mirror of
https://github.com/explosion/spaCy.git
synced 2025-07-10 16:22:29 +03:00
initial documentation run
This commit is contained in:
parent
1cbad4f3c9
commit
a633b88ef2
|
@ -481,6 +481,318 @@ The other arguments are shared between all versions.
|
|||
|
||||
</Accordion>
|
||||
|
||||
## Curated transformer architectures {id="curated-trf",source="https://github.com/explosion/spacy-curated-transformers/blob/main/spacy_curated_transformers/models/architectures.py"}
|
||||
|
||||
The following architectures are provided by the package
|
||||
[`spacy-curated-transformers`](https://github.com/explosion/spacy-curated-transformers). See the
|
||||
[usage documentation](/usage/embeddings-transformers#transformers) for how to
|
||||
integrate the architectures into your training config.
|
||||
|
||||
<Infobox variant="warning">
|
||||
|
||||
Note that in order to use these architectures in your config, you need to
|
||||
install the
|
||||
[`spacy-transformers`](https://github.com/explosion/spacy-transformers). See the
|
||||
[installation docs](/usage/embeddings-transformers#transformers-installation)
|
||||
for details and system requirements.
|
||||
|
||||
</Infobox>
|
||||
|
||||
### spacy-curated-transformers.AlbertTransformer.v1
|
||||
|
||||
Construct an ALBERT transformer model.
|
||||
|
||||
| Name | Description |
|
||||
|--------------------------------|-----------------------------------------------------------------------------|
|
||||
| `vocab_size` | Vocabulary size. ~~int~~ |
|
||||
| `with_spans` | Callback that constructs a span generator model. ~~Callable~~ |
|
||||
| `with_spans` | piece_encoder (Model) ~~Callable~~ |
|
||||
| `with_spans` | The piece encoder to segment input tokens. ~~Callable~~ |
|
||||
| `attention_probs_dropout_prob` | Dropout probabilty of the self-attention layers. ~~float~~ |
|
||||
| `embedding_width` | Width of the embedding representations. ~~int~~ |
|
||||
| `hidden_act` | Activation used by the point-wise feed-forward layers. ~~str~~ |
|
||||
| `hidden_dropout_prob` | Dropout probabilty of the point-wise feed-forward and ~~float~~ |
|
||||
| `hidden_dropout_prob` | embedding layers. ~~float~~ |
|
||||
| `hidden_width` | Width of the final representations. ~~int~~ |
|
||||
| `intermediate_width` | Width of the intermediate projection layer in the ~~int~~ |
|
||||
| `intermediate_width` | point-wise feed-forward layer. ~~int~~ |
|
||||
| `layer_norm_eps` | Epsilon for layer normalization. ~~float~~ |
|
||||
| `max_position_embeddings` | Maximum length of position embeddings. ~~int~~ |
|
||||
| `model_max_length` | Maximum length of model inputs. ~~int~~ |
|
||||
| `num_attention_heads` | Number of self-attention heads. ~~int~~ |
|
||||
| `num_hidden_groups` | Number of layer groups whose constituents share parameters. ~~int~~ |
|
||||
| `num_hidden_layers` | Number of hidden layers. ~~int~~ |
|
||||
| `padding_idx` | Index of the padding meta-token. ~~int~~ |
|
||||
| `type_vocab_size` | Type vocabulary size. ~~int~~ |
|
||||
| `torchscript` | Set to `True` when loading TorchScript models, `False` otherwise. ~~bool~~ |
|
||||
| `mixed_precision` | Use mixed-precision training. ~~bool~~ |
|
||||
| `grad_scaler_config` | Configuration passed to the PyTorch gradient scaler. ~~dict~~ |
|
||||
| **CREATES** | The model using the architecture ~~Model[TransformerInT, TransformerOutT]~~ |
|
||||
|
||||
### spacy-curated-transformers.BertTransformer.v1
|
||||
|
||||
Construct a BERT transformer model.
|
||||
|
||||
| Name | Description |
|
||||
|--------------------------------|-----------------------------------------------------------------------------|
|
||||
| `vocab_size` | Vocabulary size. ~~int~~ |
|
||||
| `with_spans` | Callback that constructs a span generator model. ~~Callable~~ |
|
||||
| `with_spans` | piece_encoder (Model) ~~Callable~~ |
|
||||
| `with_spans` | The piece encoder to segment input tokens. ~~Callable~~ |
|
||||
| `attention_probs_dropout_prob` | Dropout probabilty of the self-attention layers. ~~float~~ |
|
||||
| `hidden_act` | Activation used by the point-wise feed-forward layers. ~~str~~ |
|
||||
| `hidden_dropout_prob` | Dropout probabilty of the point-wise feed-forward and ~~float~~ |
|
||||
| `hidden_dropout_prob` | embedding layers. ~~float~~ |
|
||||
| `hidden_width` | Width of the final representations. ~~int~~ |
|
||||
| `intermediate_width` | Width of the intermediate projection layer in the ~~int~~ |
|
||||
| `intermediate_width` | point-wise feed-forward layer. ~~int~~ |
|
||||
| `layer_norm_eps` | Epsilon for layer normalization. ~~float~~ |
|
||||
| `max_position_embeddings` | Maximum length of position embeddings. ~~int~~ |
|
||||
| `model_max_length` | Maximum length of model inputs. ~~int~~ |
|
||||
| `num_attention_heads` | Number of self-attention heads. ~~int~~ |
|
||||
| `num_hidden_layers` | Number of hidden layers. ~~int~~ |
|
||||
| `padding_idx` | Index of the padding meta-token. ~~int~~ |
|
||||
| `type_vocab_size` | Type vocabulary size. ~~int~~ |
|
||||
| `torchscript` | Set to `True` when loading TorchScript models, `False` otherwise. ~~bool~~ |
|
||||
| `mixed_precision` | Use mixed-precision training. ~~bool~~ |
|
||||
| `grad_scaler_config` | Configuration passed to the PyTorch gradient scaler. ~~dict~~ |
|
||||
| **CREATES** | The model using the architecture ~~Model[TransformerInT, TransformerOutT]~~ |
|
||||
|
||||
### spacy-curated-transformers.CamembertTransformer.v1
|
||||
|
||||
Construct a CamemBERT transformer model.
|
||||
|
||||
| Name | Description |
|
||||
|--------------------------------|-----------------------------------------------------------------------------|
|
||||
| `vocab_size` | Vocabulary size. ~~int~~ |
|
||||
| `with_spans` | Callback that constructs a span generator model. ~~Callable~~ |
|
||||
| `with_spans` | piece_encoder (Model) ~~Callable~~ |
|
||||
| `with_spans` | The piece encoder to segment input tokens. ~~Callable~~ |
|
||||
| `attention_probs_dropout_prob` | Dropout probabilty of the self-attention layers. ~~float~~ |
|
||||
| `hidden_act` | Activation used by the point-wise feed-forward layers. ~~str~~ |
|
||||
| `hidden_dropout_prob` | Dropout probabilty of the point-wise feed-forward and ~~float~~ |
|
||||
| `hidden_dropout_prob` | embedding layers. ~~float~~ |
|
||||
| `hidden_width` | Width of the final representations. ~~int~~ |
|
||||
| `intermediate_width` | Width of the intermediate projection layer in the ~~int~~ |
|
||||
| `intermediate_width` | point-wise feed-forward layer. ~~int~~ |
|
||||
| `layer_norm_eps` | Epsilon for layer normalization. ~~float~~ |
|
||||
| `max_position_embeddings` | Maximum length of position embeddings. ~~int~~ |
|
||||
| `model_max_length` | Maximum length of model inputs. ~~int~~ |
|
||||
| `num_attention_heads` | Number of self-attention heads. ~~int~~ |
|
||||
| `num_hidden_layers` | Number of hidden layers. ~~int~~ |
|
||||
| `padding_idx` | Index of the padding meta-token. ~~int~~ |
|
||||
| `type_vocab_size` | Type vocabulary size. ~~int~~ |
|
||||
| `torchscript` | Set to `True` when loading TorchScript models, `False` otherwise. ~~bool~~ |
|
||||
| `mixed_precision` | Use mixed-precision training. ~~bool~~ |
|
||||
| `grad_scaler_config` | Configuration passed to the PyTorch gradient scaler. ~~dict~~ |
|
||||
| **CREATES** | The model using the architecture ~~Model[TransformerInT, TransformerOutT]~~ |
|
||||
|
||||
### spacy-curated-transformers.RobertaTransformer.v1
|
||||
|
||||
Construct a RoBERTa transformer model.
|
||||
|
||||
| Name | Description |
|
||||
|--------------------------------|-----------------------------------------------------------------------------|
|
||||
| `vocab_size` | Vocabulary size. ~~int~~ |
|
||||
| `with_spans` | Callback that constructs a span generator model. ~~Callable~~ |
|
||||
| `with_spans` | piece_encoder (Model) ~~Callable~~ |
|
||||
| `with_spans` | The piece encoder to segment input tokens. ~~Callable~~ |
|
||||
| `attention_probs_dropout_prob` | Dropout probabilty of the self-attention layers. ~~float~~ |
|
||||
| `hidden_act` | Activation used by the point-wise feed-forward layers. ~~str~~ |
|
||||
| `hidden_dropout_prob` | Dropout probabilty of the point-wise feed-forward and ~~float~~ |
|
||||
| `hidden_dropout_prob` | embedding layers. ~~float~~ |
|
||||
| `hidden_width` | Width of the final representations. ~~int~~ |
|
||||
| `intermediate_width` | Width of the intermediate projection layer in the ~~int~~ |
|
||||
| `intermediate_width` | point-wise feed-forward layer. ~~int~~ |
|
||||
| `layer_norm_eps` | Epsilon for layer normalization. ~~float~~ |
|
||||
| `max_position_embeddings` | Maximum length of position embeddings. ~~int~~ |
|
||||
| `model_max_length` | Maximum length of model inputs. ~~int~~ |
|
||||
| `num_attention_heads` | Number of self-attention heads. ~~int~~ |
|
||||
| `num_hidden_layers` | Number of hidden layers. ~~int~~ |
|
||||
| `padding_idx` | Index of the padding meta-token. ~~int~~ |
|
||||
| `type_vocab_size` | Type vocabulary size. ~~int~~ |
|
||||
| `torchscript` | Set to `True` when loading TorchScript models, `False` otherwise. ~~bool~~ |
|
||||
| `mixed_precision` | Use mixed-precision training. ~~bool~~ |
|
||||
| `grad_scaler_config` | Configuration passed to the PyTorch gradient scaler. ~~dict~~ |
|
||||
| **CREATES** | The model using the architecture ~~Model[TransformerInT, TransformerOutT]~~ |
|
||||
|
||||
|
||||
### spacy-curated-transformers.XlmrTransformer.v1
|
||||
|
||||
Construct a XLM-RoBERTa transformer model.
|
||||
|
||||
| Name | Description |
|
||||
|--------------------------------|-----------------------------------------------------------------------------|
|
||||
| `vocab_size` | Vocabulary size. ~~int~~ |
|
||||
| `with_spans` | Callback that constructs a span generator model. ~~Callable~~ |
|
||||
| `with_spans` | piece_encoder (Model) ~~Callable~~ |
|
||||
| `with_spans` | The piece encoder to segment input tokens. ~~Callable~~ |
|
||||
| `attention_probs_dropout_prob` | Dropout probabilty of the self-attention layers. ~~float~~ |
|
||||
| `hidden_act` | Activation used by the point-wise feed-forward layers. ~~str~~ |
|
||||
| `hidden_dropout_prob` | Dropout probabilty of the point-wise feed-forward and ~~float~~ |
|
||||
| `hidden_dropout_prob` | embedding layers. ~~float~~ |
|
||||
| `hidden_width` | Width of the final representations. ~~int~~ |
|
||||
| `intermediate_width` | Width of the intermediate projection layer in the ~~int~~ |
|
||||
| `intermediate_width` | point-wise feed-forward layer. ~~int~~ |
|
||||
| `layer_norm_eps` | Epsilon for layer normalization. ~~float~~ |
|
||||
| `max_position_embeddings` | Maximum length of position embeddings. ~~int~~ |
|
||||
| `model_max_length` | Maximum length of model inputs. ~~int~~ |
|
||||
| `num_attention_heads` | Number of self-attention heads. ~~int~~ |
|
||||
| `num_hidden_layers` | Number of hidden layers. ~~int~~ |
|
||||
| `padding_idx` | Index of the padding meta-token. ~~int~~ |
|
||||
| `type_vocab_size` | Type vocabulary size. ~~int~~ |
|
||||
| `torchscript` | Set to `True` when loading TorchScript models, `False` otherwise. ~~bool~~ |
|
||||
| `mixed_precision` | Use mixed-precision training. ~~bool~~ |
|
||||
| `grad_scaler_config` | Configuration passed to the PyTorch gradient scaler. ~~dict~~ |
|
||||
| **CREATES** | The model using the architecture ~~Model[TransformerInT, TransformerOutT]~~ |
|
||||
|
||||
|
||||
### spacy-curated-transformers.ScalarWeight.v1
|
||||
|
||||
Construct a model that accepts a list of transformer layer outputs and returns a weighted representation of the same.
|
||||
|
||||
| Name | Description |
|
||||
|----------------------|-------------------------------------------------------------------------------|
|
||||
| `num_layers` | Number of transformer hidden layers. ~~int~~ |
|
||||
| `dropout_prob` | Dropout probability. ~~float~~ |
|
||||
| `mixed_precision` | Use mixed-precision training. ~~bool~~ |
|
||||
| `grad_scaler_config` | Configuration passed to the PyTorch gradient scaler. ~~dict~~ |
|
||||
| **CREATES** | The model using the architecture ~~Model[ScalarWeightInT, ScalarWeightOutT]~~ |
|
||||
|
||||
### spacy-curated-transformers.TransformerLayersListener.v1
|
||||
|
||||
Construct a listener layer that communicates with one or more upstream Transformer
|
||||
components. This layer extracts the output of the last transformer layer and performs
|
||||
pooling over the individual pieces of each Doc token, returning their corresponding
|
||||
representations. The upstream name should either be the wildcard string '*', or the name of the Transformer component.
|
||||
|
||||
In almost all cases, the wildcard string will suffice as there'll only be one
|
||||
upstream Transformer component. But in certain situations, e.g: you have disjoint
|
||||
datasets for certain tasks, or you'd like to use a pre-trained pipeline but a
|
||||
downstream task requires its own token representations, you could end up with
|
||||
more than one Transformer component in the pipeline.
|
||||
|
||||
|
||||
| Name | Description |
|
||||
|-----------------|------------------------------------------------------------------------------------------------------------------------|
|
||||
| `layers` | The the number of layers produced by the upstream transformer component, excluding the embedding layer. ~~int~~ |
|
||||
| `width` | The width of the vectors produced by the upstream transformer component. ~~int~~ |
|
||||
| `pooling` | Model that is used to perform pooling over the piece representations. ~~Model~~ |
|
||||
| `upstream_name` | A string to identify the 'upstream' Transformer component to communicate with. ~~str~~ |
|
||||
| `grad_factor` | Factor to multiply gradients with. ~~float~~ |
|
||||
| **CREATES** | A model that returns the relevant vectors from an upstream transformer component. ~~Model[List[Doc], List[Floats2d]]~~ |
|
||||
|
||||
|
||||
### spacy-curated-transformers.LastTransformerLayerListener.v1
|
||||
|
||||
Construct a listener layer that communicates with one or more upstream Transformer
|
||||
components. This layer extracts the output of the last transformer layer and performs
|
||||
pooling over the individual pieces of each Doc token, returning their corresponding
|
||||
representations. The upstream name should either be the wildcard string '*', or the name of the Transformer component.
|
||||
|
||||
In almost all cases, the wildcard string will suffice as there'll only be one
|
||||
upstream Transformer component. But in certain situations, e.g: you have disjoint
|
||||
datasets for certain tasks, or you'd like to use a pre-trained pipeline but a
|
||||
downstream task requires its own token representations, you could end up with
|
||||
more than one Transformer component in the pipeline.
|
||||
|
||||
| Name | Description |
|
||||
|-----------------|------------------------------------------------------------------------------------------------------------------------|
|
||||
| `width` | The width of the vectors produced by the upstream transformer component. ~~int~~ |
|
||||
| `pooling` | Model that is used to perform pooling over the piece representations. ~~Model~~ |
|
||||
| `upstream_name` | A string to identify the 'upstream' Transformer component to communicate with. ~~str~~ |
|
||||
| `grad_factor` | Factor to multiply gradients with. ~~float~~ |
|
||||
| **CREATES** | A model that returns the relevant vectors from an upstream transformer component. ~~Model[List[Doc], List[Floats2d]]~~ |
|
||||
|
||||
|
||||
### spacy-curated-transformers.ScalarWeightingListener.v1
|
||||
|
||||
Construct a listener layer that communicates with one or more upstream Transformer
|
||||
components. This layer calculates a weighted representation of all transformer layer
|
||||
outputs and performs pooling over the individual pieces of each Doc token, returning
|
||||
their corresponding representations.
|
||||
|
||||
Requires its upstream Transformer components to return all layer outputs from
|
||||
their models. The upstream name should either be the wildcard string '*', or the name of the Transformer component.
|
||||
|
||||
In almost all cases, the wildcard string will suffice as there'll only be one
|
||||
upstream Transformer component. But in certain situations, e.g: you have disjoint
|
||||
datasets for certain tasks, or you'd like to use a pre-trained pipeline but a
|
||||
downstream task requires its own token representations, you could end up with
|
||||
more than one Transformer component in the pipeline.
|
||||
|
||||
| Name | Description |
|
||||
|-----------------|------------------------------------------------------------------------------------------------------------------------|
|
||||
| `width` | The width of the vectors produced by the upstream transformer component. ~~int~~ |
|
||||
| `weighting` | Model that is used to perform the weighting of the different layer outputs. ~~Model~~ |
|
||||
| `pooling` | Model that is used to perform pooling over the piece representations. ~~Model~~ |
|
||||
| `upstream_name` | A string to identify the 'upstream' Transformer component to communicate with. ~~str~~ |
|
||||
| `grad_factor` | Factor to multiply gradients with. ~~float~~ |
|
||||
| **CREATES** | A model that returns the relevant vectors from an upstream transformer component. ~~Model[List[Doc], List[Floats2d]]~~ |
|
||||
|
||||
### spacy-curated-transformers.BertWordpieceEncoder.v1
|
||||
|
||||
Construct a WordPiece piece encoder model that accepts a list
|
||||
of token sequences or documents and returns a corresponding list
|
||||
of piece identifiers. This encoder also splits each token
|
||||
on punctuation characters, as expected by most BERT models.
|
||||
|
||||
This model must be separately initialized using an appropriate
|
||||
loader.
|
||||
|
||||
### spacy-curated-transformers.ByteBpeEncoder.v1
|
||||
|
||||
Construct a Byte-BPE piece encoder model that accepts a list
|
||||
of token sequences or documents and returns a corresponding list
|
||||
of piece identifiers.
|
||||
|
||||
This model must be separately initialized using an appropriate
|
||||
loader.
|
||||
|
||||
### spacy-curated-transformers.CamembertSentencepieceEncoder.v1
|
||||
Construct a SentencePiece piece encoder model that accepts a list
|
||||
of token sequences or documents and returns a corresponding list
|
||||
of piece identifiers with CamemBERT post-processing applied.
|
||||
|
||||
This model must be separately initialized using an appropriate
|
||||
loader.
|
||||
|
||||
### spacy-curated-transformers.CharEncoder.v1
|
||||
Construct a character piece encoder model that accepts a list
|
||||
of token sequences or documents and returns a corresponding list
|
||||
of piece identifiers.
|
||||
|
||||
This model must be separately initialized using an appropriate
|
||||
loader.
|
||||
|
||||
### spacy-curated-transformers.SentencepieceEncoder.v1
|
||||
Construct a SentencePiece piece encoder model that accepts a list
|
||||
of token sequences or documents and returns a corresponding list
|
||||
of piece identifiers with CamemBERT post-processing applied.
|
||||
|
||||
This model must be separately initialized using an appropriate
|
||||
loader.
|
||||
|
||||
### spacy-curated-transformers.WordpieceEncoder.v1
|
||||
Construct a WordPiece piece encoder model that accepts a list
|
||||
of token sequences or documents and returns a corresponding list
|
||||
of piece identifiers. This encoder also splits each token
|
||||
on punctuation characters, as expected by most BERT models.
|
||||
|
||||
This model must be separately initialized using an appropriate
|
||||
loader.
|
||||
|
||||
### spacy-curated-transformers.XlmrSentencepieceEncoder.v1
|
||||
Construct a SentencePiece piece encoder model that accepts a list
|
||||
of token sequences or documents and returns a corresponding list
|
||||
of piece identifiers with XLM-RoBERTa post-processing applied.
|
||||
|
||||
This model must be separately initialized using an appropriate
|
||||
loader.
|
||||
|
||||
|
||||
|
||||
|
||||
## Pretraining architectures {id="pretrain",source="spacy/ml/models/multi_task.py"}
|
||||
|
||||
The spacy `pretrain` command lets you initialize a `Tok2Vec` layer in your
|
||||
|
@ -519,7 +831,7 @@ objective for a Tok2Vec layer. To use this objective, make sure that the
|
|||
vectors.
|
||||
|
||||
| Name | Description |
|
||||
| --------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
|
||||
| `maxout_pieces` | The number of maxout pieces to use. Recommended values are `2` or `3`. ~~int~~ |
|
||||
| `hidden_size` | Size of the hidden layer of the model. ~~int~~ |
|
||||
| `loss` | The loss function can be either "cosine" or "L2". We typically recommend to use "cosine". ~~~str~~ |
|
||||
|
|
|
@ -1018,6 +1018,54 @@ $ python -m spacy debug model ./config.cfg tagger -l "5,15" -DIM -PAR -P0 -P1 -P
|
|||
| overrides | Config parameters to override. Should be options starting with `--` that correspond to the config section and value to override, e.g. `--paths.train ./train.spacy`. ~~Any (option/flag)~~ |
|
||||
| **PRINTS** | Debugging information. |
|
||||
|
||||
### debug pieces {id="debug-pieces",version="3.6",tag="command"}
|
||||
|
||||
Analyze word- or sentencepiece stats.
|
||||
|
||||
```bash
|
||||
$ python -m spacy debug pieces [config_path] [code_path] [transformer_name]
|
||||
```
|
||||
|
||||
| Name | Description |
|
||||
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
||||
| `config_path` | Path to config file. ~~Union[Path, str] (positional)~~ |
|
||||
| `code_path` | Path to Python file with additional code (registered functions) to be imported. ~~Union[Path, str] (option)~~ |
|
||||
| `transformer_name` | Name of the transformer pipe to gather piece statistics for (default: first transformer pipe). ~~str (option)~~ |
|
||||
| overrides | Config parameters to override. Should be options starting with `--` that correspond to the config section and value to override, e.g. `--paths.train ./train.spacy`. ~~Any (option/flag)~~ |
|
||||
| **PRINTS** | Debugging information. |
|
||||
|
||||
|
||||
<Accordion title="Example outputs" spaced>
|
||||
|
||||
```bash
|
||||
$ python -m spacy debug pieces ./config.cfg
|
||||
```
|
||||
|
||||
```
|
||||
========================= Training corpus statistics =========================
|
||||
Median token length: 1.0
|
||||
Mean token length: 1.54
|
||||
Token length range: [1, 13]
|
||||
|
||||
======================= Development corpus statistics =======================
|
||||
Median token length: 1.0
|
||||
Mean token length: 1.44
|
||||
Token length range: [1, 8]
|
||||
```
|
||||
</Accordion>
|
||||
|
||||
## quantize {id="quantize",tag="command",version="3.6"}
|
||||
|
||||
Quantize a curated transformers model to reduce its size.
|
||||
|
||||
| Name | Description |
|
||||
|----------------|---------------------------------------------------------------------|
|
||||
| `model_path` | Model to quantize. ~~Path (positional)~~ |
|
||||
| `output_path` | Output directory to store quantized model in. ~~Path (positional)~~ |
|
||||
| `max_mse_loss` | Maximum MSE loss of quantized parameters. ~~float (option)~~ |
|
||||
| `skip_embeds` | Do not quantize embeddings. ~~bool (option)~~ |
|
||||
| `skip_linear` | Do not quantize linear layers. ~~bool (option)~~ |
|
||||
|
||||
## train {id="train",tag="command"}
|
||||
|
||||
Train a pipeline. Expects data in spaCy's
|
||||
|
|
|
@ -483,7 +483,6 @@ Construct a callback that initializes a character piece encoder model.
|
|||
| `eos_piece` | Piece used as a end-of-sentence token. Defaults to `"[EOS]"`. ~~str~~ |
|
||||
| `unk_piece` | Piece used as a stand-in for unknown tokens. Defaults to `"[UNK]"`. ~~str~~ |
|
||||
| `normalize` | Unicode normalization form to use. Defaults to `"NFKC"`. ~~str~~ |
|
||||
| `vocab` | The shared vocabulary to use. ~~Optional[Vocab]~~ |
|
||||
|
||||
|
||||
### HFPieceEncoderLoader.v1 {id="hf_pieceencoder_loader",tag="registered_function"}
|
||||
|
@ -531,3 +530,17 @@ Construct a callback that initializes a supported transformer model with weights
|
|||
|--------|------------------------------------------|
|
||||
| `path` | Path to the PyTorch checkpoint. ~~Path~~ |
|
||||
|
||||
## Callbacks
|
||||
|
||||
### gradual_transformer_unfreezing.v1 {id="gradual_transformer_unfreezing",tag="registered_function"}
|
||||
|
||||
Construct a callback that can be used to gradually unfreeze the
|
||||
weights of one or more Transformer components during training. This
|
||||
can be used to prevent catastrophic forgetting during fine-tuning.
|
||||
|
||||
|
||||
| Name | Description |
|
||||
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
||||
| `target_pipes` | A dictionary whose keys and values correspond to the names of Transformer components and the training step at which they should be unfrozen respectively. ~~Dict[str, int]~~ |
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user