}]},
{"label": "TECH_ORG", "pattern": "Apple"},
{"label": "TECH_ORG", "pattern": "Microsoft"},
]
@pytest.fixture
def overlapping_patterns():
return [
{"label": "FOOBAR", "pattern": "foo bar"},
{"label": "BARBAZ", "pattern": "bar baz"},
]
@pytest.fixture
def person_org_patterns():
return [
{"label": "PERSON", "pattern": "Dina"},
{"label": "ORG", "pattern": "ACME"},
{"label": "ORG", "pattern": "ACM"},
]
@pytest.fixture
def person_org_date_patterns(person_org_patterns):
return person_org_patterns + [{"label": "DATE", "pattern": "June 14th"}]
def test_span_ruler_add_empty(patterns):
"""Test that patterns don't get added excessively."""
nlp = spacy.blank("xx")
ruler = nlp.add_pipe("span_ruler", config={"validate": True})
ruler.add_patterns(patterns)
pattern_count = sum(len(mm) for mm in ruler.matcher._patterns.values())
assert pattern_count > 0
ruler.add_patterns([])
after_count = sum(len(mm) for mm in ruler.matcher._patterns.values())
assert after_count == pattern_count
def test_span_ruler_init(patterns):
nlp = spacy.blank("xx")
ruler = nlp.add_pipe("span_ruler")
ruler.add_patterns(patterns)
assert len(ruler) == len(patterns)
assert len(ruler.labels) == 4
assert "HELLO" in ruler
assert "BYE" in ruler
doc = nlp("hello world bye bye")
assert len(doc.spans["ruler"]) == 2
assert doc.spans["ruler"][0].label_ == "HELLO"
assert doc.spans["ruler"][0].id_ == "hello1"
assert doc.spans["ruler"][1].label_ == "BYE"
assert doc.spans["ruler"][1].id_ == ""
def test_span_ruler_no_patterns_warns():
nlp = spacy.blank("xx")
ruler = nlp.add_pipe("span_ruler")
assert len(ruler) == 0
assert len(ruler.labels) == 0
assert nlp.pipe_names == ["span_ruler"]
with pytest.warns(UserWarning):
doc = nlp("hello world bye bye")
assert len(doc.spans["ruler"]) == 0
def test_span_ruler_init_patterns(patterns):
# initialize with patterns
nlp = spacy.blank("xx")
ruler = nlp.add_pipe("span_ruler")
assert len(ruler.labels) == 0
ruler.initialize(lambda: [], patterns=patterns)
assert len(ruler.labels) == 4
doc = nlp("hello world bye bye")
assert doc.spans["ruler"][0].label_ == "HELLO"
assert doc.spans["ruler"][1].label_ == "BYE"
nlp.remove_pipe("span_ruler")
# initialize with patterns from misc registry
nlp.config["initialize"]["components"]["span_ruler"] = {
"patterns": {"@misc": "span_ruler_patterns"}
}
ruler = nlp.add_pipe("span_ruler")
assert len(ruler.labels) == 0
nlp.initialize()
assert len(ruler.labels) == 4
doc = nlp("hello world bye bye")
assert doc.spans["ruler"][0].label_ == "HELLO"
assert doc.spans["ruler"][1].label_ == "BYE"
def test_span_ruler_init_clear(patterns):
"""Test that initialization clears patterns."""
nlp = spacy.blank("xx")
ruler = nlp.add_pipe("span_ruler")
ruler.add_patterns(patterns)
assert len(ruler.labels) == 4
ruler.initialize(lambda: [])
assert len(ruler.labels) == 0
def test_span_ruler_clear(patterns):
nlp = spacy.blank("xx")
ruler = nlp.add_pipe("span_ruler")
ruler.add_patterns(patterns)
assert len(ruler.labels) == 4
doc = nlp("hello world")
assert len(doc.spans["ruler"]) == 1
ruler.clear()
assert len(ruler.labels) == 0
with pytest.warns(UserWarning):
doc = nlp("hello world")
assert len(doc.spans["ruler"]) == 0
def test_span_ruler_existing(patterns):
nlp = spacy.blank("xx")
ruler = nlp.add_pipe("span_ruler", config={"overwrite": False})
ruler.add_patterns(patterns)
doc = nlp.make_doc("OH HELLO WORLD bye bye")
doc.spans["ruler"] = [doc[0:2]]
doc = nlp(doc)
assert len(doc.spans["ruler"]) == 3
assert doc.spans["ruler"][0] == doc[0:2]
assert doc.spans["ruler"][1].label_ == "HELLO"
assert doc.spans["ruler"][1].id_ == "hello2"
assert doc.spans["ruler"][2].label_ == "BYE"
assert doc.spans["ruler"][2].id_ == ""
def test_span_ruler_existing_overwrite(patterns):
nlp = spacy.blank("xx")
ruler = nlp.add_pipe("span_ruler", config={"overwrite": True})
ruler.add_patterns(patterns)
doc = nlp.make_doc("OH HELLO WORLD bye bye")
doc.spans["ruler"] = [doc[0:2]]
doc = nlp(doc)
assert len(doc.spans["ruler"]) == 2
assert doc.spans["ruler"][0].label_ == "HELLO"
assert doc.spans["ruler"][0].text == "HELLO"
assert doc.spans["ruler"][1].label_ == "BYE"
def test_span_ruler_serialize_bytes(patterns):
nlp = spacy.blank("xx")
ruler = nlp.add_pipe("span_ruler")
ruler.add_patterns(patterns)
assert len(ruler) == len(patterns)
assert len(ruler.labels) == 4
ruler_bytes = ruler.to_bytes()
new_nlp = spacy.blank("xx")
new_ruler = new_nlp.add_pipe("span_ruler")
assert len(new_ruler) == 0
assert len(new_ruler.labels) == 0
new_ruler = new_ruler.from_bytes(ruler_bytes)
assert len(new_ruler) == len(patterns)
assert len(new_ruler.labels) == 4
assert len(new_ruler.patterns) == len(ruler.patterns)
for pattern in ruler.patterns:
assert pattern in new_ruler.patterns
assert sorted(new_ruler.labels) == sorted(ruler.labels)
def test_span_ruler_validate():
nlp = spacy.blank("xx")
ruler = nlp.add_pipe("span_ruler")
validated_ruler = nlp.add_pipe(
"span_ruler", name="validated_span_ruler", config={"validate": True}
)
valid_pattern = {"label": "HELLO", "pattern": [{"LOWER": "HELLO"}]}
invalid_pattern = {"label": "HELLO", "pattern": [{"ASDF": "HELLO"}]}
# invalid pattern raises error without validate
with pytest.raises(ValueError):
ruler.add_patterns([invalid_pattern])
# valid pattern is added without errors with validate
validated_ruler.add_patterns([valid_pattern])
# invalid pattern raises error with validate
with pytest.raises(MatchPatternError):
validated_ruler.add_patterns([invalid_pattern])
def test_span_ruler_properties(patterns):
nlp = spacy.blank("xx")
ruler = nlp.add_pipe("span_ruler", config={"overwrite": True})
ruler.add_patterns(patterns)
assert sorted(ruler.labels) == sorted(set([p["label"] for p in patterns]))
def test_span_ruler_overlapping_spans(overlapping_patterns):
nlp = spacy.blank("xx")
ruler = nlp.add_pipe("span_ruler")
ruler.add_patterns(overlapping_patterns)
doc = ruler(nlp.make_doc("foo bar baz"))
assert len(doc.spans["ruler"]) == 2
assert doc.spans["ruler"][0].label_ == "FOOBAR"
assert doc.spans["ruler"][1].label_ == "BARBAZ"
def test_span_ruler_scorer(overlapping_patterns):
nlp = spacy.blank("xx")
ruler = nlp.add_pipe("span_ruler")
ruler.add_patterns(overlapping_patterns)
text = "foo bar baz"
pred_doc = ruler(nlp.make_doc(text))
assert len(pred_doc.spans["ruler"]) == 2
assert pred_doc.spans["ruler"][0].label_ == "FOOBAR"
assert pred_doc.spans["ruler"][1].label_ == "BARBAZ"
ref_doc = nlp.make_doc(text)
ref_doc.spans["ruler"] = [Span(ref_doc, 0, 2, label="FOOBAR")]
scores = nlp.evaluate([Example(pred_doc, ref_doc)])
assert scores["spans_ruler_p"] == 0.5
assert scores["spans_ruler_r"] == 1.0
@pytest.mark.parametrize("n_process", [1, 2])
def test_span_ruler_multiprocessing(n_process):
if isinstance(get_current_ops, NumpyOps) or n_process < 2:
texts = ["I enjoy eating Pizza Hut pizza."]
patterns = [{"label": "FASTFOOD", "pattern": "Pizza Hut"}]
nlp = spacy.blank("xx")
ruler = nlp.add_pipe("span_ruler")
ruler.add_patterns(patterns)
for doc in nlp.pipe(texts, n_process=2):
for ent in doc.spans["ruler"]:
assert ent.label_ == "FASTFOOD"
def test_span_ruler_serialize_dir(patterns):
nlp = spacy.blank("xx")
ruler = nlp.add_pipe("span_ruler")
ruler.add_patterns(patterns)
with make_tempdir() as d:
ruler.to_disk(d / "test_ruler")
ruler.from_disk(d / "test_ruler") # read from an existing directory
with pytest.raises(ValueError):
ruler.from_disk(d / "non_existing_dir") # read from a bad directory
def test_span_ruler_remove_basic(person_org_patterns):
nlp = spacy.blank("xx")
ruler = nlp.add_pipe("span_ruler")
ruler.add_patterns(person_org_patterns)
doc = ruler(nlp.make_doc("Dina went to school"))
assert len(ruler.patterns) == 3
assert len(doc.spans["ruler"]) == 1
assert doc.spans["ruler"][0].label_ == "PERSON"
assert doc.spans["ruler"][0].text == "Dina"
ruler.remove("PERSON")
doc = ruler(nlp.make_doc("Dina went to school"))
assert len(doc.spans["ruler"]) == 0
assert len(ruler.patterns) == 2
def test_span_ruler_remove_nonexisting_pattern(person_org_patterns):
nlp = spacy.blank("xx")
ruler = nlp.add_pipe("span_ruler")
ruler.add_patterns(person_org_patterns)
assert len(ruler.patterns) == 3
with pytest.raises(ValueError):
ruler.remove("NE")
with pytest.raises(ValueError):
ruler.remove_by_id("NE")
def test_span_ruler_remove_several_patterns(person_org_patterns):
nlp = spacy.blank("xx")
ruler = nlp.add_pipe("span_ruler")
ruler.add_patterns(person_org_patterns)
doc = ruler(nlp.make_doc("Dina founded the company ACME."))
assert len(ruler.patterns) == 3
assert len(doc.spans["ruler"]) == 2
assert doc.spans["ruler"][0].label_ == "PERSON"
assert doc.spans["ruler"][0].text == "Dina"
assert doc.spans["ruler"][1].label_ == "ORG"
assert doc.spans["ruler"][1].text == "ACME"
ruler.remove("PERSON")
doc = ruler(nlp.make_doc("Dina founded the company ACME"))
assert len(ruler.patterns) == 2
assert len(doc.spans["ruler"]) == 1
assert doc.spans["ruler"][0].label_ == "ORG"
assert doc.spans["ruler"][0].text == "ACME"
ruler.remove("ORG")
with pytest.warns(UserWarning):
doc = ruler(nlp.make_doc("Dina founded the company ACME"))
assert len(ruler.patterns) == 0
assert len(doc.spans["ruler"]) == 0
def test_span_ruler_remove_patterns_in_a_row(person_org_date_patterns):
nlp = spacy.blank("xx")
ruler = nlp.add_pipe("span_ruler")
ruler.add_patterns(person_org_date_patterns)
doc = ruler(nlp.make_doc("Dina founded the company ACME on June 14th"))
assert len(doc.spans["ruler"]) == 3
assert doc.spans["ruler"][0].label_ == "PERSON"
assert doc.spans["ruler"][0].text == "Dina"
assert doc.spans["ruler"][1].label_ == "ORG"
assert doc.spans["ruler"][1].text == "ACME"
assert doc.spans["ruler"][2].label_ == "DATE"
assert doc.spans["ruler"][2].text == "June 14th"
ruler.remove("ORG")
ruler.remove("DATE")
doc = ruler(nlp.make_doc("Dina went to school"))
assert len(doc.spans["ruler"]) == 1
def test_span_ruler_remove_all_patterns(person_org_date_patterns):
nlp = spacy.blank("xx")
ruler = nlp.add_pipe("span_ruler")
ruler.add_patterns(person_org_date_patterns)
assert len(ruler.patterns) == 4
ruler.remove("PERSON")
assert len(ruler.patterns) == 3
ruler.remove("ORG")
assert len(ruler.patterns) == 1
ruler.remove("DATE")
assert len(ruler.patterns) == 0
with pytest.warns(UserWarning):
doc = ruler(nlp.make_doc("Dina founded the company ACME on June 14th"))
assert len(doc.spans["ruler"]) == 0
def test_span_ruler_remove_and_add():
nlp = spacy.blank("xx")
ruler = nlp.add_pipe("span_ruler")
patterns1 = [{"label": "DATE1", "pattern": "last time"}]
ruler.add_patterns(patterns1)
doc = ruler(
nlp.make_doc("I saw him last time we met, this time he brought some flowers")
)
assert len(ruler.patterns) == 1
assert len(doc.spans["ruler"]) == 1
assert doc.spans["ruler"][0].label_ == "DATE1"
assert doc.spans["ruler"][0].text == "last time"
patterns2 = [{"label": "DATE2", "pattern": "this time"}]
ruler.add_patterns(patterns2)
doc = ruler(
nlp.make_doc("I saw him last time we met, this time he brought some flowers")
)
assert len(ruler.patterns) == 2
assert len(doc.spans["ruler"]) == 2
assert doc.spans["ruler"][0].label_ == "DATE1"
assert doc.spans["ruler"][0].text == "last time"
assert doc.spans["ruler"][1].label_ == "DATE2"
assert doc.spans["ruler"][1].text == "this time"
ruler.remove("DATE1")
doc = ruler(
nlp.make_doc("I saw him last time we met, this time he brought some flowers")
)
assert len(ruler.patterns) == 1
assert len(doc.spans["ruler"]) == 1
assert doc.spans["ruler"][0].label_ == "DATE2"
assert doc.spans["ruler"][0].text == "this time"
ruler.add_patterns(patterns1)
doc = ruler(
nlp.make_doc("I saw him last time we met, this time he brought some flowers")
)
assert len(ruler.patterns) == 2
assert len(doc.spans["ruler"]) == 2
patterns3 = [{"label": "DATE3", "pattern": "another time"}]
ruler.add_patterns(patterns3)
doc = ruler(
nlp.make_doc(
"I saw him last time we met, this time he brought some flowers, another time some chocolate."
)
)
assert len(ruler.patterns) == 3
assert len(doc.spans["ruler"]) == 3
ruler.remove("DATE3")
doc = ruler(
nlp.make_doc(
"I saw him last time we met, this time he brought some flowers, another time some chocolate."
)
)
assert len(ruler.patterns) == 2
assert len(doc.spans["ruler"]) == 2
def test_span_ruler_spans_filter(overlapping_patterns):
nlp = spacy.blank("xx")
ruler = nlp.add_pipe(
"span_ruler",
config={"spans_filter": {"@misc": "spacy.first_longest_spans_filter.v1"}},
)
ruler.add_patterns(overlapping_patterns)
doc = ruler(nlp.make_doc("foo bar baz"))
assert len(doc.spans["ruler"]) == 1
assert doc.spans["ruler"][0].label_ == "FOOBAR"
def test_span_ruler_ents_default_filter(overlapping_patterns):
nlp = spacy.blank("xx")
ruler = nlp.add_pipe("span_ruler", config={"annotate_ents": True})
ruler.add_patterns(overlapping_patterns)
doc = ruler(nlp.make_doc("foo bar baz"))
assert len(doc.ents) == 1
assert doc.ents[0].label_ == "FOOBAR"
def test_span_ruler_ents_overwrite_filter(overlapping_patterns):
nlp = spacy.blank("xx")
ruler = nlp.add_pipe(
"span_ruler",
config={
"annotate_ents": True,
"overwrite": False,
"ents_filter": {"@misc": "spacy.prioritize_new_ents_filter.v1"},
},
)
ruler.add_patterns(overlapping_patterns)
# overlapping ents are clobbered, non-overlapping ents are preserved
doc = nlp.make_doc("foo bar baz a b c")
doc.ents = [Span(doc, 1, 3, label="BARBAZ"), Span(doc, 3, 6, label="ABC")]
doc = ruler(doc)
assert len(doc.ents) == 2
assert doc.ents[0].label_ == "FOOBAR"
assert doc.ents[1].label_ == "ABC"
def test_span_ruler_ents_bad_filter(overlapping_patterns):
@registry.misc("test_pass_through_filter")
def make_pass_through_filter():
def pass_through_filter(spans1, spans2):
return spans1 + spans2
return pass_through_filter
nlp = spacy.blank("xx")
ruler = nlp.add_pipe(
"span_ruler",
config={
"annotate_ents": True,
"ents_filter": {"@misc": "test_pass_through_filter"},
},
)
ruler.add_patterns(overlapping_patterns)
with pytest.raises(ValueError):
ruler(nlp.make_doc("foo bar baz"))

View File

@ -516,7 +516,7 @@ cdef class Doc:
def doc(self): def doc(self):
return self return self
def char_span(self, int start_idx, int end_idx, label=0, kb_id=0, vector=None, alignment_mode="strict"): def char_span(self, int start_idx, int end_idx, label=0, kb_id=0, vector=None, alignment_mode="strict", span_id=0):
"""Create a `Span` object from the slice """Create a `Span` object from the slice
`doc.text[start_idx : end_idx]`. Returns None if no valid `Span` can be `doc.text[start_idx : end_idx]`. Returns None if no valid `Span` can be
created. created.
@ -575,7 +575,7 @@ cdef class Doc:
start += 1 start += 1
# Currently we have the token index, we want the range-end index # Currently we have the token index, we want the range-end index
end += 1 end += 1
cdef Span span = Span(self, start, end, label=label, kb_id=kb_id, vector=vector) cdef Span span = Span(self, start, end, label=label, kb_id=kb_id, span_id=span_id, vector=vector)
return span return span
def similarity(self, other): def similarity(self, other):
@ -713,6 +713,7 @@ cdef class Doc:
cdef int start = -1 cdef int start = -1
cdef attr_t label = 0 cdef attr_t label = 0
cdef attr_t kb_id = 0 cdef attr_t kb_id = 0
cdef attr_t ent_id = 0
output = [] output = []
for i in range(self.length): for i in range(self.length):
token = &self.c[i] token = &self.c[i]
@ -723,18 +724,20 @@ cdef class Doc:
elif token.ent_iob == 2 or token.ent_iob == 0 or \ elif token.ent_iob == 2 or token.ent_iob == 0 or \
(token.ent_iob == 3 and token.ent_type == 0): (token.ent_iob == 3 and token.ent_type == 0):
if start != -1: if start != -1:
output.append(Span(self, start, i, label=label, kb_id=kb_id)) output.append(Span(self, start, i, label=label, kb_id=kb_id, span_id=ent_id))
start = -1 start = -1
label = 0 label = 0
kb_id = 0 kb_id = 0
ent_id = 0
elif token.ent_iob == 3: elif token.ent_iob == 3:
if start != -1: if start != -1:
output.append(Span(self, start, i, label=label, kb_id=kb_id)) output.append(Span(self, start, i, label=label, kb_id=kb_id, span_id=ent_id))
start = i start = i
label = token.ent_type label = token.ent_type
kb_id = token.ent_kb_id kb_id = token.ent_kb_id
ent_id = token.ent_id
if start != -1: if start != -1:
output.append(Span(self, start, self.length, label=label, kb_id=kb_id)) output.append(Span(self, start, self.length, label=label, kb_id=kb_id, span_id=ent_id))
# remove empty-label spans # remove empty-label spans
output = [o for o in output if o.label_ != ""] output = [o for o in output if o.label_ != ""]
return tuple(output) return tuple(output)
@ -743,14 +746,14 @@ cdef class Doc:
# TODO: # TODO:
# 1. Test basic data-driven ORTH gazetteer # 1. Test basic data-driven ORTH gazetteer
# 2. Test more nuanced date and currency regex # 2. Test more nuanced date and currency regex
cdef attr_t entity_type, kb_id cdef attr_t entity_type, kb_id, ent_id
cdef int ent_start, ent_end cdef int ent_start, ent_end
ent_spans = [] ent_spans = []
for ent_info in ents: for ent_info in ents:
entity_type_, kb_id, ent_start, ent_end = get_entity_info(ent_info) entity_type_, kb_id, ent_start, ent_end, ent_id = get_entity_info(ent_info)
if isinstance(entity_type_, str): if isinstance(entity_type_, str):
self.vocab.strings.add(entity_type_) self.vocab.strings.add(entity_type_)
span = Span(self, ent_start, ent_end, label=entity_type_, kb_id=kb_id) span = Span(self, ent_start, ent_end, label=entity_type_, kb_id=kb_id, span_id=ent_id)
ent_spans.append(span) ent_spans.append(span)
self.set_ents(ent_spans, default=SetEntsDefault.outside) self.set_ents(ent_spans, default=SetEntsDefault.outside)
@ -801,6 +804,9 @@ cdef class Doc:
self.c[i].ent_iob = 1 self.c[i].ent_iob = 1
self.c[i].ent_type = span.label self.c[i].ent_type = span.label
self.c[i].ent_kb_id = span.kb_id self.c[i].ent_kb_id = span.kb_id
# for backwards compatibility in v3, only set ent_id from
# span.id if it's set, otherwise don't override
self.c[i].ent_id = span.id if span.id else self.c[i].ent_id
for span in blocked: for span in blocked:
for i in range(span.start, span.end): for i in range(span.start, span.end):
self.c[i].ent_iob = 3 self.c[i].ent_iob = 3
@ -1180,6 +1186,7 @@ cdef class Doc:
span.end_char + char_offset, span.end_char + char_offset,
span.label, span.label,
span.kb_id, span.kb_id,
span.id,
span.text, # included as a check span.text, # included as a check
)) ))
char_offset += len(doc.text) char_offset += len(doc.text)
@ -1215,8 +1222,9 @@ cdef class Doc:
span_tuple[1], span_tuple[1],
label=span_tuple[2], label=span_tuple[2],
kb_id=span_tuple[3], kb_id=span_tuple[3],
span_id=span_tuple[4],
) )
text = span_tuple[4] text = span_tuple[5]
if span is not None and span.text == text: if span is not None and span.text == text:
concat_doc.spans[key].append(span) concat_doc.spans[key].append(span)
else: else:
@ -1772,16 +1780,18 @@ def fix_attributes(doc, attributes):
def get_entity_info(ent_info): def get_entity_info(ent_info):
ent_kb_id = 0
ent_id = 0
if isinstance(ent_info, Span): if isinstance(ent_info, Span):
ent_type = ent_info.label ent_type = ent_info.label
ent_kb_id = ent_info.kb_id ent_kb_id = ent_info.kb_id
start = ent_info.start start = ent_info.start
end = ent_info.end end = ent_info.end
ent_id = ent_info.id
elif len(ent_info) == 3: elif len(ent_info) == 3:
ent_type, start, end = ent_info ent_type, start, end = ent_info
ent_kb_id = 0
elif len(ent_info) == 4: elif len(ent_info) == 4:
ent_type, ent_kb_id, start, end = ent_info ent_type, ent_kb_id, start, end = ent_info
else: else:
ent_id, ent_kb_id, ent_type, start, end = ent_info ent_id, ent_kb_id, ent_type, start, end = ent_info
return ent_type, ent_kb_id, start, end return ent_type, ent_kb_id, start, end, ent_id

View File

@ -48,7 +48,8 @@ class Span:
label: Union[str, int] = ..., label: Union[str, int] = ...,
vector: Optional[Floats1d] = ..., vector: Optional[Floats1d] = ...,
vector_norm: Optional[float] = ..., vector_norm: Optional[float] = ...,
kb_id: Optional[int] = ..., kb_id: Union[str, int] = ...,
span_id: Union[str, int] = ...,
) -> None: ... ) -> None: ...
def __richcmp__(self, other: Span, op: int) -> bool: ... def __richcmp__(self, other: Span, op: int) -> bool: ...
def __hash__(self) -> int: ... def __hash__(self) -> int: ...

View File

@ -80,17 +80,20 @@ cdef class Span:
return Underscore.span_extensions.pop(name) return Underscore.span_extensions.pop(name)
def __cinit__(self, Doc doc, int start, int end, label=0, vector=None, def __cinit__(self, Doc doc, int start, int end, label=0, vector=None,
vector_norm=None, kb_id=0): vector_norm=None, kb_id=0, span_id=0):
"""Create a `Span` object from the slice `doc[start : end]`. """Create a `Span` object from the slice `doc[start : end]`.
doc (Doc): The parent document. doc (Doc): The parent document.
start (int): The index of the first token of the span. start (int): The index of the first token of the span.
end (int): The index of the first token after the span. end (int): The index of the first token after the span.
label (int or str): A label to attach to the Span, e.g. for named entities. label (Union[int, str]): A label to attach to the Span, e.g. for named
entities.
vector (ndarray[ndim=1, dtype='float32']): A meaning representation vector (ndarray[ndim=1, dtype='float32']): A meaning representation
of the span. of the span.
vector_norm (float): The L2 norm of the span's vector representation. vector_norm (float): The L2 norm of the span's vector representation.
kb_id (uint64): An identifier from a Knowledge Base to capture the meaning of a named entity. kb_id (Union[int, str]): An identifier from a Knowledge Base to capture
the meaning of a named entity.
span_id (Union[int, str]): An identifier to associate with the span.
DOCS: https://spacy.io/api/span#init DOCS: https://spacy.io/api/span#init
""" """
@ -101,6 +104,8 @@ cdef class Span:
label = doc.vocab.strings.add(label) label = doc.vocab.strings.add(label)
if isinstance(kb_id, str): if isinstance(kb_id, str):
kb_id = doc.vocab.strings.add(kb_id) kb_id = doc.vocab.strings.add(kb_id)
if isinstance(span_id, str):
span_id = doc.vocab.strings.add(span_id)
if label not in doc.vocab.strings: if label not in doc.vocab.strings:
raise ValueError(Errors.E084.format(label=label)) raise ValueError(Errors.E084.format(label=label))
@ -112,6 +117,7 @@ cdef class Span:
self.c = SpanC( self.c = SpanC(
label=label, label=label,
kb_id=kb_id, kb_id=kb_id,
id=span_id,
start=start, start=start,
end=end, end=end,
start_char=start_char, start_char=start_char,
@ -126,8 +132,8 @@ cdef class Span:
return False return False
else: else:
return True return True
self_tuple = (self.c.start_char, self.c.end_char, self.c.label, self.c.kb_id, self.doc) self_tuple = (self.c.start_char, self.c.end_char, self.c.label, self.c.kb_id, self.id, self.doc)
other_tuple = (other.c.start_char, other.c.end_char, other.c.label, other.c.kb_id, other.doc) other_tuple = (other.c.start_char, other.c.end_char, other.c.label, other.c.kb_id, other.id, other.doc)
# < # <
if op == 0: if op == 0:
return self_tuple < other_tuple return self_tuple < other_tuple
@ -148,7 +154,7 @@ cdef class Span:
return self_tuple >= other_tuple return self_tuple >= other_tuple
def __hash__(self): def __hash__(self):
return hash((self.doc, self.c.start_char, self.c.end_char, self.c.label, self.c.kb_id)) return hash((self.doc, self.c.start_char, self.c.end_char, self.c.label, self.c.kb_id, self.c.id))
def __len__(self): def __len__(self):
"""Get the number of tokens in the span. """Get the number of tokens in the span.
@ -632,7 +638,7 @@ cdef class Span:
else: else:
return self.doc[root] return self.doc[root]
def char_span(self, int start_idx, int end_idx, label=0, kb_id=0, vector=None): def char_span(self, int start_idx, int end_idx, label=0, kb_id=0, vector=None, id=0):
"""Create a `Span` object from the slice `span.text[start : end]`. """Create a `Span` object from the slice `span.text[start : end]`.
start (int): The index of the first character of the span. start (int): The index of the first character of the span.
@ -774,6 +780,13 @@ cdef class Span:
def __set__(self, attr_t kb_id): def __set__(self, attr_t kb_id):
self.c.kb_id = kb_id self.c.kb_id = kb_id
property id:
def __get__(self):
return self.c.id
def __set__(self, attr_t id):
self.c.id = id
property ent_id: property ent_id:
"""RETURNS (uint64): The entity ID.""" """RETURNS (uint64): The entity ID."""
def __get__(self): def __get__(self):
@ -812,13 +825,21 @@ cdef class Span:
self.label = self.doc.vocab.strings.add(label_) self.label = self.doc.vocab.strings.add(label_)
property kb_id_: property kb_id_:
"""RETURNS (str): The named entity's KB ID.""" """RETURNS (str): The span's KB ID."""
def __get__(self): def __get__(self):
return self.doc.vocab.strings[self.kb_id] return self.doc.vocab.strings[self.kb_id]
def __set__(self, str kb_id_): def __set__(self, str kb_id_):
self.kb_id = self.doc.vocab.strings.add(kb_id_) self.kb_id = self.doc.vocab.strings.add(kb_id_)
property id_:
"""RETURNS (str): The span's ID."""
def __get__(self):
return self.doc.vocab.strings[self.id]
def __set__(self, str id_):
self.id = self.doc.vocab.strings.add(id_)
cdef int _count_words_to_root(const TokenC* token, int sent_length) except -1: cdef int _count_words_to_root(const TokenC* token, int sent_length) except -1:
# Don't allow spaces to be the root, if there are # Don't allow spaces to be the root, if there are

View File

@ -1242,6 +1242,15 @@ def filter_spans(spans: Iterable["Span"]) -> List["Span"]:
return result return result
def filter_chain_spans(*spans: Iterable["Span"]) -> List["Span"]:
return filter_spans(itertools.chain(*spans))
@registry.misc("spacy.first_longest_spans_filter.v1")
def make_first_longest_spans_filter():
return filter_chain_spans
def to_bytes(getters: Dict[str, Callable[[], bytes]], exclude: Iterable[str]) -> bytes: def to_bytes(getters: Dict[str, Callable[[], bytes]], exclude: Iterable[str]) -> bytes:
return srsly.msgpack_dumps(to_dict(getters, exclude)) return srsly.msgpack_dumps(to_dict(getters, exclude))

View File

@ -290,7 +290,7 @@ Load the pipe from a bytestring. Modifies the object in place and returns it.
> >
> ```python > ```python
> ruler_bytes = ruler.to_bytes() > ruler_bytes = ruler.to_bytes()
> ruler = nlp.add_pipe("enity_ruler") > ruler = nlp.add_pipe("entity_ruler")
> ruler.from_bytes(ruler_bytes) > ruler.from_bytes(ruler_bytes)
> ``` > ```

View File

@ -27,6 +27,7 @@ Create a `Span` object from the slice `doc[start : end]`.
| `vector` | A meaning representation of the span. ~~numpy.ndarray[ndim=1, dtype=float32]~~ | | `vector` | A meaning representation of the span. ~~numpy.ndarray[ndim=1, dtype=float32]~~ |
| `vector_norm` | The L2 norm of the document's vector representation. ~~float~~ | | `vector_norm` | The L2 norm of the document's vector representation. ~~float~~ |
| `kb_id` | A knowledge base ID to attach to the span, e.g. for named entities. ~~Union[str, int]~~ | | `kb_id` | A knowledge base ID to attach to the span, e.g. for named entities. ~~Union[str, int]~~ |
| `span_id` | An ID to associate with the span. ~~Union[str, int]~~ |
## Span.\_\_getitem\_\_ {#getitem tag="method"} ## Span.\_\_getitem\_\_ {#getitem tag="method"}
@ -560,7 +561,9 @@ overlaps with will be returned.
| `lemma_` | The span's lemma. Equivalent to `"".join(token.text_with_ws for token in span)`. ~~str~~ | | `lemma_` | The span's lemma. Equivalent to `"".join(token.text_with_ws for token in span)`. ~~str~~ |
| `kb_id` | The hash value of the knowledge base ID referred to by the span. ~~int~~ | | `kb_id` | The hash value of the knowledge base ID referred to by the span. ~~int~~ |
| `kb_id_` | The knowledge base ID referred to by the span. ~~str~~ | | `kb_id_` | The knowledge base ID referred to by the span. ~~str~~ |
| `ent_id` | The hash value of the named entity the token is an instance of. ~~int~~ | | `ent_id` | The hash value of the named entity the root token is an instance of. ~~int~~ |
| `ent_id_` | The string ID of the named entity the token is an instance of. ~~str~~ | | `ent_id_` | The string ID of the named entity the root token is an instance of. ~~str~~ |
| `id` | The hash value of the span's ID. ~~int~~ |
| `id_` | The span's ID. ~~str~~ |
| `sentiment` | A scalar value indicating the positivity or negativity of the span. ~~float~~ | | `sentiment` | A scalar value indicating the positivity or negativity of the span. ~~float~~ |
| `_` | User space for adding custom [attribute extensions](/usage/processing-pipelines#custom-components-attributes). ~~Underscore~~ | | `_` | User space for adding custom [attribute extensions](/usage/processing-pipelines#custom-components-attributes). ~~Underscore~~ |

View File

@ -0,0 +1,351 @@
---
title: SpanRuler
tag: class
source: spacy/pipeline/span_ruler.py
new: 3.3
teaser: 'Pipeline component for rule-based span and named entity recognition'
api_string_name: span_ruler
api_trainable: false
---
The span ruler lets you add spans to [`Doc.spans`](/api/doc#spans) and/or
[`Doc.ents`](/api/doc#ents) using token-based rules or exact phrase matches. For
usage examples, see the docs on
[rule-based span matching](/usage/rule-based-matching#spanruler).
## Assigned Attributes {#assigned-attributes}
Matches will be saved to `Doc.spans[spans_key]` as a
[`SpanGroup`](/api/spangroup) and/or to `Doc.ents`, where the annotation is
saved in the `Token.ent_type` and `Token.ent_iob` fields.
| Location | Value |
| ---------------------- | ----------------------------------------------------------------- |
| `Doc.spans[spans_key]` | The annotated spans. ~~SpanGroup~~ |
| `Doc.ents` | The annotated spans. ~~Tuple[Span]~~ |
| `Token.ent_iob` | An enum encoding of the IOB part of the named entity tag. ~~int~~ |
| `Token.ent_iob_` | The IOB part of the named entity tag. ~~str~~ |
| `Token.ent_type` | The label part of the named entity tag (hash). ~~int~~ |
| `Token.ent_type_` | The label part of the named entity tag. ~~str~~ |
## Config and implementation {#config}
The default config is defined by the pipeline component factory and describes
how the component should be configured. You can override its settings via the
`config` argument on [`nlp.add_pipe`](/api/language#add_pipe) or in your
[`config.cfg`](/usage/training#config).
> #### Example
>
> ```python
> config = {
> "spans_key": "my_spans",
> "validate": True,
> "overwrite": False,
> }
> nlp.add_pipe("span_ruler", config=config)
> ```
| Setting | Description |
| --------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `spans_key` | The spans key to save the spans under. If `None`, no spans are saved. Defaults to `"ruler"`. ~~Optional[str]~~ |
| `spans_filter` | The optional method to filter spans before they are assigned to doc.spans. Defaults to `None`. ~~Optional[Callable[[Iterable[Span], Iterable[Span]], List[Span]]]~~ |
| `annotate_ents` | Whether to save spans to doc.ents. Defaults to `False`. ~~bool~~ |
| `ents_filter` | The method to filter spans before they are assigned to doc.ents. Defaults to `util.filter_chain_spans`. ~~Callable[[Iterable[Span], Iterable[Span]], List[Span]]~~ |
| `phrase_matcher_attr` | Token attribute to match on, passed to the internal PhraseMatcher as `attr`. Defaults to `None`. ~~Optional[Union[int, str]]~~ |
| `validate` | Whether patterns should be validated, passed to Matcher and PhraseMatcher as `validate`. Defaults to `False`. ~~bool~~ |
| `overwrite` | Whether to remove any existing spans under `Doc.spans[spans key]` if `spans_key` is set, or to remove any ents under `Doc.ents` if `annotate_ents` is set. Defaults to `True`. ~~bool~~ |
| `scorer` | The scoring method. Defaults to [`Scorer.score_spans`](/api/scorer#score_spans) for `Doc.spans[spans_key]` with overlapping spans allowed. ~~Optional[Callable]~~ |
```python
%%GITHUB_SPACY/spacy/pipeline/span_ruler.py
```
## SpanRuler.\_\_init\_\_ {#init tag="method"}
Initialize the span ruler. If patterns are supplied here, they need to be a list
of dictionaries with a `"label"` and `"pattern"` key. A pattern can either be a
token pattern (list) or a phrase pattern (string). For example:
`{"label": "ORG", "pattern": "Apple"}`.
> #### Example
>
> ```python
> # Construction via add_pipe
> ruler = nlp.add_pipe("span_ruler")
>
> # Construction from class
> from spacy.pipeline import SpanRuler
> ruler = SpanRuler(nlp, overwrite=True)
> ```
| Name | Description |
| --------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `nlp` | The shared nlp object to pass the vocab to the matchers and process phrase patterns. ~~Language~~ |
| `name` | Instance name of the current pipeline component. Typically passed in automatically from the factory when the component is added. Used to disable the current span ruler while creating phrase patterns with the nlp object. ~~str~~ |
| _keyword-only_ | |
| `spans_key` | The spans key to save the spans under. If `None`, no spans are saved. Defaults to `"ruler"`. ~~Optional[str]~~ |
| `spans_filter` | The optional method to filter spans before they are assigned to doc.spans. Defaults to `None`. ~~Optional[Callable[[Iterable[Span], Iterable[Span]], List[Span]]]~~ |
| `annotate_ents` | Whether to save spans to doc.ents. Defaults to `False`. ~~bool~~ |
| `ents_filter` | The method to filter spans before they are assigned to doc.ents. Defaults to `util.filter_chain_spans`. ~~Callable[[Iterable[Span], Iterable[Span]], List[Span]]~~ |
| `phrase_matcher_attr` | Token attribute to match on, passed to the internal PhraseMatcher as `attr`. Defaults to `None`. ~~Optional[Union[int, str]]~~ |
| `validate` | Whether patterns should be validated, passed to Matcher and PhraseMatcher as `validate`. Defaults to `False`. ~~bool~~ |
| `overwrite` | Whether to remove any existing spans under `Doc.spans[spans key]` if `spans_key` is set, or to remove any ents under `Doc.ents` if `annotate_ents` is set. Defaults to `True`. ~~bool~~ |
| `scorer` | The scoring method. Defaults to [`Scorer.score_spans`](/api/scorer#score_spans) for `Doc.spans[spans_key]` with overlapping spans allowed. ~~Optional[Callable]~~ |
## SpanRuler.initialize {#initialize tag="method"}
Initialize the component with data and used before training to load in rules
from a [pattern file](/usage/rule-based-matching/#spanruler-files). This method
is typically called by [`Language.initialize`](/api/language#initialize) and
lets you customize arguments it receives via the
[`[initialize.components]`](/api/data-formats#config-initialize) block in the
config. Any existing patterns are removed on initialization.
> #### Example
>
> ```python
> span_ruler = nlp.add_pipe("span_ruler")
> span_ruler.initialize(lambda: [], nlp=nlp, patterns=patterns)
> ```
>
> ```ini
> ### config.cfg
> [initialize.components.span_ruler]
>
> [initialize.components.span_ruler.patterns]
> @readers = "srsly.read_jsonl.v1"
> path = "corpus/span_ruler_patterns.jsonl
> ```
| Name | Description |
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. Not used by the `SpanRuler`. ~~Callable[[], Iterable[Example]]~~ |
| _keyword-only_ | |
| `nlp` | The current `nlp` object. Defaults to `None`. ~~Optional[Language]~~ |
| `patterns` | The list of patterns. Defaults to `None`. ~~Optional[Sequence[Dict[str, Union[str, List[Dict[str, Any]]]]]]~~ |
## SpanRuler.\_\len\_\_ {#len tag="method"}
The number of all patterns added to the span ruler.
> #### Example
>
> ```python
> ruler = nlp.add_pipe("span_ruler")
> assert len(ruler) == 0
> ruler.add_patterns([{"label": "ORG", "pattern": "Apple"}])
> assert len(ruler) == 1
> ```
| Name | Description |
| ----------- | ------------------------------- |
| **RETURNS** | The number of patterns. ~~int~~ |
## SpanRuler.\_\_contains\_\_ {#contains tag="method"}
Whether a label is present in the patterns.
> #### Example
>
> ```python
> ruler = nlp.add_pipe("span_ruler")
> ruler.add_patterns([{"label": "ORG", "pattern": "Apple"}])
> assert "ORG" in ruler
> assert not "PERSON" in ruler
> ```
| Name | Description |
| ----------- | --------------------------------------------------- |
| `label` | The label to check. ~~str~~ |
| **RETURNS** | Whether the span ruler contains the label. ~~bool~~ |
## SpanRuler.\_\_call\_\_ {#call tag="method"}
Find matches in the `Doc` and add them to `doc.spans[span_key]` and/or
`doc.ents`. Typically, this happens automatically after the component has been
added to the pipeline using [`nlp.add_pipe`](/api/language#add_pipe). If the
span ruler was initialized with `overwrite=True`, existing spans and entities
will be removed.
> #### Example
>
> ```python
> ruler = nlp.add_pipe("span_ruler")
> ruler.add_patterns([{"label": "ORG", "pattern": "Apple"}])
>
> doc = nlp("A text about Apple.")
> spans = [(span.text, span.label_) for span in doc.spans["ruler"]]
> assert spans == [("Apple", "ORG")]
> ```
| Name | Description |
| ----------- | -------------------------------------------------------------------- |
| `doc` | The `Doc` object to process, e.g. the `Doc` in the pipeline. ~~Doc~~ |
| **RETURNS** | The modified `Doc` with added spans/entities. ~~Doc~~ |
## SpanRuler.add_patterns {#add_patterns tag="method"}
Add patterns to the span ruler. A pattern can either be a token pattern (list of
dicts) or a phrase pattern (string). For more details, see the usage guide on
[rule-based matching](/usage/rule-based-matching).
> #### Example
>
> ```python
> patterns = [
> {"label": "ORG", "pattern": "Apple"},
> {"label": "GPE", "pattern": [{"lower": "san"}, {"lower": "francisco"}]}
> ]
> ruler = nlp.add_pipe("span_ruler")
> ruler.add_patterns(patterns)
> ```
| Name | Description |
| ---------- | ---------------------------------------------------------------- |
| `patterns` | The patterns to add. ~~List[Dict[str, Union[str, List[dict]]]]~~ |
## SpanRuler.remove {#remove tag="method"}
Remove patterns by label from the span ruler. A `ValueError` is raised if the
label does not exist in any patterns.
> #### Example
>
> ```python
> patterns = [{"label": "ORG", "pattern": "Apple", "id": "apple"}]
> ruler = nlp.add_pipe("span_ruler")
> ruler.add_patterns(patterns)
> ruler.remove("ORG")
> ```
| Name | Description |
| ------- | -------------------------------------- |
| `label` | The label of the pattern rule. ~~str~~ |
## SpanRuler.remove_by_id {#remove_by_id tag="method"}
Remove patterns by ID from the span ruler. A `ValueError` is raised if the ID
does not exist in any patterns.
> #### Example
>
> ```python
> patterns = [{"label": "ORG", "pattern": "Apple", "id": "apple"}]
> ruler = nlp.add_pipe("span_ruler")
> ruler.add_patterns(patterns)
> ruler.remove_by_id("apple")
> ```
| Name | Description |
| ------------ | ----------------------------------- |
| `pattern_id` | The ID of the pattern rule. ~~str~~ |
## SpanRuler.clear {#clear tag="method"}
Remove all patterns the span ruler.
> #### Example
>
> ```python
> patterns = [{"label": "ORG", "pattern": "Apple", "id": "apple"}]
> ruler = nlp.add_pipe("span_ruler")
> ruler.add_patterns(patterns)
> ruler.clear()
> ```
## SpanRuler.to_disk {#to_disk tag="method"}
Save the span ruler patterns to a directory. The patterns will be saved as
newline-delimited JSON (JSONL).
> #### Example
>
> ```python
> ruler = nlp.add_pipe("span_ruler")
> ruler.to_disk("/path/to/span_ruler")
> ```
| Name | Description |
| ------ | ------------------------------------------------------------------------------------------------------------------------------------------ |
| `path` | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
## SpanRuler.from_disk {#from_disk tag="method"}
Load the span ruler from a path.
> #### Example
>
> ```python
> ruler = nlp.add_pipe("span_ruler")
> ruler.from_disk("/path/to/span_ruler")
> ```
| Name | Description |
| ----------- | ----------------------------------------------------------------------------------------------- |
| `path` | A path to a directory. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
| **RETURNS** | The modified `SpanRuler` object. ~~SpanRuler~~ |
## SpanRuler.to_bytes {#to_bytes tag="method"}
Serialize the span ruler to a bytestring.
> #### Example
>
> ```python
> ruler = nlp.add_pipe("span_ruler")
> ruler_bytes = ruler.to_bytes()
> ```
| Name | Description |
| ----------- | ---------------------------------- |
| **RETURNS** | The serialized patterns. ~~bytes~~ |
## SpanRuler.from_bytes {#from_bytes tag="method"}
Load the pipe from a bytestring. Modifies the object in place and returns it.
> #### Example
>
> ```python
> ruler_bytes = ruler.to_bytes()
> ruler = nlp.add_pipe("span_ruler")
> ruler.from_bytes(ruler_bytes)
> ```
| Name | Description |
| ------------ | ---------------------------------------------- |
| `bytes_data` | The bytestring to load. ~~bytes~~ |
| **RETURNS** | The modified `SpanRuler` object. ~~SpanRuler~~ |
## SpanRuler.labels {#labels tag="property"}
All labels present in the match patterns.
| Name | Description |
| ----------- | -------------------------------------- |
| **RETURNS** | The string labels. ~~Tuple[str, ...]~~ |
## SpanRuler.ids {#ids tag="property"}
All IDs present in the `id` property of the match patterns.
| Name | Description |
| ----------- | ----------------------------------- |
| **RETURNS** | The string IDs. ~~Tuple[str, ...]~~ |
## SpanRuler.patterns {#patterns tag="property"}
All patterns that were added to the span ruler.
| Name | Description |
| ----------- | ---------------------------------------------------------------------------------------- |
| **RETURNS** | The original patterns, one dictionary per pattern. ~~List[Dict[str, Union[str, dict]]]~~ |
## Attributes {#attributes}
| Name | Description |
| ---------------- | -------------------------------------------------------------------------------- |
| `key` | The spans key that spans are saved under. ~~Optional[str]~~ |
| `matcher` | The underlying matcher used to process token patterns. ~~Matcher~~ |
| `phrase_matcher` | The underlying phrase matcher used to process phrase patterns. ~~PhraseMatcher~~ |

View File

@ -6,6 +6,7 @@ menu:
- ['Phrase Matcher', 'phrasematcher'] - ['Phrase Matcher', 'phrasematcher']
- ['Dependency Matcher', 'dependencymatcher'] - ['Dependency Matcher', 'dependencymatcher']
- ['Entity Ruler', 'entityruler'] - ['Entity Ruler', 'entityruler']
- ['Span Ruler', 'spanruler']
- ['Models & Rules', 'models-rules'] - ['Models & Rules', 'models-rules']
--- ---
@ -1446,6 +1447,108 @@ with nlp.select_pipes(enable="tagger"):
ruler.add_patterns(patterns) ruler.add_patterns(patterns)
``` ```
## Rule-based span matching {#spanruler new="3.3"}
The [`SpanRuler`](/api/spanruler) is a generalized version of the entity ruler
that lets you add spans to `doc.spans` or `doc.ents` based on pattern
dictionaries, which makes it easy to combine rule-based and statistical pipeline
components.
### Span patterns {#spanruler-patterns}
The [pattern format](#entityruler-patterns) is the same as for the entity ruler:
1. **Phrase patterns** for exact string matches (string).
```python
{"label": "ORG", "pattern": "Apple"}
```
2. **Token patterns** with one dictionary describing one token (list).
```python
{"label": "GPE", "pattern": [{"LOWER": "san"}, {"LOWER": "francisco"}]}
```
### Using the span ruler {#spanruler-usage}
The [`SpanRuler`](/api/spanruler) is a pipeline component that's typically added
via [`nlp.add_pipe`](/api/language#add_pipe). When the `nlp` object is called on
a text, it will find matches in the `doc` and add them as spans to
`doc.spans["ruler"]`, using the specified pattern label as the entity label.
Unlike in `doc.ents`, overlapping matches are allowed in `doc.spans`, so no
filtering is required, but optional filtering and sorting can be applied to the
spans before they're saved.
```python
### {executable="true"}
import spacy
nlp = spacy.blank("en")
ruler = nlp.add_pipe("span_ruler")
patterns = [{"label": "ORG", "pattern": "Apple"},
{"label": "GPE", "pattern": [{"LOWER": "san"}, {"LOWER": "francisco"}]}]
ruler.add_patterns(patterns)
doc = nlp("Apple is opening its first big office in San Francisco.")
print([(span.text, span.label_) for span in doc.spans["ruler"]])
```
The span ruler is designed to integrate with spaCy's existing pipeline
components and enhance the [SpanCategorizer](/api/spancat) and
[EntityRecognizer](/api/entityrecognizer). The `overwrite` setting determines
whether the existing annotation in `doc.spans` or `doc.ents` is preserved.
Because overlapping entities are not allowed for `doc.ents`, the entities are
always filtered, using [`util.filter_spans`](/api/top-level#util.filter_spans)
by default. See the [`SpanRuler` API docs](/api/spanruler) for more information
about how to customize the sorting and filtering of matched spans.
```python
### {executable="true"}
import spacy
nlp = spacy.load("en_core_web_sm")
# only annotate doc.ents, not doc.spans
config = {"spans_key": None, "annotate_ents": True, "overwrite": False}
ruler = nlp.add_pipe("span_ruler", config=config)
patterns = [{"label": "ORG", "pattern": "MyCorp Inc."}]
ruler.add_patterns(patterns)
doc = nlp("MyCorp Inc. is a company in the U.S.")
print([(ent.text, ent.label_) for ent in doc.ents])
```
### Using pattern files {#spanruler-files}
You can save patterns in a JSONL file (newline-delimited JSON) to load with
[`SpanRuler.initialize`](/api/spanruler#initialize) or
[`SpanRuler.add_patterns`](/api/spanruler#add_patterns).
```json
### patterns.jsonl
{"label": "ORG", "pattern": "Apple"}
{"label": "GPE", "pattern": [{"LOWER": "san"}, {"LOWER": "francisco"}]}
```
```python
import srsly
patterns = srsly.read_jsonl("patterns.jsonl")
ruler = nlp.add_pipe("span_ruler")
ruler.add_patterns(patterns)
```
<Infobox title="Important note" variant="warning">
Unlike the entity ruler, the span ruler cannot load patterns on initialization
with `SpanRuler(patterns=patterns)` or directly from a JSONL file path with
`SpanRuler.from_disk(jsonl_path)`. Patterns should be loaded from the JSONL file
separately and then added through
[`SpanRuler.initialize`](/api/spanruler#initialize]) or
[`SpanRuler.add_patterns`](/api/spanruler#add_patterns) as shown above.
</Infobox>
## Combining models and rules {#models-rules} ## Combining models and rules {#models-rules}
You can combine statistical and rule-based components in a variety of ways. You can combine statistical and rule-based components in a variety of ways.

View File

@ -103,6 +103,7 @@
{ "text": "SentenceRecognizer", "url": "/api/sentencerecognizer" }, { "text": "SentenceRecognizer", "url": "/api/sentencerecognizer" },
{ "text": "Sentencizer", "url": "/api/sentencizer" }, { "text": "Sentencizer", "url": "/api/sentencizer" },
{ "text": "SpanCategorizer", "url": "/api/spancategorizer" }, { "text": "SpanCategorizer", "url": "/api/spancategorizer" },
{ "text": "SpanRuler", "url": "/api/spanruler" },
{ "text": "Tagger", "url": "/api/tagger" }, { "text": "Tagger", "url": "/api/tagger" },
{ "text": "TextCategorizer", "url": "/api/textcategorizer" }, { "text": "TextCategorizer", "url": "/api/textcategorizer" },
{ "text": "Tok2Vec", "url": "/api/tok2vec" }, { "text": "Tok2Vec", "url": "/api/tok2vec" },