mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-04 01:48:04 +03:00 
			
		
		
		
	* Refactor _ml.Model, and finish implementing HastyModel so far not worthwhile.
This commit is contained in:
		
							parent
							
								
									bcd038e7b6
								
							
						
					
					
						commit
						aafaf58cbe
					
				| 
						 | 
				
			
			@ -12,25 +12,34 @@ from .typedefs cimport hash_t, id_t
 | 
			
		|||
from .tokens cimport Tokens
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
cdef int arg_max(const weight_t* scores, const int n_classes) nogil
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
cdef class Model:
 | 
			
		||||
    cdef weight_t* score(self, atom_t* context) except NULL
 | 
			
		||||
    cdef class_t predict(self, atom_t* context) except *
 | 
			
		||||
    cdef class_t predict_among(self, atom_t* context, bint* valid) except *
 | 
			
		||||
    cdef class_t predict_and_update(self, atom_t* context, const bint* valid,
 | 
			
		||||
                                    const int* costs) except *
 | 
			
		||||
    cdef Pool mem
 | 
			
		||||
    cdef int n_classes
 | 
			
		||||
 | 
			
		||||
    cdef int update(self, atom_t* context, class_t guess, class_t gold, int cost) except -1
 | 
			
		||||
 | 
			
		||||
    cdef object model_loc
 | 
			
		||||
    cdef Extractor _extractor
 | 
			
		||||
    cdef LinearModel _model
 | 
			
		||||
 | 
			
		||||
    cdef inline const weight_t* score(self, atom_t* context):
 | 
			
		||||
        cdef int n_feats
 | 
			
		||||
        feats = self._extractor.get_feats(context, &n_feats)
 | 
			
		||||
        return self._model.get_scores(feats, n_feats)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
cdef class HastyModel:
 | 
			
		||||
    cdef class_t predict(self, atom_t* context) except *
 | 
			
		||||
    cdef class_t predict_among(self, atom_t* context, bint* valid) except *
 | 
			
		||||
    cdef class_t predict_and_update(self, atom_t* context, const bint* valid,
 | 
			
		||||
                                    const int* costs) except *
 | 
			
		||||
    cdef Pool mem
 | 
			
		||||
    cdef weight_t* _scores
 | 
			
		||||
 
 | 
			
		||||
    cdef const weight_t* score(self, atom_t* context) except NULL
 | 
			
		||||
    cdef int update(self, atom_t* context, class_t guess, class_t gold, int cost) except -1
 | 
			
		||||
 | 
			
		||||
    cdef weight_t confidence
 | 
			
		||||
    cdef int n_classes
 | 
			
		||||
    cdef Model _hasty
 | 
			
		||||
    cdef Model _full
 | 
			
		||||
    cdef readonly int hasty_cnt
 | 
			
		||||
    cdef readonly int full_cnt
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
							
								
								
									
										183
									
								
								spacy/_ml.pyx
									
									
									
									
									
								
							
							
						
						
									
										183
									
								
								spacy/_ml.pyx
									
									
									
									
									
								
							| 
						 | 
				
			
			@ -4,7 +4,6 @@ from __future__ import division
 | 
			
		|||
 | 
			
		||||
from os import path
 | 
			
		||||
import os
 | 
			
		||||
from collections import defaultdict
 | 
			
		||||
import shutil
 | 
			
		||||
import random
 | 
			
		||||
import json
 | 
			
		||||
| 
						 | 
				
			
			@ -13,80 +12,39 @@ import cython
 | 
			
		|||
from thinc.features cimport Feature, count_feats
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def setup_model_dir(tag_names, tag_map, templates, model_dir):
 | 
			
		||||
    if path.exists(model_dir):
 | 
			
		||||
        shutil.rmtree(model_dir)
 | 
			
		||||
    os.mkdir(model_dir)
 | 
			
		||||
    config = {
 | 
			
		||||
        'templates': templates,
 | 
			
		||||
        'tag_names': tag_names,
 | 
			
		||||
        'tag_map': tag_map
 | 
			
		||||
    }
 | 
			
		||||
    with open(path.join(model_dir, 'config.json'), 'w') as file_:
 | 
			
		||||
        json.dump(config, file_)
 | 
			
		||||
cdef int arg_max(const weight_t* scores, const int n_classes) nogil:
 | 
			
		||||
    cdef int i
 | 
			
		||||
    cdef int best = 0
 | 
			
		||||
    cdef weight_t mode = scores[0]
 | 
			
		||||
    for i in range(1, n_classes):
 | 
			
		||||
        if scores[i] > mode:
 | 
			
		||||
            mode = scores[i]
 | 
			
		||||
            best = i
 | 
			
		||||
    return best
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
cdef class Model:
 | 
			
		||||
    def __init__(self, n_classes, templates, model_loc=None):
 | 
			
		||||
        if model_loc is not None and path.isdir(model_loc):
 | 
			
		||||
            model_loc = path.join(model_loc, 'model')
 | 
			
		||||
        self.mem = Pool()
 | 
			
		||||
        self.n_classes = n_classes
 | 
			
		||||
        self._extractor = Extractor(templates)
 | 
			
		||||
        self._model = LinearModel(n_classes, self._extractor.n_templ)
 | 
			
		||||
        self.model_loc = model_loc
 | 
			
		||||
        if self.model_loc and path.exists(self.model_loc):
 | 
			
		||||
            self._model.load(self.model_loc, freq_thresh=0)
 | 
			
		||||
 | 
			
		||||
    cdef const weight_t* score(self, atom_t* context) except NULL:
 | 
			
		||||
    cdef int update(self, atom_t* context, class_t guess, class_t gold, int cost) except -1:
 | 
			
		||||
        cdef int n_feats
 | 
			
		||||
        cdef const Feature* feats = self._extractor.get_feats(context, &n_feats)
 | 
			
		||||
        return self._model.get_scores(feats, n_feats)
 | 
			
		||||
 | 
			
		||||
    cdef class_t predict(self, atom_t* context) except *:
 | 
			
		||||
        cdef weight_t _
 | 
			
		||||
        scores = self.score(context)
 | 
			
		||||
        guess = _arg_max(scores, self._model.nr_class, &_)
 | 
			
		||||
        return guess
 | 
			
		||||
 | 
			
		||||
    cdef class_t predict_among(self, atom_t* context, const bint* valid) except *:
 | 
			
		||||
        cdef weight_t _
 | 
			
		||||
        scores = self.score(context)
 | 
			
		||||
        return _arg_max_among(scores, valid, self._model.nr_class, &_)
 | 
			
		||||
 | 
			
		||||
    cdef class_t predict_and_update(self, atom_t* context, const bint* valid,
 | 
			
		||||
                                    const int* costs) except *:
 | 
			
		||||
        cdef:
 | 
			
		||||
            int n_feats
 | 
			
		||||
            const Feature* feats
 | 
			
		||||
            const weight_t* scores
 | 
			
		||||
 | 
			
		||||
            int guess
 | 
			
		||||
            int best
 | 
			
		||||
            int cost
 | 
			
		||||
            int i
 | 
			
		||||
            weight_t score
 | 
			
		||||
            weight_t _
 | 
			
		||||
        
 | 
			
		||||
        feats = self._extractor.get_feats(context, &n_feats)
 | 
			
		||||
        scores = self._model.get_scores(feats, n_feats)
 | 
			
		||||
        guess = _arg_max_among(scores, valid, self._model.nr_class, &_)
 | 
			
		||||
        cost = costs[guess]
 | 
			
		||||
        if cost == 0:
 | 
			
		||||
            self._model.update({})
 | 
			
		||||
            return guess
 | 
			
		||||
 | 
			
		||||
        guess_counts = defaultdict(int)
 | 
			
		||||
        best_counts = defaultdict(int)
 | 
			
		||||
        for i in range(n_feats):
 | 
			
		||||
            feat = (feats[i].i, feats[i].key)
 | 
			
		||||
            upd = feats[i].value * cost
 | 
			
		||||
            best_counts[feat] += upd
 | 
			
		||||
            guess_counts[feat] -= upd
 | 
			
		||||
        best = -1
 | 
			
		||||
        score = 0
 | 
			
		||||
        for i in range(self._model.nr_class):
 | 
			
		||||
            if valid[i] and costs[i] == 0 and (best == -1 or scores[i] > score):
 | 
			
		||||
                best = i
 | 
			
		||||
                score = scores[i]
 | 
			
		||||
        self._model.update({guess: guess_counts, best: best_counts})
 | 
			
		||||
        return guess
 | 
			
		||||
        else:
 | 
			
		||||
            feats = self._extractor.get_feats(context, &n_feats)
 | 
			
		||||
            counts = {gold: {}, guess: {}}
 | 
			
		||||
            count_feats(counts[gold], feats, n_feats, cost)
 | 
			
		||||
            count_feats(counts[guess], feats, n_feats, -cost)
 | 
			
		||||
            self._model.update(counts)
 | 
			
		||||
 | 
			
		||||
    def end_training(self):
 | 
			
		||||
        self._model.end_training()
 | 
			
		||||
| 
						 | 
				
			
			@ -94,41 +52,34 @@ cdef class Model:
 | 
			
		|||
 | 
			
		||||
 | 
			
		||||
cdef class HastyModel:
 | 
			
		||||
    def __init__(self, n_classes, hasty_templates, full_templates, model_dir,
 | 
			
		||||
                 weight_t confidence=0.1):
 | 
			
		||||
    def __init__(self, n_classes, hasty_templates, full_templates, model_dir):
 | 
			
		||||
        full_templates = tuple([t for t in full_templates if t not in hasty_templates])
 | 
			
		||||
        self.mem = Pool()
 | 
			
		||||
        self.n_classes = n_classes
 | 
			
		||||
        self.confidence = confidence
 | 
			
		||||
        self._scores = <weight_t*>self.mem.alloc(self.n_classes, sizeof(weight_t))
 | 
			
		||||
        assert path.exists(model_dir)
 | 
			
		||||
        assert path.isdir(model_dir)
 | 
			
		||||
        self._hasty = Model(n_classes, hasty_templates, path.join(model_dir, 'hasty_model'))
 | 
			
		||||
        self._full = Model(n_classes, full_templates, path.join(model_dir, 'full_model'))
 | 
			
		||||
        self.hasty_cnt = 0
 | 
			
		||||
        self.full_cnt = 0
 | 
			
		||||
 | 
			
		||||
    cdef class_t predict(self, atom_t* context) except *:
 | 
			
		||||
        cdef weight_t ratio
 | 
			
		||||
        scores = self._hasty.score(context)
 | 
			
		||||
        guess = _arg_max(scores, self.n_classes, &ratio)
 | 
			
		||||
        if ratio < self.confidence:
 | 
			
		||||
            return guess
 | 
			
		||||
    cdef const weight_t* score(self, atom_t* context) except NULL:
 | 
			
		||||
        cdef int i
 | 
			
		||||
        hasty_scores = self._hasty.score(context)
 | 
			
		||||
        if will_use_hasty(hasty_scores, self._hasty.n_classes):
 | 
			
		||||
            self.hasty_cnt += 1
 | 
			
		||||
            return hasty_scores
 | 
			
		||||
        else:
 | 
			
		||||
            return self._full.predict(context)
 | 
			
		||||
            self.full_cnt += 1
 | 
			
		||||
            full_scores = self._full.score(context)
 | 
			
		||||
            for i in range(self.n_classes):
 | 
			
		||||
                self._scores[i] = full_scores[i] + hasty_scores[i]
 | 
			
		||||
            return self._scores
 | 
			
		||||
 | 
			
		||||
    cdef class_t predict_among(self, atom_t* context, bint* valid) except *:
 | 
			
		||||
        cdef weight_t ratio
 | 
			
		||||
        scores = self._hasty.score(context)
 | 
			
		||||
        guess = _arg_max_among(scores, valid, self.n_classes, &ratio)
 | 
			
		||||
        if ratio < self.confidence:
 | 
			
		||||
            return guess
 | 
			
		||||
        else:
 | 
			
		||||
            return self._full.predict(context)
 | 
			
		||||
 | 
			
		||||
    cdef class_t predict_and_update(self, atom_t* context, bint* valid, int* costs) except *:
 | 
			
		||||
        cdef weight_t ratio
 | 
			
		||||
        scores = self._hasty.score(context)
 | 
			
		||||
        _arg_max_among(scores, valid, self.n_classes, &ratio)
 | 
			
		||||
        hasty_guess = self._hasty.predict_and_update(context, valid, costs)
 | 
			
		||||
        full_guess = self._full.predict_and_update(context, valid, costs)
 | 
			
		||||
        if ratio < self.confidence:
 | 
			
		||||
            return hasty_guess
 | 
			
		||||
        else:
 | 
			
		||||
            return full_guess
 | 
			
		||||
    cdef int update(self, atom_t* context, class_t guess, class_t gold, int cost) except -1:
 | 
			
		||||
        self._hasty.update(context, guess, gold, cost)
 | 
			
		||||
        self._full.update(context, guess, gold, cost)
 | 
			
		||||
 | 
			
		||||
    def end_training(self):
 | 
			
		||||
        self._hasty.end_training()
 | 
			
		||||
| 
						 | 
				
			
			@ -136,31 +87,29 @@ cdef class HastyModel:
 | 
			
		|||
 | 
			
		||||
 | 
			
		||||
@cython.cdivision(True)
 | 
			
		||||
cdef int _arg_max(const weight_t* scores, int n_classes, weight_t* ratio) except -1:
 | 
			
		||||
    cdef int best = 0
 | 
			
		||||
    cdef weight_t score = scores[best]
 | 
			
		||||
cdef bint will_use_hasty(const weight_t* scores, int n_classes) nogil:
 | 
			
		||||
    cdef:
 | 
			
		||||
        weight_t best_score, second_score
 | 
			
		||||
        int best, second
 | 
			
		||||
 | 
			
		||||
    if scores[0] >= scores[1]:
 | 
			
		||||
        best = 0
 | 
			
		||||
        best_score = scores[0]
 | 
			
		||||
        second = 1
 | 
			
		||||
        second_score = scores[1]
 | 
			
		||||
    else:
 | 
			
		||||
        best = 1
 | 
			
		||||
        best_score = scores[1]
 | 
			
		||||
        second = 0
 | 
			
		||||
        second_score = scores[0]
 | 
			
		||||
    cdef int i
 | 
			
		||||
    ratio[0] = 0.0
 | 
			
		||||
    for i in range(1, n_classes):
 | 
			
		||||
        if scores[i] >= score:
 | 
			
		||||
            if score > 0:
 | 
			
		||||
                ratio[0] = score / scores[i]
 | 
			
		||||
            score = scores[i]
 | 
			
		||||
    for i in range(2, n_classes):
 | 
			
		||||
        if scores[i] > best_score:
 | 
			
		||||
            second_score = best_score
 | 
			
		||||
            second = best
 | 
			
		||||
            best = i
 | 
			
		||||
    return best
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@cython.cdivision(True)
 | 
			
		||||
cdef int _arg_max_among(const weight_t* scores, const bint* valid, int n_classes,
 | 
			
		||||
                        weight_t* ratio) except -1:
 | 
			
		||||
    cdef int clas
 | 
			
		||||
    cdef weight_t score = 0
 | 
			
		||||
    cdef int best = -1
 | 
			
		||||
    ratio[0] = 0
 | 
			
		||||
    for clas in range(n_classes):
 | 
			
		||||
        if valid[clas] and (best == -1 or scores[clas] > score):
 | 
			
		||||
            if score > 0:
 | 
			
		||||
                ratio[0] = score / scores[clas]
 | 
			
		||||
            score = scores[clas]
 | 
			
		||||
            best = clas
 | 
			
		||||
    return best
 | 
			
		||||
            best_score = scores[i]
 | 
			
		||||
        elif scores[i] > second_score:
 | 
			
		||||
            second_score = scores[i]
 | 
			
		||||
            second = i
 | 
			
		||||
    return best_score > 0 and second_score < (best_score / 2)
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -82,16 +82,13 @@ class English(object):
 | 
			
		|||
            tokens (spacy.tokens.Tokens):
 | 
			
		||||
        """
 | 
			
		||||
        tokens = self.tokenizer.tokenize(text)
 | 
			
		||||
        if self.tagger and tag:
 | 
			
		||||
        if tag:
 | 
			
		||||
            self.tagger(tokens)
 | 
			
		||||
        if self.parser and parse:
 | 
			
		||||
        if parse:
 | 
			
		||||
            self.parser.parse(tokens)
 | 
			
		||||
        return tokens
 | 
			
		||||
 | 
			
		||||
    @property
 | 
			
		||||
    def tags(self):
 | 
			
		||||
        """List of part-of-speech tag names."""
 | 
			
		||||
        if self.tagger is None:
 | 
			
		||||
            return []
 | 
			
		||||
        else:
 | 
			
		||||
        return self.tagger.tag_names
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -1,11 +1,13 @@
 | 
			
		|||
# cython: profile=True
 | 
			
		||||
from os import path
 | 
			
		||||
import json
 | 
			
		||||
import os
 | 
			
		||||
import shutil
 | 
			
		||||
 | 
			
		||||
from libc.string cimport memset
 | 
			
		||||
 | 
			
		||||
from cymem.cymem cimport Address
 | 
			
		||||
from thinc.typedefs cimport atom_t
 | 
			
		||||
from thinc.typedefs cimport atom_t, weight_t
 | 
			
		||||
 | 
			
		||||
from ..typedefs cimport univ_tag_t
 | 
			
		||||
from ..typedefs cimport NO_TAG, ADJ, ADV, ADP, CONJ, DET, NOUN, NUM, PRON, PRT, VERB
 | 
			
		||||
| 
						 | 
				
			
			@ -14,6 +16,8 @@ from ..typedefs cimport id_t
 | 
			
		|||
from ..structs cimport TokenC, Morphology, Lexeme
 | 
			
		||||
from ..tokens cimport Tokens
 | 
			
		||||
from ..morphology cimport set_morph_from_dict
 | 
			
		||||
from .._ml cimport arg_max
 | 
			
		||||
 | 
			
		||||
from .lemmatizer import Lemmatizer
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -206,6 +210,19 @@ cdef struct _CachedMorph:
 | 
			
		|||
    int lemma
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def setup_model_dir(tag_names, tag_map, templates, model_dir):
 | 
			
		||||
    if path.exists(model_dir):
 | 
			
		||||
        shutil.rmtree(model_dir)
 | 
			
		||||
    os.mkdir(model_dir)
 | 
			
		||||
    config = {
 | 
			
		||||
        'templates': templates,
 | 
			
		||||
        'tag_names': tag_names,
 | 
			
		||||
        'tag_map': tag_map
 | 
			
		||||
    }
 | 
			
		||||
    with open(path.join(model_dir, 'config.json'), 'w') as file_:
 | 
			
		||||
        json.dump(config, file_)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
cdef class EnPosTagger:
 | 
			
		||||
    """A part-of-speech tagger for English"""
 | 
			
		||||
    def __init__(self, StringStore strings, data_dir):
 | 
			
		||||
| 
						 | 
				
			
			@ -218,8 +235,8 @@ cdef class EnPosTagger:
 | 
			
		|||
        self.tag_map = cfg['tag_map']
 | 
			
		||||
        cdef int n_tags = len(self.tag_names) + 1
 | 
			
		||||
 | 
			
		||||
        self.model = Model(n_tags, cfg['templates'], model_dir=model_dir)
 | 
			
		||||
 | 
			
		||||
        hasty_templates = ((W_sic,), (P1_pos, P2_pos), (N1_sic,))
 | 
			
		||||
        self.model = Model(n_tags, cfg['templates'], model_dir)
 | 
			
		||||
        self._morph_cache = PreshMapArray(n_tags)
 | 
			
		||||
        self.tags = <PosTag*>self.mem.alloc(n_tags, sizeof(PosTag))
 | 
			
		||||
        for i, tag in enumerate(sorted(self.tag_names)):
 | 
			
		||||
| 
						 | 
				
			
			@ -239,30 +256,27 @@ cdef class EnPosTagger:
 | 
			
		|||
        """
 | 
			
		||||
        cdef int i
 | 
			
		||||
        cdef atom_t[N_CONTEXT_FIELDS] context
 | 
			
		||||
        cdef TokenC* t = tokens.data
 | 
			
		||||
        cdef const weight_t* scores
 | 
			
		||||
        for i in range(tokens.length):
 | 
			
		||||
            if t[i].fine_pos == 0:
 | 
			
		||||
                fill_context(context, i, t)
 | 
			
		||||
                t[i].fine_pos = self.model.predict(context)
 | 
			
		||||
                self.set_morph(i, t)
 | 
			
		||||
            if tokens.data[i].fine_pos == 0:
 | 
			
		||||
                fill_context(context, i, tokens.data)
 | 
			
		||||
                scores = self.model.score(context)
 | 
			
		||||
                tokens.data[i].fine_pos = arg_max(scores, self.model.n_classes)
 | 
			
		||||
                self.set_morph(i, tokens.data)
 | 
			
		||||
 | 
			
		||||
    def train(self, Tokens tokens, py_golds):
 | 
			
		||||
    def train(self, Tokens tokens, object golds):
 | 
			
		||||
        cdef int i
 | 
			
		||||
        cdef atom_t[N_CONTEXT_FIELDS] context
 | 
			
		||||
        cdef Address costs_mem = Address(self.n_tags, sizeof(int))
 | 
			
		||||
        cdef Address valid_mem = Address(self.n_tags, sizeof(bint))
 | 
			
		||||
        cdef int* costs = <int*>costs_mem.ptr
 | 
			
		||||
        cdef bint* valid = <bint*>valid_mem.ptr
 | 
			
		||||
        memset(valid, 1, sizeof(int) * self.n_tags)
 | 
			
		||||
        cdef const weight_t* scores
 | 
			
		||||
        correct = 0
 | 
			
		||||
        cdef TokenC* t = tokens.data
 | 
			
		||||
        for i in range(tokens.length):
 | 
			
		||||
            fill_context(context, i, t)
 | 
			
		||||
            memset(costs, 1, sizeof(int) * self.n_tags)
 | 
			
		||||
            costs[py_golds[i]] = 0
 | 
			
		||||
            t[i].fine_pos = self.model.predict_and_update(context, valid, costs)
 | 
			
		||||
            self.set_morph(i, t)
 | 
			
		||||
            correct += costs[t[i].fine_pos] == 0
 | 
			
		||||
            fill_context(context, i, tokens.data)
 | 
			
		||||
            scores = self.model.score(context)
 | 
			
		||||
            guess = arg_max(scores, self.model.n_classes)
 | 
			
		||||
            self.model.update(context, guess, golds[i], guess != golds[i])
 | 
			
		||||
            tokens.data[i].fine_pos = guess
 | 
			
		||||
            self.set_morph(i, tokens.data)
 | 
			
		||||
            correct += guess == golds[i]
 | 
			
		||||
        return correct
 | 
			
		||||
 | 
			
		||||
    cdef int set_morph(self, const int i, TokenC* tokens) except -1:
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -85,7 +85,6 @@ cdef int fill_context(atom_t* context, State* state) except -1:
 | 
			
		|||
            if state.stack_len >= 3:
 | 
			
		||||
                context[S2_has_head] = has_head(get_s2(state))
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
unigrams = (
 | 
			
		||||
    (S2W, S2p),
 | 
			
		||||
    (S2c6, S2p),
 | 
			
		||||
| 
						 | 
				
			
			@ -347,6 +346,9 @@ clusters = (
 | 
			
		|||
)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
hasty = s0_n0 + n0_n1 + trigrams
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def pos_bigrams():
 | 
			
		||||
    kernels = [S2w, S1w, S0w, S0lw, S0rw, N0w, N0lw, N1w]
 | 
			
		||||
    bitags = []
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -1,5 +1,4 @@
 | 
			
		|||
from thinc.features cimport Extractor
 | 
			
		||||
from thinc.learner cimport LinearModel
 | 
			
		||||
from .._ml cimport Model, HastyModel
 | 
			
		||||
 | 
			
		||||
from .arc_eager cimport TransitionSystem
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -8,8 +7,7 @@ from ..tokens cimport Tokens, TokenC
 | 
			
		|||
 | 
			
		||||
cdef class GreedyParser:
 | 
			
		||||
    cdef object cfg
 | 
			
		||||
    cdef Extractor extractor
 | 
			
		||||
    cdef readonly LinearModel model
 | 
			
		||||
    cdef readonly Model model
 | 
			
		||||
    cdef TransitionSystem moves
 | 
			
		||||
 | 
			
		||||
    cpdef int parse(self, Tokens tokens) except -1
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -7,7 +7,7 @@ cimport cython
 | 
			
		|||
from libc.stdint cimport uint32_t, uint64_t
 | 
			
		||||
import random
 | 
			
		||||
import os.path
 | 
			
		||||
from os.path import join as pjoin
 | 
			
		||||
from os import path
 | 
			
		||||
import shutil
 | 
			
		||||
import json
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -52,26 +52,23 @@ cdef unicode print_state(State* s, list words):
 | 
			
		|||
def get_templates(name):
 | 
			
		||||
    pf = _parse_features
 | 
			
		||||
    if name == 'zhang':
 | 
			
		||||
        return pf.arc_eager
 | 
			
		||||
        return pf.unigrams, pf.arc_eager
 | 
			
		||||
    else:
 | 
			
		||||
        return pf.unigrams + pf.s0_n0 + pf.s1_n0 + pf.s0_n1 + pf.n0_n1 + \
 | 
			
		||||
               pf.tree_shape + pf.trigrams
 | 
			
		||||
        return pf.hasty, (pf.unigrams + pf.s0_n0 + pf.s1_n0 + pf.s0_n1 + pf.n0_n1 + \
 | 
			
		||||
                             pf.tree_shape + pf.trigrams)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
cdef class GreedyParser:
 | 
			
		||||
    def __init__(self, model_dir):
 | 
			
		||||
        assert os.path.exists(model_dir) and os.path.isdir(model_dir)
 | 
			
		||||
        self.cfg = Config.read(model_dir, 'config')
 | 
			
		||||
        self.extractor = Extractor(get_templates(self.cfg.features))
 | 
			
		||||
        self.moves = TransitionSystem(self.cfg.left_labels, self.cfg.right_labels)
 | 
			
		||||
        self.model = LinearModel(self.moves.n_moves, self.extractor.n_templ)
 | 
			
		||||
        if os.path.exists(pjoin(model_dir, 'model')):
 | 
			
		||||
            self.model.load(pjoin(model_dir, 'model'))
 | 
			
		||||
        hasty_templ, full_templ = get_templates(self.cfg.features)
 | 
			
		||||
        #self.model = HastyModel(self.moves.n_moves, hasty_templ, full_templ, model_dir)
 | 
			
		||||
        self.model = Model(self.moves.n_moves, full_templ, model_dir)
 | 
			
		||||
 | 
			
		||||
    cpdef int parse(self, Tokens tokens) except -1:
 | 
			
		||||
        cdef:
 | 
			
		||||
            const Feature* feats
 | 
			
		||||
            const weight_t* scores
 | 
			
		||||
            Transition guess
 | 
			
		||||
            uint64_t state_key
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -81,8 +78,7 @@ cdef class GreedyParser:
 | 
			
		|||
        cdef State* state = init_state(mem, tokens.data, tokens.length)
 | 
			
		||||
        while not is_final(state):
 | 
			
		||||
            fill_context(context, state)
 | 
			
		||||
            feats = self.extractor.get_feats(context, &n_feats)
 | 
			
		||||
            scores = self.model.get_scores(feats, n_feats)
 | 
			
		||||
            scores = self.model.score(context)
 | 
			
		||||
            guess = self.moves.best_valid(scores, state)
 | 
			
		||||
            self.moves.transition(state, &guess)
 | 
			
		||||
        return 0
 | 
			
		||||
| 
						 | 
				
			
			@ -107,34 +103,12 @@ cdef class GreedyParser:
 | 
			
		|||
        cdef State* state = init_state(mem, tokens.data, tokens.length)
 | 
			
		||||
        while not is_final(state):
 | 
			
		||||
            fill_context(context, state)
 | 
			
		||||
            feats = self.extractor.get_feats(context, &n_feats)
 | 
			
		||||
            scores = self.model.get_scores(feats, n_feats)
 | 
			
		||||
            scores = self.model.score(context)
 | 
			
		||||
            guess = self.moves.best_valid(scores, state)
 | 
			
		||||
            best = self.moves.best_gold(&guess, scores, state, heads_array, labels_array)
 | 
			
		||||
            counts = _get_counts(guess.clas, best.clas, feats, n_feats, guess.cost)
 | 
			
		||||
            self.model.update(counts)
 | 
			
		||||
            self.model.update(context, guess.clas, best.clas, guess.cost)
 | 
			
		||||
            self.moves.transition(state, &guess)
 | 
			
		||||
        cdef int n_corr = 0
 | 
			
		||||
        for i in range(tokens.length):
 | 
			
		||||
            n_corr += (i + state.sent[i].head) == gold_heads[i]
 | 
			
		||||
        return n_corr
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
cdef dict _get_counts(int guess, int best, const Feature* feats, const int n_feats,
 | 
			
		||||
                      int inc):
 | 
			
		||||
    if guess == best:
 | 
			
		||||
        return {}
 | 
			
		||||
 | 
			
		||||
    gold_counts = {}
 | 
			
		||||
    guess_counts = {}
 | 
			
		||||
    cdef int i
 | 
			
		||||
    for i in range(n_feats):
 | 
			
		||||
        key = (feats[i].i, feats[i].key)
 | 
			
		||||
        if key in gold_counts:
 | 
			
		||||
            gold_counts[key] += (feats[i].value * inc)
 | 
			
		||||
            guess_counts[key] -= (feats[i].value * inc)
 | 
			
		||||
        else:
 | 
			
		||||
            gold_counts[key] = (feats[i].value * inc)
 | 
			
		||||
            guess_counts[key] = -(feats[i].value * inc)
 | 
			
		||||
    return {guess: guess_counts, best: gold_counts}
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in New Issue
	
	Block a user