Add failing test with tokenization mismatch

This test only fails due to the explicity assert False at the moment,
but the debug output shows that the learned spans are all off by one due
to misalignment. So the code still needs fixing.
This commit is contained in:
Paul O'Leary McCann 2022-07-03 16:01:27 +09:00
parent 619b1102e6
commit a46bc03abb

View File

@ -21,22 +21,22 @@ TRAIN_DATA = [
{ {
"spans": { "spans": {
f"{DEFAULT_CLUSTER_PREFIX}_1": [ f"{DEFAULT_CLUSTER_PREFIX}_1": [
(0, 11, "MENTION"), # John Smith (0, 10, "MENTION"), # John Smith
(38, 41, "MENTION"), # he (38, 40, "MENTION"), # he
], ],
f"{DEFAULT_CLUSTER_PREFIX}_2": [ f"{DEFAULT_CLUSTER_PREFIX}_2": [
(25, 33, "MENTION"), # red ball (25, 33, "MENTION"), # red ball
(47, 50, "MENTION"), # it (47, 49, "MENTION"), # it
], ],
f"coref_head_clusters_1": [ f"coref_head_clusters_1": [
(5, 11, "MENTION"), # Smith (5, 10, "MENTION"), # Smith
(38, 41, "MENTION"), # he (38, 40, "MENTION"), # he
], ],
f"coref_head_clusters_2": [ f"coref_head_clusters_2": [
(29, 33, "MENTION"), # red ball (29, 33, "MENTION"), # red ball
(47, 50, "MENTION"), # it (47, 49, "MENTION"), # it
] ]
} }
}, },
@ -129,3 +129,75 @@ def test_overfitting_IO(nlp):
docs3 = [nlp(text) for text in texts] docs3 = [nlp(text) for text in texts]
assert spans2ints(docs1[0]) == spans2ints(docs2[0]) assert spans2ints(docs1[0]) == spans2ints(docs2[0])
assert spans2ints(docs1[0]) == spans2ints(docs3[0]) assert spans2ints(docs1[0]) == spans2ints(docs3[0])
@pytest.mark.skipif(not has_torch, reason="Torch not available")
def test_tokenization_mismatch(nlp):
train_examples = []
for text, annot in TRAIN_DATA:
eg = Example.from_dict(nlp.make_doc(text), annot)
ref = eg.reference
char_spans = {}
for key, cluster in ref.spans.items():
char_spans[key] = []
for span in cluster:
char_spans[key].append((span[0].idx, span[-1].idx + len(span[-1])))
with ref.retokenize() as retokenizer:
# merge "picked up"
retokenizer.merge(ref[2:4])
# Note this works because it's the same doc and we know the keys
for key, _ in ref.spans.items():
spans = char_spans[key]
ref.spans[key] = [ref.char_span(*span) for span in spans]
# Finally, copy over the head spans to the pred
pred = eg.predicted
for key, val in ref.spans.items():
if key.startswith("coref_head_clusters"):
spans = char_spans[key]
pred.spans[key] = [pred.char_span(*span) for span in spans]
train_examples.append(eg)
nlp.add_pipe("span_predictor", config=CONFIG)
optimizer = nlp.initialize()
test_text = TRAIN_DATA[0][0]
doc = nlp(test_text)
for i in range(100):
losses = {}
nlp.update(train_examples, sgd=optimizer, losses=losses)
doc = nlp(test_text)
# test the trained model; need to use doc with head spans on it already
test_doc = train_examples[0].predicted
doc = nlp(test_doc)
# XXX DEBUG
print("SPANS", len(doc.spans))
for key, val in doc.spans.items():
print(key, val)
print("...")
# Also test the results are still the same after IO
with make_tempdir() as tmp_dir:
nlp.to_disk(tmp_dir)
nlp2 = util.load_model_from_path(tmp_dir)
doc2 = nlp2(test_text)
# Make sure that running pipe twice, or comparing to call, always amounts to the same predictions
texts = [
test_text,
"I noticed many friends around me",
"They received it. They received the SMS.",
]
# save the docs so they don't get garbage collected
docs1 = list(nlp.pipe(texts))
docs2 = list(nlp.pipe(texts))
docs3 = [nlp(text) for text in texts]
assert spans2ints(docs1[0]) == spans2ints(docs2[0])
assert spans2ints(docs1[0]) == spans2ints(docs3[0])
assert False