* Refactor _ml.Model, and finish implementing HastyModel so far not worthwhile.

This commit is contained in:
Matthew Honnibal 2014-12-31 19:40:59 +11:00
parent bcd038e7b6
commit aafaf58cbe
7 changed files with 140 additions and 197 deletions

View File

@ -12,25 +12,34 @@ from .typedefs cimport hash_t, id_t
from .tokens cimport Tokens
cdef int arg_max(const weight_t* scores, const int n_classes) nogil
cdef class Model:
cdef weight_t* score(self, atom_t* context) except NULL
cdef class_t predict(self, atom_t* context) except *
cdef class_t predict_among(self, atom_t* context, bint* valid) except *
cdef class_t predict_and_update(self, atom_t* context, const bint* valid,
const int* costs) except *
cdef Pool mem
cdef int n_classes
cdef int update(self, atom_t* context, class_t guess, class_t gold, int cost) except -1
cdef object model_loc
cdef Extractor _extractor
cdef LinearModel _model
cdef inline const weight_t* score(self, atom_t* context):
cdef int n_feats
feats = self._extractor.get_feats(context, &n_feats)
return self._model.get_scores(feats, n_feats)
cdef class HastyModel:
cdef class_t predict(self, atom_t* context) except *
cdef class_t predict_among(self, atom_t* context, bint* valid) except *
cdef class_t predict_and_update(self, atom_t* context, const bint* valid,
const int* costs) except *
cdef Pool mem
cdef weight_t* _scores
cdef const weight_t* score(self, atom_t* context) except NULL
cdef int update(self, atom_t* context, class_t guess, class_t gold, int cost) except -1
cdef weight_t confidence
cdef int n_classes
cdef Model _hasty
cdef Model _full
cdef readonly int hasty_cnt
cdef readonly int full_cnt

View File

@ -4,7 +4,6 @@ from __future__ import division
from os import path
import os
from collections import defaultdict
import shutil
import random
import json
@ -13,80 +12,39 @@ import cython
from thinc.features cimport Feature, count_feats
def setup_model_dir(tag_names, tag_map, templates, model_dir):
if path.exists(model_dir):
shutil.rmtree(model_dir)
os.mkdir(model_dir)
config = {
'templates': templates,
'tag_names': tag_names,
'tag_map': tag_map
}
with open(path.join(model_dir, 'config.json'), 'w') as file_:
json.dump(config, file_)
cdef int arg_max(const weight_t* scores, const int n_classes) nogil:
cdef int i
cdef int best = 0
cdef weight_t mode = scores[0]
for i in range(1, n_classes):
if scores[i] > mode:
mode = scores[i]
best = i
return best
cdef class Model:
def __init__(self, n_classes, templates, model_loc=None):
if model_loc is not None and path.isdir(model_loc):
model_loc = path.join(model_loc, 'model')
self.mem = Pool()
self.n_classes = n_classes
self._extractor = Extractor(templates)
self._model = LinearModel(n_classes, self._extractor.n_templ)
self.model_loc = model_loc
if self.model_loc and path.exists(self.model_loc):
self._model.load(self.model_loc, freq_thresh=0)
cdef const weight_t* score(self, atom_t* context) except NULL:
cdef int update(self, atom_t* context, class_t guess, class_t gold, int cost) except -1:
cdef int n_feats
cdef const Feature* feats = self._extractor.get_feats(context, &n_feats)
return self._model.get_scores(feats, n_feats)
cdef class_t predict(self, atom_t* context) except *:
cdef weight_t _
scores = self.score(context)
guess = _arg_max(scores, self._model.nr_class, &_)
return guess
cdef class_t predict_among(self, atom_t* context, const bint* valid) except *:
cdef weight_t _
scores = self.score(context)
return _arg_max_among(scores, valid, self._model.nr_class, &_)
cdef class_t predict_and_update(self, atom_t* context, const bint* valid,
const int* costs) except *:
cdef:
int n_feats
const Feature* feats
const weight_t* scores
int guess
int best
int cost
int i
weight_t score
weight_t _
feats = self._extractor.get_feats(context, &n_feats)
scores = self._model.get_scores(feats, n_feats)
guess = _arg_max_among(scores, valid, self._model.nr_class, &_)
cost = costs[guess]
if cost == 0:
self._model.update({})
return guess
guess_counts = defaultdict(int)
best_counts = defaultdict(int)
for i in range(n_feats):
feat = (feats[i].i, feats[i].key)
upd = feats[i].value * cost
best_counts[feat] += upd
guess_counts[feat] -= upd
best = -1
score = 0
for i in range(self._model.nr_class):
if valid[i] and costs[i] == 0 and (best == -1 or scores[i] > score):
best = i
score = scores[i]
self._model.update({guess: guess_counts, best: best_counts})
return guess
else:
feats = self._extractor.get_feats(context, &n_feats)
counts = {gold: {}, guess: {}}
count_feats(counts[gold], feats, n_feats, cost)
count_feats(counts[guess], feats, n_feats, -cost)
self._model.update(counts)
def end_training(self):
self._model.end_training()
@ -94,41 +52,34 @@ cdef class Model:
cdef class HastyModel:
def __init__(self, n_classes, hasty_templates, full_templates, model_dir,
weight_t confidence=0.1):
def __init__(self, n_classes, hasty_templates, full_templates, model_dir):
full_templates = tuple([t for t in full_templates if t not in hasty_templates])
self.mem = Pool()
self.n_classes = n_classes
self.confidence = confidence
self._scores = <weight_t*>self.mem.alloc(self.n_classes, sizeof(weight_t))
assert path.exists(model_dir)
assert path.isdir(model_dir)
self._hasty = Model(n_classes, hasty_templates, path.join(model_dir, 'hasty_model'))
self._full = Model(n_classes, full_templates, path.join(model_dir, 'full_model'))
self.hasty_cnt = 0
self.full_cnt = 0
cdef class_t predict(self, atom_t* context) except *:
cdef weight_t ratio
scores = self._hasty.score(context)
guess = _arg_max(scores, self.n_classes, &ratio)
if ratio < self.confidence:
return guess
cdef const weight_t* score(self, atom_t* context) except NULL:
cdef int i
hasty_scores = self._hasty.score(context)
if will_use_hasty(hasty_scores, self._hasty.n_classes):
self.hasty_cnt += 1
return hasty_scores
else:
return self._full.predict(context)
self.full_cnt += 1
full_scores = self._full.score(context)
for i in range(self.n_classes):
self._scores[i] = full_scores[i] + hasty_scores[i]
return self._scores
cdef class_t predict_among(self, atom_t* context, bint* valid) except *:
cdef weight_t ratio
scores = self._hasty.score(context)
guess = _arg_max_among(scores, valid, self.n_classes, &ratio)
if ratio < self.confidence:
return guess
else:
return self._full.predict(context)
cdef class_t predict_and_update(self, atom_t* context, bint* valid, int* costs) except *:
cdef weight_t ratio
scores = self._hasty.score(context)
_arg_max_among(scores, valid, self.n_classes, &ratio)
hasty_guess = self._hasty.predict_and_update(context, valid, costs)
full_guess = self._full.predict_and_update(context, valid, costs)
if ratio < self.confidence:
return hasty_guess
else:
return full_guess
cdef int update(self, atom_t* context, class_t guess, class_t gold, int cost) except -1:
self._hasty.update(context, guess, gold, cost)
self._full.update(context, guess, gold, cost)
def end_training(self):
self._hasty.end_training()
@ -136,31 +87,29 @@ cdef class HastyModel:
@cython.cdivision(True)
cdef int _arg_max(const weight_t* scores, int n_classes, weight_t* ratio) except -1:
cdef int best = 0
cdef weight_t score = scores[best]
cdef bint will_use_hasty(const weight_t* scores, int n_classes) nogil:
cdef:
weight_t best_score, second_score
int best, second
if scores[0] >= scores[1]:
best = 0
best_score = scores[0]
second = 1
second_score = scores[1]
else:
best = 1
best_score = scores[1]
second = 0
second_score = scores[0]
cdef int i
ratio[0] = 0.0
for i in range(1, n_classes):
if scores[i] >= score:
if score > 0:
ratio[0] = score / scores[i]
score = scores[i]
for i in range(2, n_classes):
if scores[i] > best_score:
second_score = best_score
second = best
best = i
return best
@cython.cdivision(True)
cdef int _arg_max_among(const weight_t* scores, const bint* valid, int n_classes,
weight_t* ratio) except -1:
cdef int clas
cdef weight_t score = 0
cdef int best = -1
ratio[0] = 0
for clas in range(n_classes):
if valid[clas] and (best == -1 or scores[clas] > score):
if score > 0:
ratio[0] = score / scores[clas]
score = scores[clas]
best = clas
return best
best_score = scores[i]
elif scores[i] > second_score:
second_score = scores[i]
second = i
return best_score > 0 and second_score < (best_score / 2)

View File

@ -82,16 +82,13 @@ class English(object):
tokens (spacy.tokens.Tokens):
"""
tokens = self.tokenizer.tokenize(text)
if self.tagger and tag:
if tag:
self.tagger(tokens)
if self.parser and parse:
if parse:
self.parser.parse(tokens)
return tokens
@property
def tags(self):
"""List of part-of-speech tag names."""
if self.tagger is None:
return []
else:
return self.tagger.tag_names
return self.tagger.tag_names

View File

@ -1,11 +1,13 @@
# cython: profile=True
from os import path
import json
import os
import shutil
from libc.string cimport memset
from cymem.cymem cimport Address
from thinc.typedefs cimport atom_t
from thinc.typedefs cimport atom_t, weight_t
from ..typedefs cimport univ_tag_t
from ..typedefs cimport NO_TAG, ADJ, ADV, ADP, CONJ, DET, NOUN, NUM, PRON, PRT, VERB
@ -14,6 +16,8 @@ from ..typedefs cimport id_t
from ..structs cimport TokenC, Morphology, Lexeme
from ..tokens cimport Tokens
from ..morphology cimport set_morph_from_dict
from .._ml cimport arg_max
from .lemmatizer import Lemmatizer
@ -206,6 +210,19 @@ cdef struct _CachedMorph:
int lemma
def setup_model_dir(tag_names, tag_map, templates, model_dir):
if path.exists(model_dir):
shutil.rmtree(model_dir)
os.mkdir(model_dir)
config = {
'templates': templates,
'tag_names': tag_names,
'tag_map': tag_map
}
with open(path.join(model_dir, 'config.json'), 'w') as file_:
json.dump(config, file_)
cdef class EnPosTagger:
"""A part-of-speech tagger for English"""
def __init__(self, StringStore strings, data_dir):
@ -218,8 +235,8 @@ cdef class EnPosTagger:
self.tag_map = cfg['tag_map']
cdef int n_tags = len(self.tag_names) + 1
self.model = Model(n_tags, cfg['templates'], model_dir=model_dir)
hasty_templates = ((W_sic,), (P1_pos, P2_pos), (N1_sic,))
self.model = Model(n_tags, cfg['templates'], model_dir)
self._morph_cache = PreshMapArray(n_tags)
self.tags = <PosTag*>self.mem.alloc(n_tags, sizeof(PosTag))
for i, tag in enumerate(sorted(self.tag_names)):
@ -239,30 +256,27 @@ cdef class EnPosTagger:
"""
cdef int i
cdef atom_t[N_CONTEXT_FIELDS] context
cdef TokenC* t = tokens.data
cdef const weight_t* scores
for i in range(tokens.length):
if t[i].fine_pos == 0:
fill_context(context, i, t)
t[i].fine_pos = self.model.predict(context)
self.set_morph(i, t)
if tokens.data[i].fine_pos == 0:
fill_context(context, i, tokens.data)
scores = self.model.score(context)
tokens.data[i].fine_pos = arg_max(scores, self.model.n_classes)
self.set_morph(i, tokens.data)
def train(self, Tokens tokens, py_golds):
def train(self, Tokens tokens, object golds):
cdef int i
cdef atom_t[N_CONTEXT_FIELDS] context
cdef Address costs_mem = Address(self.n_tags, sizeof(int))
cdef Address valid_mem = Address(self.n_tags, sizeof(bint))
cdef int* costs = <int*>costs_mem.ptr
cdef bint* valid = <bint*>valid_mem.ptr
memset(valid, 1, sizeof(int) * self.n_tags)
cdef const weight_t* scores
correct = 0
cdef TokenC* t = tokens.data
for i in range(tokens.length):
fill_context(context, i, t)
memset(costs, 1, sizeof(int) * self.n_tags)
costs[py_golds[i]] = 0
t[i].fine_pos = self.model.predict_and_update(context, valid, costs)
self.set_morph(i, t)
correct += costs[t[i].fine_pos] == 0
fill_context(context, i, tokens.data)
scores = self.model.score(context)
guess = arg_max(scores, self.model.n_classes)
self.model.update(context, guess, golds[i], guess != golds[i])
tokens.data[i].fine_pos = guess
self.set_morph(i, tokens.data)
correct += guess == golds[i]
return correct
cdef int set_morph(self, const int i, TokenC* tokens) except -1:

View File

@ -85,7 +85,6 @@ cdef int fill_context(atom_t* context, State* state) except -1:
if state.stack_len >= 3:
context[S2_has_head] = has_head(get_s2(state))
unigrams = (
(S2W, S2p),
(S2c6, S2p),
@ -347,6 +346,9 @@ clusters = (
)
hasty = s0_n0 + n0_n1 + trigrams
def pos_bigrams():
kernels = [S2w, S1w, S0w, S0lw, S0rw, N0w, N0lw, N1w]
bitags = []

View File

@ -1,5 +1,4 @@
from thinc.features cimport Extractor
from thinc.learner cimport LinearModel
from .._ml cimport Model, HastyModel
from .arc_eager cimport TransitionSystem
@ -8,8 +7,7 @@ from ..tokens cimport Tokens, TokenC
cdef class GreedyParser:
cdef object cfg
cdef Extractor extractor
cdef readonly LinearModel model
cdef readonly Model model
cdef TransitionSystem moves
cpdef int parse(self, Tokens tokens) except -1

View File

@ -7,7 +7,7 @@ cimport cython
from libc.stdint cimport uint32_t, uint64_t
import random
import os.path
from os.path import join as pjoin
from os import path
import shutil
import json
@ -52,26 +52,23 @@ cdef unicode print_state(State* s, list words):
def get_templates(name):
pf = _parse_features
if name == 'zhang':
return pf.arc_eager
return pf.unigrams, pf.arc_eager
else:
return pf.unigrams + pf.s0_n0 + pf.s1_n0 + pf.s0_n1 + pf.n0_n1 + \
pf.tree_shape + pf.trigrams
return pf.hasty, (pf.unigrams + pf.s0_n0 + pf.s1_n0 + pf.s0_n1 + pf.n0_n1 + \
pf.tree_shape + pf.trigrams)
cdef class GreedyParser:
def __init__(self, model_dir):
assert os.path.exists(model_dir) and os.path.isdir(model_dir)
self.cfg = Config.read(model_dir, 'config')
self.extractor = Extractor(get_templates(self.cfg.features))
self.moves = TransitionSystem(self.cfg.left_labels, self.cfg.right_labels)
self.model = LinearModel(self.moves.n_moves, self.extractor.n_templ)
if os.path.exists(pjoin(model_dir, 'model')):
self.model.load(pjoin(model_dir, 'model'))
hasty_templ, full_templ = get_templates(self.cfg.features)
#self.model = HastyModel(self.moves.n_moves, hasty_templ, full_templ, model_dir)
self.model = Model(self.moves.n_moves, full_templ, model_dir)
cpdef int parse(self, Tokens tokens) except -1:
cdef:
const Feature* feats
const weight_t* scores
Transition guess
uint64_t state_key
@ -81,8 +78,7 @@ cdef class GreedyParser:
cdef State* state = init_state(mem, tokens.data, tokens.length)
while not is_final(state):
fill_context(context, state)
feats = self.extractor.get_feats(context, &n_feats)
scores = self.model.get_scores(feats, n_feats)
scores = self.model.score(context)
guess = self.moves.best_valid(scores, state)
self.moves.transition(state, &guess)
return 0
@ -107,34 +103,12 @@ cdef class GreedyParser:
cdef State* state = init_state(mem, tokens.data, tokens.length)
while not is_final(state):
fill_context(context, state)
feats = self.extractor.get_feats(context, &n_feats)
scores = self.model.get_scores(feats, n_feats)
scores = self.model.score(context)
guess = self.moves.best_valid(scores, state)
best = self.moves.best_gold(&guess, scores, state, heads_array, labels_array)
counts = _get_counts(guess.clas, best.clas, feats, n_feats, guess.cost)
self.model.update(counts)
self.model.update(context, guess.clas, best.clas, guess.cost)
self.moves.transition(state, &guess)
cdef int n_corr = 0
for i in range(tokens.length):
n_corr += (i + state.sent[i].head) == gold_heads[i]
return n_corr
cdef dict _get_counts(int guess, int best, const Feature* feats, const int n_feats,
int inc):
if guess == best:
return {}
gold_counts = {}
guess_counts = {}
cdef int i
for i in range(n_feats):
key = (feats[i].i, feats[i].key)
if key in gold_counts:
gold_counts[key] += (feats[i].value * inc)
guess_counts[key] -= (feats[i].value * inc)
else:
gold_counts[key] = (feats[i].value * inc)
guess_counts[key] = -(feats[i].value * inc)
return {guess: guess_counts, best: gold_counts}