mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-12 18:26:30 +03:00
* Refactor _ml.Model, and finish implementing HastyModel so far not worthwhile.
This commit is contained in:
parent
bcd038e7b6
commit
aafaf58cbe
|
@ -12,25 +12,34 @@ from .typedefs cimport hash_t, id_t
|
|||
from .tokens cimport Tokens
|
||||
|
||||
|
||||
cdef int arg_max(const weight_t* scores, const int n_classes) nogil
|
||||
|
||||
|
||||
cdef class Model:
|
||||
cdef weight_t* score(self, atom_t* context) except NULL
|
||||
cdef class_t predict(self, atom_t* context) except *
|
||||
cdef class_t predict_among(self, atom_t* context, bint* valid) except *
|
||||
cdef class_t predict_and_update(self, atom_t* context, const bint* valid,
|
||||
const int* costs) except *
|
||||
|
||||
cdef Pool mem
|
||||
cdef int n_classes
|
||||
|
||||
cdef int update(self, atom_t* context, class_t guess, class_t gold, int cost) except -1
|
||||
|
||||
cdef object model_loc
|
||||
cdef Extractor _extractor
|
||||
cdef LinearModel _model
|
||||
|
||||
cdef inline const weight_t* score(self, atom_t* context):
|
||||
cdef int n_feats
|
||||
feats = self._extractor.get_feats(context, &n_feats)
|
||||
return self._model.get_scores(feats, n_feats)
|
||||
|
||||
|
||||
cdef class HastyModel:
|
||||
cdef class_t predict(self, atom_t* context) except *
|
||||
cdef class_t predict_among(self, atom_t* context, bint* valid) except *
|
||||
cdef class_t predict_and_update(self, atom_t* context, const bint* valid,
|
||||
const int* costs) except *
|
||||
cdef Pool mem
|
||||
cdef weight_t* _scores
|
||||
|
||||
cdef weight_t confidence
|
||||
cdef const weight_t* score(self, atom_t* context) except NULL
|
||||
cdef int update(self, atom_t* context, class_t guess, class_t gold, int cost) except -1
|
||||
|
||||
cdef int n_classes
|
||||
cdef Model _hasty
|
||||
cdef Model _full
|
||||
cdef readonly int hasty_cnt
|
||||
cdef readonly int full_cnt
|
||||
|
|
183
spacy/_ml.pyx
183
spacy/_ml.pyx
|
@ -4,7 +4,6 @@ from __future__ import division
|
|||
|
||||
from os import path
|
||||
import os
|
||||
from collections import defaultdict
|
||||
import shutil
|
||||
import random
|
||||
import json
|
||||
|
@ -13,80 +12,39 @@ import cython
|
|||
from thinc.features cimport Feature, count_feats
|
||||
|
||||
|
||||
def setup_model_dir(tag_names, tag_map, templates, model_dir):
|
||||
if path.exists(model_dir):
|
||||
shutil.rmtree(model_dir)
|
||||
os.mkdir(model_dir)
|
||||
config = {
|
||||
'templates': templates,
|
||||
'tag_names': tag_names,
|
||||
'tag_map': tag_map
|
||||
}
|
||||
with open(path.join(model_dir, 'config.json'), 'w') as file_:
|
||||
json.dump(config, file_)
|
||||
cdef int arg_max(const weight_t* scores, const int n_classes) nogil:
|
||||
cdef int i
|
||||
cdef int best = 0
|
||||
cdef weight_t mode = scores[0]
|
||||
for i in range(1, n_classes):
|
||||
if scores[i] > mode:
|
||||
mode = scores[i]
|
||||
best = i
|
||||
return best
|
||||
|
||||
|
||||
cdef class Model:
|
||||
def __init__(self, n_classes, templates, model_loc=None):
|
||||
if model_loc is not None and path.isdir(model_loc):
|
||||
model_loc = path.join(model_loc, 'model')
|
||||
self.mem = Pool()
|
||||
self.n_classes = n_classes
|
||||
self._extractor = Extractor(templates)
|
||||
self._model = LinearModel(n_classes, self._extractor.n_templ)
|
||||
self.model_loc = model_loc
|
||||
if self.model_loc and path.exists(self.model_loc):
|
||||
self._model.load(self.model_loc, freq_thresh=0)
|
||||
|
||||
cdef const weight_t* score(self, atom_t* context) except NULL:
|
||||
cdef int update(self, atom_t* context, class_t guess, class_t gold, int cost) except -1:
|
||||
cdef int n_feats
|
||||
cdef const Feature* feats = self._extractor.get_feats(context, &n_feats)
|
||||
return self._model.get_scores(feats, n_feats)
|
||||
|
||||
cdef class_t predict(self, atom_t* context) except *:
|
||||
cdef weight_t _
|
||||
scores = self.score(context)
|
||||
guess = _arg_max(scores, self._model.nr_class, &_)
|
||||
return guess
|
||||
|
||||
cdef class_t predict_among(self, atom_t* context, const bint* valid) except *:
|
||||
cdef weight_t _
|
||||
scores = self.score(context)
|
||||
return _arg_max_among(scores, valid, self._model.nr_class, &_)
|
||||
|
||||
cdef class_t predict_and_update(self, atom_t* context, const bint* valid,
|
||||
const int* costs) except *:
|
||||
cdef:
|
||||
int n_feats
|
||||
const Feature* feats
|
||||
const weight_t* scores
|
||||
|
||||
int guess
|
||||
int best
|
||||
int cost
|
||||
int i
|
||||
weight_t score
|
||||
weight_t _
|
||||
|
||||
feats = self._extractor.get_feats(context, &n_feats)
|
||||
scores = self._model.get_scores(feats, n_feats)
|
||||
guess = _arg_max_among(scores, valid, self._model.nr_class, &_)
|
||||
cost = costs[guess]
|
||||
if cost == 0:
|
||||
self._model.update({})
|
||||
return guess
|
||||
|
||||
guess_counts = defaultdict(int)
|
||||
best_counts = defaultdict(int)
|
||||
for i in range(n_feats):
|
||||
feat = (feats[i].i, feats[i].key)
|
||||
upd = feats[i].value * cost
|
||||
best_counts[feat] += upd
|
||||
guess_counts[feat] -= upd
|
||||
best = -1
|
||||
score = 0
|
||||
for i in range(self._model.nr_class):
|
||||
if valid[i] and costs[i] == 0 and (best == -1 or scores[i] > score):
|
||||
best = i
|
||||
score = scores[i]
|
||||
self._model.update({guess: guess_counts, best: best_counts})
|
||||
return guess
|
||||
else:
|
||||
feats = self._extractor.get_feats(context, &n_feats)
|
||||
counts = {gold: {}, guess: {}}
|
||||
count_feats(counts[gold], feats, n_feats, cost)
|
||||
count_feats(counts[guess], feats, n_feats, -cost)
|
||||
self._model.update(counts)
|
||||
|
||||
def end_training(self):
|
||||
self._model.end_training()
|
||||
|
@ -94,41 +52,34 @@ cdef class Model:
|
|||
|
||||
|
||||
cdef class HastyModel:
|
||||
def __init__(self, n_classes, hasty_templates, full_templates, model_dir,
|
||||
weight_t confidence=0.1):
|
||||
def __init__(self, n_classes, hasty_templates, full_templates, model_dir):
|
||||
full_templates = tuple([t for t in full_templates if t not in hasty_templates])
|
||||
self.mem = Pool()
|
||||
self.n_classes = n_classes
|
||||
self.confidence = confidence
|
||||
self._scores = <weight_t*>self.mem.alloc(self.n_classes, sizeof(weight_t))
|
||||
assert path.exists(model_dir)
|
||||
assert path.isdir(model_dir)
|
||||
self._hasty = Model(n_classes, hasty_templates, path.join(model_dir, 'hasty_model'))
|
||||
self._full = Model(n_classes, full_templates, path.join(model_dir, 'full_model'))
|
||||
self.hasty_cnt = 0
|
||||
self.full_cnt = 0
|
||||
|
||||
cdef class_t predict(self, atom_t* context) except *:
|
||||
cdef weight_t ratio
|
||||
scores = self._hasty.score(context)
|
||||
guess = _arg_max(scores, self.n_classes, &ratio)
|
||||
if ratio < self.confidence:
|
||||
return guess
|
||||
cdef const weight_t* score(self, atom_t* context) except NULL:
|
||||
cdef int i
|
||||
hasty_scores = self._hasty.score(context)
|
||||
if will_use_hasty(hasty_scores, self._hasty.n_classes):
|
||||
self.hasty_cnt += 1
|
||||
return hasty_scores
|
||||
else:
|
||||
return self._full.predict(context)
|
||||
self.full_cnt += 1
|
||||
full_scores = self._full.score(context)
|
||||
for i in range(self.n_classes):
|
||||
self._scores[i] = full_scores[i] + hasty_scores[i]
|
||||
return self._scores
|
||||
|
||||
cdef class_t predict_among(self, atom_t* context, bint* valid) except *:
|
||||
cdef weight_t ratio
|
||||
scores = self._hasty.score(context)
|
||||
guess = _arg_max_among(scores, valid, self.n_classes, &ratio)
|
||||
if ratio < self.confidence:
|
||||
return guess
|
||||
else:
|
||||
return self._full.predict(context)
|
||||
|
||||
cdef class_t predict_and_update(self, atom_t* context, bint* valid, int* costs) except *:
|
||||
cdef weight_t ratio
|
||||
scores = self._hasty.score(context)
|
||||
_arg_max_among(scores, valid, self.n_classes, &ratio)
|
||||
hasty_guess = self._hasty.predict_and_update(context, valid, costs)
|
||||
full_guess = self._full.predict_and_update(context, valid, costs)
|
||||
if ratio < self.confidence:
|
||||
return hasty_guess
|
||||
else:
|
||||
return full_guess
|
||||
cdef int update(self, atom_t* context, class_t guess, class_t gold, int cost) except -1:
|
||||
self._hasty.update(context, guess, gold, cost)
|
||||
self._full.update(context, guess, gold, cost)
|
||||
|
||||
def end_training(self):
|
||||
self._hasty.end_training()
|
||||
|
@ -136,31 +87,29 @@ cdef class HastyModel:
|
|||
|
||||
|
||||
@cython.cdivision(True)
|
||||
cdef int _arg_max(const weight_t* scores, int n_classes, weight_t* ratio) except -1:
|
||||
cdef int best = 0
|
||||
cdef weight_t score = scores[best]
|
||||
cdef bint will_use_hasty(const weight_t* scores, int n_classes) nogil:
|
||||
cdef:
|
||||
weight_t best_score, second_score
|
||||
int best, second
|
||||
|
||||
if scores[0] >= scores[1]:
|
||||
best = 0
|
||||
best_score = scores[0]
|
||||
second = 1
|
||||
second_score = scores[1]
|
||||
else:
|
||||
best = 1
|
||||
best_score = scores[1]
|
||||
second = 0
|
||||
second_score = scores[0]
|
||||
cdef int i
|
||||
ratio[0] = 0.0
|
||||
for i in range(1, n_classes):
|
||||
if scores[i] >= score:
|
||||
if score > 0:
|
||||
ratio[0] = score / scores[i]
|
||||
score = scores[i]
|
||||
for i in range(2, n_classes):
|
||||
if scores[i] > best_score:
|
||||
second_score = best_score
|
||||
second = best
|
||||
best = i
|
||||
return best
|
||||
|
||||
|
||||
@cython.cdivision(True)
|
||||
cdef int _arg_max_among(const weight_t* scores, const bint* valid, int n_classes,
|
||||
weight_t* ratio) except -1:
|
||||
cdef int clas
|
||||
cdef weight_t score = 0
|
||||
cdef int best = -1
|
||||
ratio[0] = 0
|
||||
for clas in range(n_classes):
|
||||
if valid[clas] and (best == -1 or scores[clas] > score):
|
||||
if score > 0:
|
||||
ratio[0] = score / scores[clas]
|
||||
score = scores[clas]
|
||||
best = clas
|
||||
return best
|
||||
best_score = scores[i]
|
||||
elif scores[i] > second_score:
|
||||
second_score = scores[i]
|
||||
second = i
|
||||
return best_score > 0 and second_score < (best_score / 2)
|
||||
|
|
|
@ -82,16 +82,13 @@ class English(object):
|
|||
tokens (spacy.tokens.Tokens):
|
||||
"""
|
||||
tokens = self.tokenizer.tokenize(text)
|
||||
if self.tagger and tag:
|
||||
if tag:
|
||||
self.tagger(tokens)
|
||||
if self.parser and parse:
|
||||
if parse:
|
||||
self.parser.parse(tokens)
|
||||
return tokens
|
||||
|
||||
@property
|
||||
def tags(self):
|
||||
"""List of part-of-speech tag names."""
|
||||
if self.tagger is None:
|
||||
return []
|
||||
else:
|
||||
return self.tagger.tag_names
|
||||
return self.tagger.tag_names
|
||||
|
|
|
@ -1,11 +1,13 @@
|
|||
# cython: profile=True
|
||||
from os import path
|
||||
import json
|
||||
import os
|
||||
import shutil
|
||||
|
||||
from libc.string cimport memset
|
||||
|
||||
from cymem.cymem cimport Address
|
||||
from thinc.typedefs cimport atom_t
|
||||
from thinc.typedefs cimport atom_t, weight_t
|
||||
|
||||
from ..typedefs cimport univ_tag_t
|
||||
from ..typedefs cimport NO_TAG, ADJ, ADV, ADP, CONJ, DET, NOUN, NUM, PRON, PRT, VERB
|
||||
|
@ -14,6 +16,8 @@ from ..typedefs cimport id_t
|
|||
from ..structs cimport TokenC, Morphology, Lexeme
|
||||
from ..tokens cimport Tokens
|
||||
from ..morphology cimport set_morph_from_dict
|
||||
from .._ml cimport arg_max
|
||||
|
||||
from .lemmatizer import Lemmatizer
|
||||
|
||||
|
||||
|
@ -206,6 +210,19 @@ cdef struct _CachedMorph:
|
|||
int lemma
|
||||
|
||||
|
||||
def setup_model_dir(tag_names, tag_map, templates, model_dir):
|
||||
if path.exists(model_dir):
|
||||
shutil.rmtree(model_dir)
|
||||
os.mkdir(model_dir)
|
||||
config = {
|
||||
'templates': templates,
|
||||
'tag_names': tag_names,
|
||||
'tag_map': tag_map
|
||||
}
|
||||
with open(path.join(model_dir, 'config.json'), 'w') as file_:
|
||||
json.dump(config, file_)
|
||||
|
||||
|
||||
cdef class EnPosTagger:
|
||||
"""A part-of-speech tagger for English"""
|
||||
def __init__(self, StringStore strings, data_dir):
|
||||
|
@ -218,8 +235,8 @@ cdef class EnPosTagger:
|
|||
self.tag_map = cfg['tag_map']
|
||||
cdef int n_tags = len(self.tag_names) + 1
|
||||
|
||||
self.model = Model(n_tags, cfg['templates'], model_dir=model_dir)
|
||||
|
||||
hasty_templates = ((W_sic,), (P1_pos, P2_pos), (N1_sic,))
|
||||
self.model = Model(n_tags, cfg['templates'], model_dir)
|
||||
self._morph_cache = PreshMapArray(n_tags)
|
||||
self.tags = <PosTag*>self.mem.alloc(n_tags, sizeof(PosTag))
|
||||
for i, tag in enumerate(sorted(self.tag_names)):
|
||||
|
@ -239,30 +256,27 @@ cdef class EnPosTagger:
|
|||
"""
|
||||
cdef int i
|
||||
cdef atom_t[N_CONTEXT_FIELDS] context
|
||||
cdef TokenC* t = tokens.data
|
||||
cdef const weight_t* scores
|
||||
for i in range(tokens.length):
|
||||
if t[i].fine_pos == 0:
|
||||
fill_context(context, i, t)
|
||||
t[i].fine_pos = self.model.predict(context)
|
||||
self.set_morph(i, t)
|
||||
if tokens.data[i].fine_pos == 0:
|
||||
fill_context(context, i, tokens.data)
|
||||
scores = self.model.score(context)
|
||||
tokens.data[i].fine_pos = arg_max(scores, self.model.n_classes)
|
||||
self.set_morph(i, tokens.data)
|
||||
|
||||
def train(self, Tokens tokens, py_golds):
|
||||
def train(self, Tokens tokens, object golds):
|
||||
cdef int i
|
||||
cdef atom_t[N_CONTEXT_FIELDS] context
|
||||
cdef Address costs_mem = Address(self.n_tags, sizeof(int))
|
||||
cdef Address valid_mem = Address(self.n_tags, sizeof(bint))
|
||||
cdef int* costs = <int*>costs_mem.ptr
|
||||
cdef bint* valid = <bint*>valid_mem.ptr
|
||||
memset(valid, 1, sizeof(int) * self.n_tags)
|
||||
cdef const weight_t* scores
|
||||
correct = 0
|
||||
cdef TokenC* t = tokens.data
|
||||
for i in range(tokens.length):
|
||||
fill_context(context, i, t)
|
||||
memset(costs, 1, sizeof(int) * self.n_tags)
|
||||
costs[py_golds[i]] = 0
|
||||
t[i].fine_pos = self.model.predict_and_update(context, valid, costs)
|
||||
self.set_morph(i, t)
|
||||
correct += costs[t[i].fine_pos] == 0
|
||||
fill_context(context, i, tokens.data)
|
||||
scores = self.model.score(context)
|
||||
guess = arg_max(scores, self.model.n_classes)
|
||||
self.model.update(context, guess, golds[i], guess != golds[i])
|
||||
tokens.data[i].fine_pos = guess
|
||||
self.set_morph(i, tokens.data)
|
||||
correct += guess == golds[i]
|
||||
return correct
|
||||
|
||||
cdef int set_morph(self, const int i, TokenC* tokens) except -1:
|
||||
|
|
|
@ -85,7 +85,6 @@ cdef int fill_context(atom_t* context, State* state) except -1:
|
|||
if state.stack_len >= 3:
|
||||
context[S2_has_head] = has_head(get_s2(state))
|
||||
|
||||
|
||||
unigrams = (
|
||||
(S2W, S2p),
|
||||
(S2c6, S2p),
|
||||
|
@ -347,6 +346,9 @@ clusters = (
|
|||
)
|
||||
|
||||
|
||||
hasty = s0_n0 + n0_n1 + trigrams
|
||||
|
||||
|
||||
def pos_bigrams():
|
||||
kernels = [S2w, S1w, S0w, S0lw, S0rw, N0w, N0lw, N1w]
|
||||
bitags = []
|
||||
|
|
|
@ -1,5 +1,4 @@
|
|||
from thinc.features cimport Extractor
|
||||
from thinc.learner cimport LinearModel
|
||||
from .._ml cimport Model, HastyModel
|
||||
|
||||
from .arc_eager cimport TransitionSystem
|
||||
|
||||
|
@ -8,8 +7,7 @@ from ..tokens cimport Tokens, TokenC
|
|||
|
||||
cdef class GreedyParser:
|
||||
cdef object cfg
|
||||
cdef Extractor extractor
|
||||
cdef readonly LinearModel model
|
||||
cdef readonly Model model
|
||||
cdef TransitionSystem moves
|
||||
|
||||
cpdef int parse(self, Tokens tokens) except -1
|
||||
|
|
|
@ -7,7 +7,7 @@ cimport cython
|
|||
from libc.stdint cimport uint32_t, uint64_t
|
||||
import random
|
||||
import os.path
|
||||
from os.path import join as pjoin
|
||||
from os import path
|
||||
import shutil
|
||||
import json
|
||||
|
||||
|
@ -52,26 +52,23 @@ cdef unicode print_state(State* s, list words):
|
|||
def get_templates(name):
|
||||
pf = _parse_features
|
||||
if name == 'zhang':
|
||||
return pf.arc_eager
|
||||
return pf.unigrams, pf.arc_eager
|
||||
else:
|
||||
return pf.unigrams + pf.s0_n0 + pf.s1_n0 + pf.s0_n1 + pf.n0_n1 + \
|
||||
pf.tree_shape + pf.trigrams
|
||||
return pf.hasty, (pf.unigrams + pf.s0_n0 + pf.s1_n0 + pf.s0_n1 + pf.n0_n1 + \
|
||||
pf.tree_shape + pf.trigrams)
|
||||
|
||||
|
||||
cdef class GreedyParser:
|
||||
def __init__(self, model_dir):
|
||||
assert os.path.exists(model_dir) and os.path.isdir(model_dir)
|
||||
self.cfg = Config.read(model_dir, 'config')
|
||||
self.extractor = Extractor(get_templates(self.cfg.features))
|
||||
self.moves = TransitionSystem(self.cfg.left_labels, self.cfg.right_labels)
|
||||
self.model = LinearModel(self.moves.n_moves, self.extractor.n_templ)
|
||||
if os.path.exists(pjoin(model_dir, 'model')):
|
||||
self.model.load(pjoin(model_dir, 'model'))
|
||||
hasty_templ, full_templ = get_templates(self.cfg.features)
|
||||
#self.model = HastyModel(self.moves.n_moves, hasty_templ, full_templ, model_dir)
|
||||
self.model = Model(self.moves.n_moves, full_templ, model_dir)
|
||||
|
||||
cpdef int parse(self, Tokens tokens) except -1:
|
||||
cdef:
|
||||
const Feature* feats
|
||||
const weight_t* scores
|
||||
Transition guess
|
||||
uint64_t state_key
|
||||
|
||||
|
@ -81,8 +78,7 @@ cdef class GreedyParser:
|
|||
cdef State* state = init_state(mem, tokens.data, tokens.length)
|
||||
while not is_final(state):
|
||||
fill_context(context, state)
|
||||
feats = self.extractor.get_feats(context, &n_feats)
|
||||
scores = self.model.get_scores(feats, n_feats)
|
||||
scores = self.model.score(context)
|
||||
guess = self.moves.best_valid(scores, state)
|
||||
self.moves.transition(state, &guess)
|
||||
return 0
|
||||
|
@ -106,35 +102,13 @@ cdef class GreedyParser:
|
|||
|
||||
cdef State* state = init_state(mem, tokens.data, tokens.length)
|
||||
while not is_final(state):
|
||||
fill_context(context, state)
|
||||
feats = self.extractor.get_feats(context, &n_feats)
|
||||
scores = self.model.get_scores(feats, n_feats)
|
||||
fill_context(context, state)
|
||||
scores = self.model.score(context)
|
||||
guess = self.moves.best_valid(scores, state)
|
||||
best = self.moves.best_gold(&guess, scores, state, heads_array, labels_array)
|
||||
counts = _get_counts(guess.clas, best.clas, feats, n_feats, guess.cost)
|
||||
self.model.update(counts)
|
||||
self.model.update(context, guess.clas, best.clas, guess.cost)
|
||||
self.moves.transition(state, &guess)
|
||||
cdef int n_corr = 0
|
||||
for i in range(tokens.length):
|
||||
n_corr += (i + state.sent[i].head) == gold_heads[i]
|
||||
return n_corr
|
||||
|
||||
|
||||
cdef dict _get_counts(int guess, int best, const Feature* feats, const int n_feats,
|
||||
int inc):
|
||||
if guess == best:
|
||||
return {}
|
||||
|
||||
gold_counts = {}
|
||||
guess_counts = {}
|
||||
cdef int i
|
||||
for i in range(n_feats):
|
||||
key = (feats[i].i, feats[i].key)
|
||||
if key in gold_counts:
|
||||
gold_counts[key] += (feats[i].value * inc)
|
||||
guess_counts[key] -= (feats[i].value * inc)
|
||||
else:
|
||||
gold_counts[key] = (feats[i].value * inc)
|
||||
guess_counts[key] = -(feats[i].value * inc)
|
||||
return {guess: guess_counts, best: gold_counts}
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user