Merge branch 'develop' of https://github.com/explosion/spaCy into develop

This commit is contained in:
Matthew Honnibal 2020-08-30 16:16:44 +02:00
commit af6cbb29e8
72 changed files with 1242 additions and 11148 deletions

View File

@ -1,11 +0,0 @@
steps:
-
command: "fab env clean make test sdist"
label: ":dizzy: :python:"
artifact_paths: "dist/*.tar.gz"
- wait
- trigger: "spacy-sdist-against-models"
label: ":dizzy: :hammer:"
build:
env:
SPACY_VERSION: "{$SPACY_VERSION}"

View File

@ -1,11 +0,0 @@
steps:
-
command: "fab env clean make test wheel"
label: ":dizzy: :python:"
artifact_paths: "dist/*.whl"
- wait
- trigger: "spacy-train-from-wheel"
label: ":dizzy: :train:"
build:
env:
SPACY_VERSION: "{$SPACY_VERSION}"

149
fabfile.py vendored
View File

@ -1,149 +0,0 @@
import contextlib
from pathlib import Path
from fabric.api import local, lcd
from os import path, environ
import shutil
import sys
PWD = path.dirname(__file__)
ENV = environ["VENV_DIR"] if "VENV_DIR" in environ else ".env"
VENV_DIR = Path(PWD) / ENV
@contextlib.contextmanager
def virtualenv(name, create=False, python="/usr/bin/python3.6"):
python = Path(python).resolve()
env_path = VENV_DIR
if create:
if env_path.exists():
shutil.rmtree(str(env_path))
local("{python} -m venv {env_path}".format(python=python, env_path=VENV_DIR))
def wrapped_local(cmd, env_vars=[], capture=False, direct=False):
return local(
"source {}/bin/activate && {}".format(env_path, cmd),
shell="/bin/bash",
capture=False,
)
yield wrapped_local
def env(lang="python3.6"):
if VENV_DIR.exists():
local("rm -rf {env}".format(env=VENV_DIR))
if lang.startswith("python3"):
local("{lang} -m venv {env}".format(lang=lang, env=VENV_DIR))
else:
local("{lang} -m pip install virtualenv --no-cache-dir".format(lang=lang))
local(
"{lang} -m virtualenv {env} --no-cache-dir".format(lang=lang, env=VENV_DIR)
)
with virtualenv(VENV_DIR) as venv_local:
print(venv_local("python --version", capture=True))
venv_local("pip install --upgrade setuptools --no-cache-dir")
venv_local("pip install pytest --no-cache-dir")
venv_local("pip install wheel --no-cache-dir")
venv_local("pip install -r requirements.txt --no-cache-dir")
venv_local("pip install pex --no-cache-dir")
def install():
with virtualenv(VENV_DIR) as venv_local:
venv_local("pip install dist/*.tar.gz")
def make():
with lcd(path.dirname(__file__)):
local(
"export PYTHONPATH=`pwd` && source .env/bin/activate && python setup.py build_ext --inplace",
shell="/bin/bash",
)
def sdist():
with virtualenv(VENV_DIR) as venv_local:
with lcd(path.dirname(__file__)):
venv_local("python -m pip install -U setuptools srsly")
venv_local("python setup.py sdist")
def wheel():
with virtualenv(VENV_DIR) as venv_local:
with lcd(path.dirname(__file__)):
venv_local("python setup.py bdist_wheel")
def pex():
with virtualenv(VENV_DIR) as venv_local:
with lcd(path.dirname(__file__)):
sha = local("git rev-parse --short HEAD", capture=True)
venv_local(f"pex dist/*.whl -e spacy -o dist/spacy-{sha}.pex", direct=True)
def clean():
with lcd(path.dirname(__file__)):
local("rm -f dist/*.whl")
local("rm -f dist/*.pex")
with virtualenv(VENV_DIR) as venv_local:
venv_local("python setup.py clean --all")
def test():
with virtualenv(VENV_DIR) as venv_local:
with lcd(path.dirname(__file__)):
venv_local("pytest -x spacy/tests")
def train():
args = environ.get("SPACY_TRAIN_ARGS", "")
with virtualenv(VENV_DIR) as venv_local:
venv_local("spacy train {args}".format(args=args))
def conll17(treebank_dir, experiment_dir, vectors_dir, config, corpus=""):
is_not_clean = local("git status --porcelain", capture=True)
if is_not_clean:
print("Repository is not clean")
print(is_not_clean)
sys.exit(1)
git_sha = local("git rev-parse --short HEAD", capture=True)
config_checksum = local("sha256sum {config}".format(config=config), capture=True)
experiment_dir = Path(experiment_dir) / "{}--{}".format(
config_checksum[:6], git_sha
)
if not experiment_dir.exists():
experiment_dir.mkdir()
test_data_dir = Path(treebank_dir) / "ud-test-v2.0-conll2017"
assert test_data_dir.exists()
assert test_data_dir.is_dir()
if corpus:
corpora = [corpus]
else:
corpora = ["UD_English", "UD_Chinese", "UD_Japanese", "UD_Vietnamese"]
local(
"cp {config} {experiment_dir}/config.json".format(
config=config, experiment_dir=experiment_dir
)
)
with virtualenv(VENV_DIR) as venv_local:
for corpus in corpora:
venv_local(
"spacy ud-train {treebank_dir} {experiment_dir} {config} {corpus} -v {vectors_dir}".format(
treebank_dir=treebank_dir,
experiment_dir=experiment_dir,
config=config,
corpus=corpus,
vectors_dir=vectors_dir,
)
)
venv_local(
"spacy ud-run-test {test_data_dir} {experiment_dir} {corpus}".format(
test_data_dir=test_data_dir,
experiment_dir=experiment_dir,
config=config,
corpus=corpus,
)
)

View File

@ -1,259 +0,0 @@
// ISO C9x compliant stdint.h for Microsoft Visual Studio
// Based on ISO/IEC 9899:TC2 Committee draft (May 6, 2005) WG14/N1124
//
// Copyright (c) 2006-2013 Alexander Chemeris
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the product nor the names of its contributors may
// be used to endorse or promote products derived from this software
// without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
// WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
// EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
// OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
// OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
///////////////////////////////////////////////////////////////////////////////
#ifndef _MSC_VER // [
#error "Use this header only with Microsoft Visual C++ compilers!"
#endif // _MSC_VER ]
#ifndef _MSC_STDINT_H_ // [
#define _MSC_STDINT_H_
#if _MSC_VER > 1000
#pragma once
#endif
#if _MSC_VER >= 1600 // [
#include <stdint.h>
#else // ] _MSC_VER >= 1600 [
#include <limits.h>
// For Visual Studio 6 in C++ mode and for many Visual Studio versions when
// compiling for ARM we should wrap <wchar.h> include with 'extern "C++" {}'
// or compiler give many errors like this:
// error C2733: second C linkage of overloaded function 'wmemchr' not allowed
#ifdef __cplusplus
extern "C" {
#endif
# include <wchar.h>
#ifdef __cplusplus
}
#endif
// Define _W64 macros to mark types changing their size, like intptr_t.
#ifndef _W64
# if !defined(__midl) && (defined(_X86_) || defined(_M_IX86)) && _MSC_VER >= 1300
# define _W64 __w64
# else
# define _W64
# endif
#endif
// 7.18.1 Integer types
// 7.18.1.1 Exact-width integer types
// Visual Studio 6 and Embedded Visual C++ 4 doesn't
// realize that, e.g. char has the same size as __int8
// so we give up on __intX for them.
#if (_MSC_VER < 1300)
typedef signed char int8_t;
typedef signed short int16_t;
typedef signed int int32_t;
typedef unsigned char uint8_t;
typedef unsigned short uint16_t;
typedef unsigned int uint32_t;
#else
typedef signed __int8 int8_t;
typedef signed __int16 int16_t;
typedef signed __int32 int32_t;
typedef unsigned __int8 uint8_t;
typedef unsigned __int16 uint16_t;
typedef unsigned __int32 uint32_t;
#endif
typedef signed __int64 int64_t;
typedef unsigned __int64 uint64_t;
// 7.18.1.2 Minimum-width integer types
typedef int8_t int_least8_t;
typedef int16_t int_least16_t;
typedef int32_t int_least32_t;
typedef int64_t int_least64_t;
typedef uint8_t uint_least8_t;
typedef uint16_t uint_least16_t;
typedef uint32_t uint_least32_t;
typedef uint64_t uint_least64_t;
// 7.18.1.3 Fastest minimum-width integer types
typedef int8_t int_fast8_t;
typedef int16_t int_fast16_t;
typedef int32_t int_fast32_t;
typedef int64_t int_fast64_t;
typedef uint8_t uint_fast8_t;
typedef uint16_t uint_fast16_t;
typedef uint32_t uint_fast32_t;
typedef uint64_t uint_fast64_t;
// 7.18.1.4 Integer types capable of holding object pointers
#ifdef _WIN64 // [
typedef signed __int64 intptr_t;
typedef unsigned __int64 uintptr_t;
#else // _WIN64 ][
typedef _W64 signed int intptr_t;
typedef _W64 unsigned int uintptr_t;
#endif // _WIN64 ]
// 7.18.1.5 Greatest-width integer types
typedef int64_t intmax_t;
typedef uint64_t uintmax_t;
// 7.18.2 Limits of specified-width integer types
#if !defined(__cplusplus) || defined(__STDC_LIMIT_MACROS) // [ See footnote 220 at page 257 and footnote 221 at page 259
// 7.18.2.1 Limits of exact-width integer types
#define INT8_MIN ((int8_t)_I8_MIN)
#define INT8_MAX _I8_MAX
#define INT16_MIN ((int16_t)_I16_MIN)
#define INT16_MAX _I16_MAX
#define INT32_MIN ((int32_t)_I32_MIN)
#define INT32_MAX _I32_MAX
#define INT64_MIN ((int64_t)_I64_MIN)
#define INT64_MAX _I64_MAX
#define UINT8_MAX _UI8_MAX
#define UINT16_MAX _UI16_MAX
#define UINT32_MAX _UI32_MAX
#define UINT64_MAX _UI64_MAX
// 7.18.2.2 Limits of minimum-width integer types
#define INT_LEAST8_MIN INT8_MIN
#define INT_LEAST8_MAX INT8_MAX
#define INT_LEAST16_MIN INT16_MIN
#define INT_LEAST16_MAX INT16_MAX
#define INT_LEAST32_MIN INT32_MIN
#define INT_LEAST32_MAX INT32_MAX
#define INT_LEAST64_MIN INT64_MIN
#define INT_LEAST64_MAX INT64_MAX
#define UINT_LEAST8_MAX UINT8_MAX
#define UINT_LEAST16_MAX UINT16_MAX
#define UINT_LEAST32_MAX UINT32_MAX
#define UINT_LEAST64_MAX UINT64_MAX
// 7.18.2.3 Limits of fastest minimum-width integer types
#define INT_FAST8_MIN INT8_MIN
#define INT_FAST8_MAX INT8_MAX
#define INT_FAST16_MIN INT16_MIN
#define INT_FAST16_MAX INT16_MAX
#define INT_FAST32_MIN INT32_MIN
#define INT_FAST32_MAX INT32_MAX
#define INT_FAST64_MIN INT64_MIN
#define INT_FAST64_MAX INT64_MAX
#define UINT_FAST8_MAX UINT8_MAX
#define UINT_FAST16_MAX UINT16_MAX
#define UINT_FAST32_MAX UINT32_MAX
#define UINT_FAST64_MAX UINT64_MAX
// 7.18.2.4 Limits of integer types capable of holding object pointers
#ifdef _WIN64 // [
# define INTPTR_MIN INT64_MIN
# define INTPTR_MAX INT64_MAX
# define UINTPTR_MAX UINT64_MAX
#else // _WIN64 ][
# define INTPTR_MIN INT32_MIN
# define INTPTR_MAX INT32_MAX
# define UINTPTR_MAX UINT32_MAX
#endif // _WIN64 ]
// 7.18.2.5 Limits of greatest-width integer types
#define INTMAX_MIN INT64_MIN
#define INTMAX_MAX INT64_MAX
#define UINTMAX_MAX UINT64_MAX
// 7.18.3 Limits of other integer types
#ifdef _WIN64 // [
# define PTRDIFF_MIN _I64_MIN
# define PTRDIFF_MAX _I64_MAX
#else // _WIN64 ][
# define PTRDIFF_MIN _I32_MIN
# define PTRDIFF_MAX _I32_MAX
#endif // _WIN64 ]
#define SIG_ATOMIC_MIN INT_MIN
#define SIG_ATOMIC_MAX INT_MAX
#ifndef SIZE_MAX // [
# ifdef _WIN64 // [
# define SIZE_MAX _UI64_MAX
# else // _WIN64 ][
# define SIZE_MAX _UI32_MAX
# endif // _WIN64 ]
#endif // SIZE_MAX ]
// WCHAR_MIN and WCHAR_MAX are also defined in <wchar.h>
#ifndef WCHAR_MIN // [
# define WCHAR_MIN 0
#endif // WCHAR_MIN ]
#ifndef WCHAR_MAX // [
# define WCHAR_MAX _UI16_MAX
#endif // WCHAR_MAX ]
#define WINT_MIN 0
#define WINT_MAX _UI16_MAX
#endif // __STDC_LIMIT_MACROS ]
// 7.18.4 Limits of other integer types
#if !defined(__cplusplus) || defined(__STDC_CONSTANT_MACROS) // [ See footnote 224 at page 260
// 7.18.4.1 Macros for minimum-width integer constants
#define INT8_C(val) val##i8
#define INT16_C(val) val##i16
#define INT32_C(val) val##i32
#define INT64_C(val) val##i64
#define UINT8_C(val) val##ui8
#define UINT16_C(val) val##ui16
#define UINT32_C(val) val##ui32
#define UINT64_C(val) val##ui64
// 7.18.4.2 Macros for greatest-width integer constants
// These #ifndef's are needed to prevent collisions with <boost/cstdint.hpp>.
// Check out Issue 9 for the details.
#ifndef INTMAX_C // [
# define INTMAX_C INT64_C
#endif // INTMAX_C ]
#ifndef UINTMAX_C // [
# define UINTMAX_C UINT64_C
#endif // UINTMAX_C ]
#endif // __STDC_CONSTANT_MACROS ]
#endif // _MSC_VER >= 1600 ]
#endif // _MSC_STDINT_H_ ]

View File

@ -1,22 +0,0 @@
//-----------------------------------------------------------------------------
// MurmurHash2 was written by Austin Appleby, and is placed in the public
// domain. The author hereby disclaims copyright to this source code.
#ifndef _MURMURHASH2_H_
#define _MURMURHASH2_H_
#include <stdint.h>
//-----------------------------------------------------------------------------
uint32_t MurmurHash2 ( const void * key, int len, uint32_t seed );
uint64_t MurmurHash64A ( const void * key, int len, uint64_t seed );
uint64_t MurmurHash64B ( const void * key, int len, uint64_t seed );
uint32_t MurmurHash2A ( const void * key, int len, uint32_t seed );
uint32_t MurmurHashNeutral2 ( const void * key, int len, uint32_t seed );
uint32_t MurmurHashAligned2 ( const void * key, int len, uint32_t seed );
//-----------------------------------------------------------------------------
#endif // _MURMURHASH2_H_

View File

@ -1,28 +0,0 @@
//-----------------------------------------------------------------------------
// MurmurHash3 was written by Austin Appleby, and is placed in the public
// domain. The author hereby disclaims copyright to this source code.
#ifndef _MURMURHASH3_H_
#define _MURMURHASH3_H_
#include <stdint.h>
//-----------------------------------------------------------------------------
#ifdef __cplusplus
extern "C" {
#endif
void MurmurHash3_x86_32 ( const void * key, int len, uint32_t seed, void * out );
void MurmurHash3_x86_128 ( const void * key, int len, uint32_t seed, void * out );
void MurmurHash3_x64_128 ( const void * key, int len, uint32_t seed, void * out );
#ifdef __cplusplus
}
#endif
//-----------------------------------------------------------------------------
#endif // _MURMURHASH3_H_

File diff suppressed because it is too large Load Diff

View File

@ -1,323 +0,0 @@
#ifdef _UMATHMODULE
#ifdef NPY_ENABLE_SEPARATE_COMPILATION
extern NPY_NO_EXPORT PyTypeObject PyUFunc_Type;
#else
NPY_NO_EXPORT PyTypeObject PyUFunc_Type;
#endif
#ifdef NPY_ENABLE_SEPARATE_COMPILATION
extern NPY_NO_EXPORT PyTypeObject PyUFunc_Type;
#else
NPY_NO_EXPORT PyTypeObject PyUFunc_Type;
#endif
NPY_NO_EXPORT PyObject * PyUFunc_FromFuncAndData \
(PyUFuncGenericFunction *, void **, char *, int, int, int, int, char *, char *, int);
NPY_NO_EXPORT int PyUFunc_RegisterLoopForType \
(PyUFuncObject *, int, PyUFuncGenericFunction, int *, void *);
NPY_NO_EXPORT int PyUFunc_GenericFunction \
(PyUFuncObject *, PyObject *, PyObject *, PyArrayObject **);
NPY_NO_EXPORT void PyUFunc_f_f_As_d_d \
(char **, npy_intp *, npy_intp *, void *);
NPY_NO_EXPORT void PyUFunc_d_d \
(char **, npy_intp *, npy_intp *, void *);
NPY_NO_EXPORT void PyUFunc_f_f \
(char **, npy_intp *, npy_intp *, void *);
NPY_NO_EXPORT void PyUFunc_g_g \
(char **, npy_intp *, npy_intp *, void *);
NPY_NO_EXPORT void PyUFunc_F_F_As_D_D \
(char **, npy_intp *, npy_intp *, void *);
NPY_NO_EXPORT void PyUFunc_F_F \
(char **, npy_intp *, npy_intp *, void *);
NPY_NO_EXPORT void PyUFunc_D_D \
(char **, npy_intp *, npy_intp *, void *);
NPY_NO_EXPORT void PyUFunc_G_G \
(char **, npy_intp *, npy_intp *, void *);
NPY_NO_EXPORT void PyUFunc_O_O \
(char **, npy_intp *, npy_intp *, void *);
NPY_NO_EXPORT void PyUFunc_ff_f_As_dd_d \
(char **, npy_intp *, npy_intp *, void *);
NPY_NO_EXPORT void PyUFunc_ff_f \
(char **, npy_intp *, npy_intp *, void *);
NPY_NO_EXPORT void PyUFunc_dd_d \
(char **, npy_intp *, npy_intp *, void *);
NPY_NO_EXPORT void PyUFunc_gg_g \
(char **, npy_intp *, npy_intp *, void *);
NPY_NO_EXPORT void PyUFunc_FF_F_As_DD_D \
(char **, npy_intp *, npy_intp *, void *);
NPY_NO_EXPORT void PyUFunc_DD_D \
(char **, npy_intp *, npy_intp *, void *);
NPY_NO_EXPORT void PyUFunc_FF_F \
(char **, npy_intp *, npy_intp *, void *);
NPY_NO_EXPORT void PyUFunc_GG_G \
(char **, npy_intp *, npy_intp *, void *);
NPY_NO_EXPORT void PyUFunc_OO_O \
(char **, npy_intp *, npy_intp *, void *);
NPY_NO_EXPORT void PyUFunc_O_O_method \
(char **, npy_intp *, npy_intp *, void *);
NPY_NO_EXPORT void PyUFunc_OO_O_method \
(char **, npy_intp *, npy_intp *, void *);
NPY_NO_EXPORT void PyUFunc_On_Om \
(char **, npy_intp *, npy_intp *, void *);
NPY_NO_EXPORT int PyUFunc_GetPyValues \
(char *, int *, int *, PyObject **);
NPY_NO_EXPORT int PyUFunc_checkfperr \
(int, PyObject *, int *);
NPY_NO_EXPORT void PyUFunc_clearfperr \
(void);
NPY_NO_EXPORT int PyUFunc_getfperr \
(void);
NPY_NO_EXPORT int PyUFunc_handlefperr \
(int, PyObject *, int, int *);
NPY_NO_EXPORT int PyUFunc_ReplaceLoopBySignature \
(PyUFuncObject *, PyUFuncGenericFunction, int *, PyUFuncGenericFunction *);
NPY_NO_EXPORT PyObject * PyUFunc_FromFuncAndDataAndSignature \
(PyUFuncGenericFunction *, void **, char *, int, int, int, int, char *, char *, int, const char *);
NPY_NO_EXPORT int PyUFunc_SetUsesArraysAsData \
(void **, size_t);
NPY_NO_EXPORT void PyUFunc_e_e \
(char **, npy_intp *, npy_intp *, void *);
NPY_NO_EXPORT void PyUFunc_e_e_As_f_f \
(char **, npy_intp *, npy_intp *, void *);
NPY_NO_EXPORT void PyUFunc_e_e_As_d_d \
(char **, npy_intp *, npy_intp *, void *);
NPY_NO_EXPORT void PyUFunc_ee_e \
(char **, npy_intp *, npy_intp *, void *);
NPY_NO_EXPORT void PyUFunc_ee_e_As_ff_f \
(char **, npy_intp *, npy_intp *, void *);
NPY_NO_EXPORT void PyUFunc_ee_e_As_dd_d \
(char **, npy_intp *, npy_intp *, void *);
NPY_NO_EXPORT int PyUFunc_DefaultTypeResolver \
(PyUFuncObject *, NPY_CASTING, PyArrayObject **, PyObject *, PyArray_Descr **);
NPY_NO_EXPORT int PyUFunc_ValidateCasting \
(PyUFuncObject *, NPY_CASTING, PyArrayObject **, PyArray_Descr **);
#else
#if defined(PY_UFUNC_UNIQUE_SYMBOL)
#define PyUFunc_API PY_UFUNC_UNIQUE_SYMBOL
#endif
#if defined(NO_IMPORT) || defined(NO_IMPORT_UFUNC)
extern void **PyUFunc_API;
#else
#if defined(PY_UFUNC_UNIQUE_SYMBOL)
void **PyUFunc_API;
#else
static void **PyUFunc_API=NULL;
#endif
#endif
#define PyUFunc_Type (*(PyTypeObject *)PyUFunc_API[0])
#define PyUFunc_FromFuncAndData \
(*(PyObject * (*)(PyUFuncGenericFunction *, void **, char *, int, int, int, int, char *, char *, int)) \
PyUFunc_API[1])
#define PyUFunc_RegisterLoopForType \
(*(int (*)(PyUFuncObject *, int, PyUFuncGenericFunction, int *, void *)) \
PyUFunc_API[2])
#define PyUFunc_GenericFunction \
(*(int (*)(PyUFuncObject *, PyObject *, PyObject *, PyArrayObject **)) \
PyUFunc_API[3])
#define PyUFunc_f_f_As_d_d \
(*(void (*)(char **, npy_intp *, npy_intp *, void *)) \
PyUFunc_API[4])
#define PyUFunc_d_d \
(*(void (*)(char **, npy_intp *, npy_intp *, void *)) \
PyUFunc_API[5])
#define PyUFunc_f_f \
(*(void (*)(char **, npy_intp *, npy_intp *, void *)) \
PyUFunc_API[6])
#define PyUFunc_g_g \
(*(void (*)(char **, npy_intp *, npy_intp *, void *)) \
PyUFunc_API[7])
#define PyUFunc_F_F_As_D_D \
(*(void (*)(char **, npy_intp *, npy_intp *, void *)) \
PyUFunc_API[8])
#define PyUFunc_F_F \
(*(void (*)(char **, npy_intp *, npy_intp *, void *)) \
PyUFunc_API[9])
#define PyUFunc_D_D \
(*(void (*)(char **, npy_intp *, npy_intp *, void *)) \
PyUFunc_API[10])
#define PyUFunc_G_G \
(*(void (*)(char **, npy_intp *, npy_intp *, void *)) \
PyUFunc_API[11])
#define PyUFunc_O_O \
(*(void (*)(char **, npy_intp *, npy_intp *, void *)) \
PyUFunc_API[12])
#define PyUFunc_ff_f_As_dd_d \
(*(void (*)(char **, npy_intp *, npy_intp *, void *)) \
PyUFunc_API[13])
#define PyUFunc_ff_f \
(*(void (*)(char **, npy_intp *, npy_intp *, void *)) \
PyUFunc_API[14])
#define PyUFunc_dd_d \
(*(void (*)(char **, npy_intp *, npy_intp *, void *)) \
PyUFunc_API[15])
#define PyUFunc_gg_g \
(*(void (*)(char **, npy_intp *, npy_intp *, void *)) \
PyUFunc_API[16])
#define PyUFunc_FF_F_As_DD_D \
(*(void (*)(char **, npy_intp *, npy_intp *, void *)) \
PyUFunc_API[17])
#define PyUFunc_DD_D \
(*(void (*)(char **, npy_intp *, npy_intp *, void *)) \
PyUFunc_API[18])
#define PyUFunc_FF_F \
(*(void (*)(char **, npy_intp *, npy_intp *, void *)) \
PyUFunc_API[19])
#define PyUFunc_GG_G \
(*(void (*)(char **, npy_intp *, npy_intp *, void *)) \
PyUFunc_API[20])
#define PyUFunc_OO_O \
(*(void (*)(char **, npy_intp *, npy_intp *, void *)) \
PyUFunc_API[21])
#define PyUFunc_O_O_method \
(*(void (*)(char **, npy_intp *, npy_intp *, void *)) \
PyUFunc_API[22])
#define PyUFunc_OO_O_method \
(*(void (*)(char **, npy_intp *, npy_intp *, void *)) \
PyUFunc_API[23])
#define PyUFunc_On_Om \
(*(void (*)(char **, npy_intp *, npy_intp *, void *)) \
PyUFunc_API[24])
#define PyUFunc_GetPyValues \
(*(int (*)(char *, int *, int *, PyObject **)) \
PyUFunc_API[25])
#define PyUFunc_checkfperr \
(*(int (*)(int, PyObject *, int *)) \
PyUFunc_API[26])
#define PyUFunc_clearfperr \
(*(void (*)(void)) \
PyUFunc_API[27])
#define PyUFunc_getfperr \
(*(int (*)(void)) \
PyUFunc_API[28])
#define PyUFunc_handlefperr \
(*(int (*)(int, PyObject *, int, int *)) \
PyUFunc_API[29])
#define PyUFunc_ReplaceLoopBySignature \
(*(int (*)(PyUFuncObject *, PyUFuncGenericFunction, int *, PyUFuncGenericFunction *)) \
PyUFunc_API[30])
#define PyUFunc_FromFuncAndDataAndSignature \
(*(PyObject * (*)(PyUFuncGenericFunction *, void **, char *, int, int, int, int, char *, char *, int, const char *)) \
PyUFunc_API[31])
#define PyUFunc_SetUsesArraysAsData \
(*(int (*)(void **, size_t)) \
PyUFunc_API[32])
#define PyUFunc_e_e \
(*(void (*)(char **, npy_intp *, npy_intp *, void *)) \
PyUFunc_API[33])
#define PyUFunc_e_e_As_f_f \
(*(void (*)(char **, npy_intp *, npy_intp *, void *)) \
PyUFunc_API[34])
#define PyUFunc_e_e_As_d_d \
(*(void (*)(char **, npy_intp *, npy_intp *, void *)) \
PyUFunc_API[35])
#define PyUFunc_ee_e \
(*(void (*)(char **, npy_intp *, npy_intp *, void *)) \
PyUFunc_API[36])
#define PyUFunc_ee_e_As_ff_f \
(*(void (*)(char **, npy_intp *, npy_intp *, void *)) \
PyUFunc_API[37])
#define PyUFunc_ee_e_As_dd_d \
(*(void (*)(char **, npy_intp *, npy_intp *, void *)) \
PyUFunc_API[38])
#define PyUFunc_DefaultTypeResolver \
(*(int (*)(PyUFuncObject *, NPY_CASTING, PyArrayObject **, PyObject *, PyArray_Descr **)) \
PyUFunc_API[39])
#define PyUFunc_ValidateCasting \
(*(int (*)(PyUFuncObject *, NPY_CASTING, PyArrayObject **, PyArray_Descr **)) \
PyUFunc_API[40])
static int
_import_umath(void)
{
PyObject *numpy = PyImport_ImportModule("numpy.core.umath");
PyObject *c_api = NULL;
if (numpy == NULL) {
PyErr_SetString(PyExc_ImportError, "numpy.core.umath failed to import");
return -1;
}
c_api = PyObject_GetAttrString(numpy, "_UFUNC_API");
Py_DECREF(numpy);
if (c_api == NULL) {
PyErr_SetString(PyExc_AttributeError, "_UFUNC_API not found");
return -1;
}
#if PY_VERSION_HEX >= 0x03000000
if (!PyCapsule_CheckExact(c_api)) {
PyErr_SetString(PyExc_RuntimeError, "_UFUNC_API is not PyCapsule object");
Py_DECREF(c_api);
return -1;
}
PyUFunc_API = (void **)PyCapsule_GetPointer(c_api, NULL);
#else
if (!PyCObject_Check(c_api)) {
PyErr_SetString(PyExc_RuntimeError, "_UFUNC_API is not PyCObject object");
Py_DECREF(c_api);
return -1;
}
PyUFunc_API = (void **)PyCObject_AsVoidPtr(c_api);
#endif
Py_DECREF(c_api);
if (PyUFunc_API == NULL) {
PyErr_SetString(PyExc_RuntimeError, "_UFUNC_API is NULL pointer");
return -1;
}
return 0;
}
#if PY_VERSION_HEX >= 0x03000000
#define NUMPY_IMPORT_UMATH_RETVAL NULL
#else
#define NUMPY_IMPORT_UMATH_RETVAL
#endif
#define import_umath() \
do {\
UFUNC_NOFPE\
if (_import_umath() < 0) {\
PyErr_Print();\
PyErr_SetString(PyExc_ImportError,\
"numpy.core.umath failed to import");\
return NUMPY_IMPORT_UMATH_RETVAL;\
}\
} while(0)
#define import_umath1(ret) \
do {\
UFUNC_NOFPE\
if (_import_umath() < 0) {\
PyErr_Print();\
PyErr_SetString(PyExc_ImportError,\
"numpy.core.umath failed to import");\
return ret;\
}\
} while(0)
#define import_umath2(ret, msg) \
do {\
UFUNC_NOFPE\
if (_import_umath() < 0) {\
PyErr_Print();\
PyErr_SetString(PyExc_ImportError, msg);\
return ret;\
}\
} while(0)
#define import_ufunc() \
do {\
UFUNC_NOFPE\
if (_import_umath() < 0) {\
PyErr_Print();\
PyErr_SetString(PyExc_ImportError,\
"numpy.core.umath failed to import");\
}\
} while(0)
#endif

View File

@ -1,90 +0,0 @@
#ifndef _NPY_INCLUDE_NEIGHBORHOOD_IMP
#error You should not include this header directly
#endif
/*
* Private API (here for inline)
*/
static NPY_INLINE int
_PyArrayNeighborhoodIter_IncrCoord(PyArrayNeighborhoodIterObject* iter);
/*
* Update to next item of the iterator
*
* Note: this simply increment the coordinates vector, last dimension
* incremented first , i.e, for dimension 3
* ...
* -1, -1, -1
* -1, -1, 0
* -1, -1, 1
* ....
* -1, 0, -1
* -1, 0, 0
* ....
* 0, -1, -1
* 0, -1, 0
* ....
*/
#define _UPDATE_COORD_ITER(c) \
wb = iter->coordinates[c] < iter->bounds[c][1]; \
if (wb) { \
iter->coordinates[c] += 1; \
return 0; \
} \
else { \
iter->coordinates[c] = iter->bounds[c][0]; \
}
static NPY_INLINE int
_PyArrayNeighborhoodIter_IncrCoord(PyArrayNeighborhoodIterObject* iter)
{
npy_intp i, wb;
for (i = iter->nd - 1; i >= 0; --i) {
_UPDATE_COORD_ITER(i)
}
return 0;
}
/*
* Version optimized for 2d arrays, manual loop unrolling
*/
static NPY_INLINE int
_PyArrayNeighborhoodIter_IncrCoord2D(PyArrayNeighborhoodIterObject* iter)
{
npy_intp wb;
_UPDATE_COORD_ITER(1)
_UPDATE_COORD_ITER(0)
return 0;
}
#undef _UPDATE_COORD_ITER
/*
* Advance to the next neighbour
*/
static NPY_INLINE int
PyArrayNeighborhoodIter_Next(PyArrayNeighborhoodIterObject* iter)
{
_PyArrayNeighborhoodIter_IncrCoord (iter);
iter->dataptr = iter->translate((PyArrayIterObject*)iter, iter->coordinates);
return 0;
}
/*
* Reset functions
*/
static NPY_INLINE int
PyArrayNeighborhoodIter_Reset(PyArrayNeighborhoodIterObject* iter)
{
npy_intp i;
for (i = 0; i < iter->nd; ++i) {
iter->coordinates[i] = iter->bounds[i][0];
}
iter->dataptr = iter->translate((PyArrayIterObject*)iter, iter->coordinates);
return 0;
}

View File

@ -1,29 +0,0 @@
#define NPY_SIZEOF_SHORT SIZEOF_SHORT
#define NPY_SIZEOF_INT SIZEOF_INT
#define NPY_SIZEOF_LONG SIZEOF_LONG
#define NPY_SIZEOF_FLOAT 4
#define NPY_SIZEOF_COMPLEX_FLOAT 8
#define NPY_SIZEOF_DOUBLE 8
#define NPY_SIZEOF_COMPLEX_DOUBLE 16
#define NPY_SIZEOF_LONGDOUBLE 16
#define NPY_SIZEOF_COMPLEX_LONGDOUBLE 32
#define NPY_SIZEOF_PY_INTPTR_T 8
#define NPY_SIZEOF_PY_LONG_LONG 8
#define NPY_SIZEOF_LONGLONG 8
#define NPY_NO_SMP 0
#define NPY_HAVE_DECL_ISNAN
#define NPY_HAVE_DECL_ISINF
#define NPY_HAVE_DECL_ISFINITE
#define NPY_HAVE_DECL_SIGNBIT
#define NPY_USE_C99_COMPLEX 1
#define NPY_HAVE_COMPLEX_DOUBLE 1
#define NPY_HAVE_COMPLEX_FLOAT 1
#define NPY_HAVE_COMPLEX_LONG_DOUBLE 1
#define NPY_USE_C99_FORMATS 1
#define NPY_VISIBILITY_HIDDEN __attribute__((visibility("hidden")))
#define NPY_ABI_VERSION 0x01000009
#define NPY_API_VERSION 0x00000007
#ifndef __STDC_FORMAT_MACROS
#define __STDC_FORMAT_MACROS 1
#endif

View File

@ -1,22 +0,0 @@
/* This expects the following variables to be defined (besides
the usual ones from pyconfig.h
SIZEOF_LONG_DOUBLE -- sizeof(long double) or sizeof(double) if no
long double is present on platform.
CHAR_BIT -- number of bits in a char (usually 8)
(should be in limits.h)
*/
#ifndef Py_ARRAYOBJECT_H
#define Py_ARRAYOBJECT_H
#include "ndarrayobject.h"
#include "npy_interrupt.h"
#ifdef NPY_NO_PREFIX
#include "noprefix.h"
#endif
#endif

View File

@ -1,175 +0,0 @@
#ifndef _NPY_ARRAYSCALARS_H_
#define _NPY_ARRAYSCALARS_H_
#ifndef _MULTIARRAYMODULE
typedef struct {
PyObject_HEAD
npy_bool obval;
} PyBoolScalarObject;
#endif
typedef struct {
PyObject_HEAD
signed char obval;
} PyByteScalarObject;
typedef struct {
PyObject_HEAD
short obval;
} PyShortScalarObject;
typedef struct {
PyObject_HEAD
int obval;
} PyIntScalarObject;
typedef struct {
PyObject_HEAD
long obval;
} PyLongScalarObject;
typedef struct {
PyObject_HEAD
npy_longlong obval;
} PyLongLongScalarObject;
typedef struct {
PyObject_HEAD
unsigned char obval;
} PyUByteScalarObject;
typedef struct {
PyObject_HEAD
unsigned short obval;
} PyUShortScalarObject;
typedef struct {
PyObject_HEAD
unsigned int obval;
} PyUIntScalarObject;
typedef struct {
PyObject_HEAD
unsigned long obval;
} PyULongScalarObject;
typedef struct {
PyObject_HEAD
npy_ulonglong obval;
} PyULongLongScalarObject;
typedef struct {
PyObject_HEAD
npy_half obval;
} PyHalfScalarObject;
typedef struct {
PyObject_HEAD
float obval;
} PyFloatScalarObject;
typedef struct {
PyObject_HEAD
double obval;
} PyDoubleScalarObject;
typedef struct {
PyObject_HEAD
npy_longdouble obval;
} PyLongDoubleScalarObject;
typedef struct {
PyObject_HEAD
npy_cfloat obval;
} PyCFloatScalarObject;
typedef struct {
PyObject_HEAD
npy_cdouble obval;
} PyCDoubleScalarObject;
typedef struct {
PyObject_HEAD
npy_clongdouble obval;
} PyCLongDoubleScalarObject;
typedef struct {
PyObject_HEAD
PyObject * obval;
} PyObjectScalarObject;
typedef struct {
PyObject_HEAD
npy_datetime obval;
PyArray_DatetimeMetaData obmeta;
} PyDatetimeScalarObject;
typedef struct {
PyObject_HEAD
npy_timedelta obval;
PyArray_DatetimeMetaData obmeta;
} PyTimedeltaScalarObject;
typedef struct {
PyObject_HEAD
char obval;
} PyScalarObject;
#define PyStringScalarObject PyStringObject
#define PyUnicodeScalarObject PyUnicodeObject
typedef struct {
PyObject_VAR_HEAD
char *obval;
PyArray_Descr *descr;
int flags;
PyObject *base;
} PyVoidScalarObject;
/* Macros
Py<Cls><bitsize>ScalarObject
Py<Cls><bitsize>ArrType_Type
are defined in ndarrayobject.h
*/
#define PyArrayScalar_False ((PyObject *)(&(_PyArrayScalar_BoolValues[0])))
#define PyArrayScalar_True ((PyObject *)(&(_PyArrayScalar_BoolValues[1])))
#define PyArrayScalar_FromLong(i) \
((PyObject *)(&(_PyArrayScalar_BoolValues[((i)!=0)])))
#define PyArrayScalar_RETURN_BOOL_FROM_LONG(i) \
return Py_INCREF(PyArrayScalar_FromLong(i)), \
PyArrayScalar_FromLong(i)
#define PyArrayScalar_RETURN_FALSE \
return Py_INCREF(PyArrayScalar_False), \
PyArrayScalar_False
#define PyArrayScalar_RETURN_TRUE \
return Py_INCREF(PyArrayScalar_True), \
PyArrayScalar_True
#define PyArrayScalar_New(cls) \
Py##cls##ArrType_Type.tp_alloc(&Py##cls##ArrType_Type, 0)
#define PyArrayScalar_VAL(obj, cls) \
((Py##cls##ScalarObject *)obj)->obval
#define PyArrayScalar_ASSIGN(obj, cls, val) \
PyArrayScalar_VAL(obj, cls) = val
#endif

View File

@ -1,69 +0,0 @@
#ifndef __NPY_HALFFLOAT_H__
#define __NPY_HALFFLOAT_H__
#include <Python.h>
#include <numpy/npy_math.h>
#ifdef __cplusplus
extern "C" {
#endif
/*
* Half-precision routines
*/
/* Conversions */
float npy_half_to_float(npy_half h);
double npy_half_to_double(npy_half h);
npy_half npy_float_to_half(float f);
npy_half npy_double_to_half(double d);
/* Comparisons */
int npy_half_eq(npy_half h1, npy_half h2);
int npy_half_ne(npy_half h1, npy_half h2);
int npy_half_le(npy_half h1, npy_half h2);
int npy_half_lt(npy_half h1, npy_half h2);
int npy_half_ge(npy_half h1, npy_half h2);
int npy_half_gt(npy_half h1, npy_half h2);
/* faster *_nonan variants for when you know h1 and h2 are not NaN */
int npy_half_eq_nonan(npy_half h1, npy_half h2);
int npy_half_lt_nonan(npy_half h1, npy_half h2);
int npy_half_le_nonan(npy_half h1, npy_half h2);
/* Miscellaneous functions */
int npy_half_iszero(npy_half h);
int npy_half_isnan(npy_half h);
int npy_half_isinf(npy_half h);
int npy_half_isfinite(npy_half h);
int npy_half_signbit(npy_half h);
npy_half npy_half_copysign(npy_half x, npy_half y);
npy_half npy_half_spacing(npy_half h);
npy_half npy_half_nextafter(npy_half x, npy_half y);
/*
* Half-precision constants
*/
#define NPY_HALF_ZERO (0x0000u)
#define NPY_HALF_PZERO (0x0000u)
#define NPY_HALF_NZERO (0x8000u)
#define NPY_HALF_ONE (0x3c00u)
#define NPY_HALF_NEGONE (0xbc00u)
#define NPY_HALF_PINF (0x7c00u)
#define NPY_HALF_NINF (0xfc00u)
#define NPY_HALF_NAN (0x7e00u)
#define NPY_MAX_HALF (0x7bffu)
/*
* Bit-level conversions
*/
npy_uint16 npy_floatbits_to_halfbits(npy_uint32 f);
npy_uint16 npy_doublebits_to_halfbits(npy_uint64 d);
npy_uint32 npy_halfbits_to_floatbits(npy_uint16 h);
npy_uint64 npy_halfbits_to_doublebits(npy_uint16 h);
#ifdef __cplusplus
}
#endif
#endif

File diff suppressed because it is too large Load Diff

View File

@ -1,244 +0,0 @@
/*
* DON'T INCLUDE THIS DIRECTLY.
*/
#ifndef NPY_NDARRAYOBJECT_H
#define NPY_NDARRAYOBJECT_H
#ifdef __cplusplus
#define CONFUSE_EMACS {
#define CONFUSE_EMACS2 }
extern "C" CONFUSE_EMACS
#undef CONFUSE_EMACS
#undef CONFUSE_EMACS2
/* ... otherwise a semi-smart identer (like emacs) tries to indent
everything when you're typing */
#endif
#include "ndarraytypes.h"
/* Includes the "function" C-API -- these are all stored in a
list of pointers --- one for each file
The two lists are concatenated into one in multiarray.
They are available as import_array()
*/
#include "__multiarray_api.h"
/* C-API that requries previous API to be defined */
#define PyArray_DescrCheck(op) (((PyObject*)(op))->ob_type==&PyArrayDescr_Type)
#define PyArray_Check(op) PyObject_TypeCheck(op, &PyArray_Type)
#define PyArray_CheckExact(op) (((PyObject*)(op))->ob_type == &PyArray_Type)
#define PyArray_HasArrayInterfaceType(op, type, context, out) \
((((out)=PyArray_FromStructInterface(op)) != Py_NotImplemented) || \
(((out)=PyArray_FromInterface(op)) != Py_NotImplemented) || \
(((out)=PyArray_FromArrayAttr(op, type, context)) != \
Py_NotImplemented))
#define PyArray_HasArrayInterface(op, out) \
PyArray_HasArrayInterfaceType(op, NULL, NULL, out)
#define PyArray_IsZeroDim(op) (PyArray_Check(op) && \
(PyArray_NDIM((PyArrayObject *)op) == 0))
#define PyArray_IsScalar(obj, cls) \
(PyObject_TypeCheck(obj, &Py##cls##ArrType_Type))
#define PyArray_CheckScalar(m) (PyArray_IsScalar(m, Generic) || \
PyArray_IsZeroDim(m))
#define PyArray_IsPythonNumber(obj) \
(PyInt_Check(obj) || PyFloat_Check(obj) || PyComplex_Check(obj) || \
PyLong_Check(obj) || PyBool_Check(obj))
#define PyArray_IsPythonScalar(obj) \
(PyArray_IsPythonNumber(obj) || PyString_Check(obj) || \
PyUnicode_Check(obj))
#define PyArray_IsAnyScalar(obj) \
(PyArray_IsScalar(obj, Generic) || PyArray_IsPythonScalar(obj))
#define PyArray_CheckAnyScalar(obj) (PyArray_IsPythonScalar(obj) || \
PyArray_CheckScalar(obj))
#define PyArray_IsIntegerScalar(obj) (PyInt_Check(obj) \
|| PyLong_Check(obj) \
|| PyArray_IsScalar((obj), Integer))
#define PyArray_GETCONTIGUOUS(m) (PyArray_ISCONTIGUOUS(m) ? \
Py_INCREF(m), (m) : \
(PyArrayObject *)(PyArray_Copy(m)))
#define PyArray_SAMESHAPE(a1,a2) ((PyArray_NDIM(a1) == PyArray_NDIM(a2)) && \
PyArray_CompareLists(PyArray_DIMS(a1), \
PyArray_DIMS(a2), \
PyArray_NDIM(a1)))
#define PyArray_SIZE(m) PyArray_MultiplyList(PyArray_DIMS(m), PyArray_NDIM(m))
#define PyArray_NBYTES(m) (PyArray_ITEMSIZE(m) * PyArray_SIZE(m))
#define PyArray_FROM_O(m) PyArray_FromAny(m, NULL, 0, 0, 0, NULL)
#define PyArray_FROM_OF(m,flags) PyArray_CheckFromAny(m, NULL, 0, 0, flags, \
NULL)
#define PyArray_FROM_OT(m,type) PyArray_FromAny(m, \
PyArray_DescrFromType(type), 0, 0, 0, NULL);
#define PyArray_FROM_OTF(m, type, flags) \
PyArray_FromAny(m, PyArray_DescrFromType(type), 0, 0, \
(((flags) & NPY_ARRAY_ENSURECOPY) ? \
((flags) | NPY_ARRAY_DEFAULT) : (flags)), NULL)
#define PyArray_FROMANY(m, type, min, max, flags) \
PyArray_FromAny(m, PyArray_DescrFromType(type), min, max, \
(((flags) & NPY_ARRAY_ENSURECOPY) ? \
(flags) | NPY_ARRAY_DEFAULT : (flags)), NULL)
#define PyArray_ZEROS(m, dims, type, is_f_order) \
PyArray_Zeros(m, dims, PyArray_DescrFromType(type), is_f_order)
#define PyArray_EMPTY(m, dims, type, is_f_order) \
PyArray_Empty(m, dims, PyArray_DescrFromType(type), is_f_order)
#define PyArray_FILLWBYTE(obj, val) memset(PyArray_DATA(obj), val, \
PyArray_NBYTES(obj))
#define PyArray_REFCOUNT(obj) (((PyObject *)(obj))->ob_refcnt)
#define NPY_REFCOUNT PyArray_REFCOUNT
#define NPY_MAX_ELSIZE (2 * NPY_SIZEOF_LONGDOUBLE)
#define PyArray_ContiguousFromAny(op, type, min_depth, max_depth) \
PyArray_FromAny(op, PyArray_DescrFromType(type), min_depth, \
max_depth, NPY_ARRAY_DEFAULT, NULL)
#define PyArray_EquivArrTypes(a1, a2) \
PyArray_EquivTypes(PyArray_DESCR(a1), PyArray_DESCR(a2))
#define PyArray_EquivByteorders(b1, b2) \
(((b1) == (b2)) || (PyArray_ISNBO(b1) == PyArray_ISNBO(b2)))
#define PyArray_SimpleNew(nd, dims, typenum) \
PyArray_New(&PyArray_Type, nd, dims, typenum, NULL, NULL, 0, 0, NULL)
#define PyArray_SimpleNewFromData(nd, dims, typenum, data) \
PyArray_New(&PyArray_Type, nd, dims, typenum, NULL, \
data, 0, NPY_ARRAY_CARRAY, NULL)
#define PyArray_SimpleNewFromDescr(nd, dims, descr) \
PyArray_NewFromDescr(&PyArray_Type, descr, nd, dims, \
NULL, NULL, 0, NULL)
#define PyArray_ToScalar(data, arr) \
PyArray_Scalar(data, PyArray_DESCR(arr), (PyObject *)arr)
/* These might be faster without the dereferencing of obj
going on inside -- of course an optimizing compiler should
inline the constants inside a for loop making it a moot point
*/
#define PyArray_GETPTR1(obj, i) ((void *)(PyArray_BYTES(obj) + \
(i)*PyArray_STRIDES(obj)[0]))
#define PyArray_GETPTR2(obj, i, j) ((void *)(PyArray_BYTES(obj) + \
(i)*PyArray_STRIDES(obj)[0] + \
(j)*PyArray_STRIDES(obj)[1]))
#define PyArray_GETPTR3(obj, i, j, k) ((void *)(PyArray_BYTES(obj) + \
(i)*PyArray_STRIDES(obj)[0] + \
(j)*PyArray_STRIDES(obj)[1] + \
(k)*PyArray_STRIDES(obj)[2]))
#define PyArray_GETPTR4(obj, i, j, k, l) ((void *)(PyArray_BYTES(obj) + \
(i)*PyArray_STRIDES(obj)[0] + \
(j)*PyArray_STRIDES(obj)[1] + \
(k)*PyArray_STRIDES(obj)[2] + \
(l)*PyArray_STRIDES(obj)[3]))
static NPY_INLINE void
PyArray_XDECREF_ERR(PyArrayObject *arr)
{
if (arr != NULL) {
if (PyArray_FLAGS(arr) & NPY_ARRAY_UPDATEIFCOPY) {
PyArrayObject *base = (PyArrayObject *)PyArray_BASE(arr);
PyArray_ENABLEFLAGS(base, NPY_ARRAY_WRITEABLE);
PyArray_CLEARFLAGS(arr, NPY_ARRAY_UPDATEIFCOPY);
}
Py_DECREF(arr);
}
}
#define PyArray_DESCR_REPLACE(descr) do { \
PyArray_Descr *_new_; \
_new_ = PyArray_DescrNew(descr); \
Py_XDECREF(descr); \
descr = _new_; \
} while(0)
/* Copy should always return contiguous array */
#define PyArray_Copy(obj) PyArray_NewCopy(obj, NPY_CORDER)
#define PyArray_FromObject(op, type, min_depth, max_depth) \
PyArray_FromAny(op, PyArray_DescrFromType(type), min_depth, \
max_depth, NPY_ARRAY_BEHAVED | \
NPY_ARRAY_ENSUREARRAY, NULL)
#define PyArray_ContiguousFromObject(op, type, min_depth, max_depth) \
PyArray_FromAny(op, PyArray_DescrFromType(type), min_depth, \
max_depth, NPY_ARRAY_DEFAULT | \
NPY_ARRAY_ENSUREARRAY, NULL)
#define PyArray_CopyFromObject(op, type, min_depth, max_depth) \
PyArray_FromAny(op, PyArray_DescrFromType(type), min_depth, \
max_depth, NPY_ARRAY_ENSURECOPY | \
NPY_ARRAY_DEFAULT | \
NPY_ARRAY_ENSUREARRAY, NULL)
#define PyArray_Cast(mp, type_num) \
PyArray_CastToType(mp, PyArray_DescrFromType(type_num), 0)
#define PyArray_Take(ap, items, axis) \
PyArray_TakeFrom(ap, items, axis, NULL, NPY_RAISE)
#define PyArray_Put(ap, items, values) \
PyArray_PutTo(ap, items, values, NPY_RAISE)
/* Compatibility with old Numeric stuff -- don't use in new code */
#define PyArray_FromDimsAndData(nd, d, type, data) \
PyArray_FromDimsAndDataAndDescr(nd, d, PyArray_DescrFromType(type), \
data)
/*
Check to see if this key in the dictionary is the "title"
entry of the tuple (i.e. a duplicate dictionary entry in the fields
dict.
*/
#define NPY_TITLE_KEY(key, value) ((PyTuple_GET_SIZE((value))==3) && \
(PyTuple_GET_ITEM((value), 2) == (key)))
/* Define python version independent deprecation macro */
#if PY_VERSION_HEX >= 0x02050000
#define DEPRECATE(msg) PyErr_WarnEx(PyExc_DeprecationWarning,msg,1)
#define DEPRECATE_FUTUREWARNING(msg) PyErr_WarnEx(PyExc_FutureWarning,msg,1)
#else
#define DEPRECATE(msg) PyErr_Warn(PyExc_DeprecationWarning,msg)
#define DEPRECATE_FUTUREWARNING(msg) PyErr_Warn(PyExc_FutureWarning,msg)
#endif
#ifdef __cplusplus
}
#endif
#endif /* NPY_NDARRAYOBJECT_H */

File diff suppressed because it is too large Load Diff

View File

@ -1,209 +0,0 @@
#ifndef NPY_NOPREFIX_H
#define NPY_NOPREFIX_H
/*
* You can directly include noprefix.h as a backward
* compatibility measure
*/
#ifndef NPY_NO_PREFIX
#include "ndarrayobject.h"
#include "npy_interrupt.h"
#endif
#define SIGSETJMP NPY_SIGSETJMP
#define SIGLONGJMP NPY_SIGLONGJMP
#define SIGJMP_BUF NPY_SIGJMP_BUF
#define MAX_DIMS NPY_MAXDIMS
#define longlong npy_longlong
#define ulonglong npy_ulonglong
#define Bool npy_bool
#define longdouble npy_longdouble
#define byte npy_byte
#ifndef _BSD_SOURCE
#define ushort npy_ushort
#define uint npy_uint
#define ulong npy_ulong
#endif
#define ubyte npy_ubyte
#define ushort npy_ushort
#define uint npy_uint
#define ulong npy_ulong
#define cfloat npy_cfloat
#define cdouble npy_cdouble
#define clongdouble npy_clongdouble
#define Int8 npy_int8
#define UInt8 npy_uint8
#define Int16 npy_int16
#define UInt16 npy_uint16
#define Int32 npy_int32
#define UInt32 npy_uint32
#define Int64 npy_int64
#define UInt64 npy_uint64
#define Int128 npy_int128
#define UInt128 npy_uint128
#define Int256 npy_int256
#define UInt256 npy_uint256
#define Float16 npy_float16
#define Complex32 npy_complex32
#define Float32 npy_float32
#define Complex64 npy_complex64
#define Float64 npy_float64
#define Complex128 npy_complex128
#define Float80 npy_float80
#define Complex160 npy_complex160
#define Float96 npy_float96
#define Complex192 npy_complex192
#define Float128 npy_float128
#define Complex256 npy_complex256
#define intp npy_intp
#define uintp npy_uintp
#define datetime npy_datetime
#define timedelta npy_timedelta
#define SIZEOF_INTP NPY_SIZEOF_INTP
#define SIZEOF_UINTP NPY_SIZEOF_UINTP
#define SIZEOF_DATETIME NPY_SIZEOF_DATETIME
#define SIZEOF_TIMEDELTA NPY_SIZEOF_TIMEDELTA
#define LONGLONG_FMT NPY_LONGLONG_FMT
#define ULONGLONG_FMT NPY_ULONGLONG_FMT
#define LONGLONG_SUFFIX NPY_LONGLONG_SUFFIX
#define ULONGLONG_SUFFIX NPY_ULONGLONG_SUFFIX
#define MAX_INT8 127
#define MIN_INT8 -128
#define MAX_UINT8 255
#define MAX_INT16 32767
#define MIN_INT16 -32768
#define MAX_UINT16 65535
#define MAX_INT32 2147483647
#define MIN_INT32 (-MAX_INT32 - 1)
#define MAX_UINT32 4294967295U
#define MAX_INT64 LONGLONG_SUFFIX(9223372036854775807)
#define MIN_INT64 (-MAX_INT64 - LONGLONG_SUFFIX(1))
#define MAX_UINT64 ULONGLONG_SUFFIX(18446744073709551615)
#define MAX_INT128 LONGLONG_SUFFIX(85070591730234615865843651857942052864)
#define MIN_INT128 (-MAX_INT128 - LONGLONG_SUFFIX(1))
#define MAX_UINT128 ULONGLONG_SUFFIX(170141183460469231731687303715884105728)
#define MAX_INT256 LONGLONG_SUFFIX(57896044618658097711785492504343953926634992332820282019728792003956564819967)
#define MIN_INT256 (-MAX_INT256 - LONGLONG_SUFFIX(1))
#define MAX_UINT256 ULONGLONG_SUFFIX(115792089237316195423570985008687907853269984665640564039457584007913129639935)
#define MAX_BYTE NPY_MAX_BYTE
#define MIN_BYTE NPY_MIN_BYTE
#define MAX_UBYTE NPY_MAX_UBYTE
#define MAX_SHORT NPY_MAX_SHORT
#define MIN_SHORT NPY_MIN_SHORT
#define MAX_USHORT NPY_MAX_USHORT
#define MAX_INT NPY_MAX_INT
#define MIN_INT NPY_MIN_INT
#define MAX_UINT NPY_MAX_UINT
#define MAX_LONG NPY_MAX_LONG
#define MIN_LONG NPY_MIN_LONG
#define MAX_ULONG NPY_MAX_ULONG
#define MAX_LONGLONG NPY_MAX_LONGLONG
#define MIN_LONGLONG NPY_MIN_LONGLONG
#define MAX_ULONGLONG NPY_MAX_ULONGLONG
#define MIN_DATETIME NPY_MIN_DATETIME
#define MAX_DATETIME NPY_MAX_DATETIME
#define MIN_TIMEDELTA NPY_MIN_TIMEDELTA
#define MAX_TIMEDELTA NPY_MAX_TIMEDELTA
#define SIZEOF_LONGDOUBLE NPY_SIZEOF_LONGDOUBLE
#define SIZEOF_LONGLONG NPY_SIZEOF_LONGLONG
#define SIZEOF_HALF NPY_SIZEOF_HALF
#define BITSOF_BOOL NPY_BITSOF_BOOL
#define BITSOF_CHAR NPY_BITSOF_CHAR
#define BITSOF_SHORT NPY_BITSOF_SHORT
#define BITSOF_INT NPY_BITSOF_INT
#define BITSOF_LONG NPY_BITSOF_LONG
#define BITSOF_LONGLONG NPY_BITSOF_LONGLONG
#define BITSOF_HALF NPY_BITSOF_HALF
#define BITSOF_FLOAT NPY_BITSOF_FLOAT
#define BITSOF_DOUBLE NPY_BITSOF_DOUBLE
#define BITSOF_LONGDOUBLE NPY_BITSOF_LONGDOUBLE
#define BITSOF_DATETIME NPY_BITSOF_DATETIME
#define BITSOF_TIMEDELTA NPY_BITSOF_TIMEDELTA
#define _pya_malloc PyArray_malloc
#define _pya_free PyArray_free
#define _pya_realloc PyArray_realloc
#define BEGIN_THREADS_DEF NPY_BEGIN_THREADS_DEF
#define BEGIN_THREADS NPY_BEGIN_THREADS
#define END_THREADS NPY_END_THREADS
#define ALLOW_C_API_DEF NPY_ALLOW_C_API_DEF
#define ALLOW_C_API NPY_ALLOW_C_API
#define DISABLE_C_API NPY_DISABLE_C_API
#define PY_FAIL NPY_FAIL
#define PY_SUCCEED NPY_SUCCEED
#ifndef TRUE
#define TRUE NPY_TRUE
#endif
#ifndef FALSE
#define FALSE NPY_FALSE
#endif
#define LONGDOUBLE_FMT NPY_LONGDOUBLE_FMT
#define CONTIGUOUS NPY_CONTIGUOUS
#define C_CONTIGUOUS NPY_C_CONTIGUOUS
#define FORTRAN NPY_FORTRAN
#define F_CONTIGUOUS NPY_F_CONTIGUOUS
#define OWNDATA NPY_OWNDATA
#define FORCECAST NPY_FORCECAST
#define ENSURECOPY NPY_ENSURECOPY
#define ENSUREARRAY NPY_ENSUREARRAY
#define ELEMENTSTRIDES NPY_ELEMENTSTRIDES
#define ALIGNED NPY_ALIGNED
#define NOTSWAPPED NPY_NOTSWAPPED
#define WRITEABLE NPY_WRITEABLE
#define UPDATEIFCOPY NPY_UPDATEIFCOPY
#define ARR_HAS_DESCR NPY_ARR_HAS_DESCR
#define BEHAVED NPY_BEHAVED
#define BEHAVED_NS NPY_BEHAVED_NS
#define CARRAY NPY_CARRAY
#define CARRAY_RO NPY_CARRAY_RO
#define FARRAY NPY_FARRAY
#define FARRAY_RO NPY_FARRAY_RO
#define DEFAULT NPY_DEFAULT
#define IN_ARRAY NPY_IN_ARRAY
#define OUT_ARRAY NPY_OUT_ARRAY
#define INOUT_ARRAY NPY_INOUT_ARRAY
#define IN_FARRAY NPY_IN_FARRAY
#define OUT_FARRAY NPY_OUT_FARRAY
#define INOUT_FARRAY NPY_INOUT_FARRAY
#define UPDATE_ALL NPY_UPDATE_ALL
#define OWN_DATA NPY_OWNDATA
#define BEHAVED_FLAGS NPY_BEHAVED
#define BEHAVED_FLAGS_NS NPY_BEHAVED_NS
#define CARRAY_FLAGS_RO NPY_CARRAY_RO
#define CARRAY_FLAGS NPY_CARRAY
#define FARRAY_FLAGS NPY_FARRAY
#define FARRAY_FLAGS_RO NPY_FARRAY_RO
#define DEFAULT_FLAGS NPY_DEFAULT
#define UPDATE_ALL_FLAGS NPY_UPDATE_ALL_FLAGS
#ifndef MIN
#define MIN PyArray_MIN
#endif
#ifndef MAX
#define MAX PyArray_MAX
#endif
#define MAX_INTP NPY_MAX_INTP
#define MIN_INTP NPY_MIN_INTP
#define MAX_UINTP NPY_MAX_UINTP
#define INTP_FMT NPY_INTP_FMT
#define REFCOUNT PyArray_REFCOUNT
#define MAX_ELSIZE NPY_MAX_ELSIZE
#endif

View File

@ -1,417 +0,0 @@
/*
* This is a convenience header file providing compatibility utilities
* for supporting Python 2 and Python 3 in the same code base.
*
* If you want to use this for your own projects, it's recommended to make a
* copy of it. Although the stuff below is unlikely to change, we don't provide
* strong backwards compatibility guarantees at the moment.
*/
#ifndef _NPY_3KCOMPAT_H_
#define _NPY_3KCOMPAT_H_
#include <Python.h>
#include <stdio.h>
#if PY_VERSION_HEX >= 0x03000000
#ifndef NPY_PY3K
#define NPY_PY3K 1
#endif
#endif
#include "numpy/npy_common.h"
#include "numpy/ndarrayobject.h"
#ifdef __cplusplus
extern "C" {
#endif
/*
* PyInt -> PyLong
*/
#if defined(NPY_PY3K)
/* Return True only if the long fits in a C long */
static NPY_INLINE int PyInt_Check(PyObject *op) {
int overflow = 0;
if (!PyLong_Check(op)) {
return 0;
}
PyLong_AsLongAndOverflow(op, &overflow);
return (overflow == 0);
}
#define PyInt_FromLong PyLong_FromLong
#define PyInt_AsLong PyLong_AsLong
#define PyInt_AS_LONG PyLong_AsLong
#define PyInt_AsSsize_t PyLong_AsSsize_t
/* NOTE:
*
* Since the PyLong type is very different from the fixed-range PyInt,
* we don't define PyInt_Type -> PyLong_Type.
*/
#endif /* NPY_PY3K */
/*
* PyString -> PyBytes
*/
#if defined(NPY_PY3K)
#define PyString_Type PyBytes_Type
#define PyString_Check PyBytes_Check
#define PyStringObject PyBytesObject
#define PyString_FromString PyBytes_FromString
#define PyString_FromStringAndSize PyBytes_FromStringAndSize
#define PyString_AS_STRING PyBytes_AS_STRING
#define PyString_AsStringAndSize PyBytes_AsStringAndSize
#define PyString_FromFormat PyBytes_FromFormat
#define PyString_Concat PyBytes_Concat
#define PyString_ConcatAndDel PyBytes_ConcatAndDel
#define PyString_AsString PyBytes_AsString
#define PyString_GET_SIZE PyBytes_GET_SIZE
#define PyString_Size PyBytes_Size
#define PyUString_Type PyUnicode_Type
#define PyUString_Check PyUnicode_Check
#define PyUStringObject PyUnicodeObject
#define PyUString_FromString PyUnicode_FromString
#define PyUString_FromStringAndSize PyUnicode_FromStringAndSize
#define PyUString_FromFormat PyUnicode_FromFormat
#define PyUString_Concat PyUnicode_Concat2
#define PyUString_ConcatAndDel PyUnicode_ConcatAndDel
#define PyUString_GET_SIZE PyUnicode_GET_SIZE
#define PyUString_Size PyUnicode_Size
#define PyUString_InternFromString PyUnicode_InternFromString
#define PyUString_Format PyUnicode_Format
#else
#define PyBytes_Type PyString_Type
#define PyBytes_Check PyString_Check
#define PyBytesObject PyStringObject
#define PyBytes_FromString PyString_FromString
#define PyBytes_FromStringAndSize PyString_FromStringAndSize
#define PyBytes_AS_STRING PyString_AS_STRING
#define PyBytes_AsStringAndSize PyString_AsStringAndSize
#define PyBytes_FromFormat PyString_FromFormat
#define PyBytes_Concat PyString_Concat
#define PyBytes_ConcatAndDel PyString_ConcatAndDel
#define PyBytes_AsString PyString_AsString
#define PyBytes_GET_SIZE PyString_GET_SIZE
#define PyBytes_Size PyString_Size
#define PyUString_Type PyString_Type
#define PyUString_Check PyString_Check
#define PyUStringObject PyStringObject
#define PyUString_FromString PyString_FromString
#define PyUString_FromStringAndSize PyString_FromStringAndSize
#define PyUString_FromFormat PyString_FromFormat
#define PyUString_Concat PyString_Concat
#define PyUString_ConcatAndDel PyString_ConcatAndDel
#define PyUString_GET_SIZE PyString_GET_SIZE
#define PyUString_Size PyString_Size
#define PyUString_InternFromString PyString_InternFromString
#define PyUString_Format PyString_Format
#endif /* NPY_PY3K */
static NPY_INLINE void
PyUnicode_ConcatAndDel(PyObject **left, PyObject *right)
{
PyObject *newobj;
newobj = PyUnicode_Concat(*left, right);
Py_DECREF(*left);
Py_DECREF(right);
*left = newobj;
}
static NPY_INLINE void
PyUnicode_Concat2(PyObject **left, PyObject *right)
{
PyObject *newobj;
newobj = PyUnicode_Concat(*left, right);
Py_DECREF(*left);
*left = newobj;
}
/*
* PyFile_* compatibility
*/
#if defined(NPY_PY3K)
/*
* Get a FILE* handle to the file represented by the Python object
*/
static NPY_INLINE FILE*
npy_PyFile_Dup(PyObject *file, char *mode)
{
int fd, fd2;
PyObject *ret, *os;
Py_ssize_t pos;
FILE *handle;
/* Flush first to ensure things end up in the file in the correct order */
ret = PyObject_CallMethod(file, "flush", "");
if (ret == NULL) {
return NULL;
}
Py_DECREF(ret);
fd = PyObject_AsFileDescriptor(file);
if (fd == -1) {
return NULL;
}
os = PyImport_ImportModule("os");
if (os == NULL) {
return NULL;
}
ret = PyObject_CallMethod(os, "dup", "i", fd);
Py_DECREF(os);
if (ret == NULL) {
return NULL;
}
fd2 = PyNumber_AsSsize_t(ret, NULL);
Py_DECREF(ret);
#ifdef _WIN32
handle = _fdopen(fd2, mode);
#else
handle = fdopen(fd2, mode);
#endif
if (handle == NULL) {
PyErr_SetString(PyExc_IOError,
"Getting a FILE* from a Python file object failed");
}
ret = PyObject_CallMethod(file, "tell", "");
if (ret == NULL) {
fclose(handle);
return NULL;
}
pos = PyNumber_AsSsize_t(ret, PyExc_OverflowError);
Py_DECREF(ret);
if (PyErr_Occurred()) {
fclose(handle);
return NULL;
}
npy_fseek(handle, pos, SEEK_SET);
return handle;
}
/*
* Close the dup-ed file handle, and seek the Python one to the current position
*/
static NPY_INLINE int
npy_PyFile_DupClose(PyObject *file, FILE* handle)
{
PyObject *ret;
Py_ssize_t position;
position = npy_ftell(handle);
fclose(handle);
ret = PyObject_CallMethod(file, "seek", NPY_SSIZE_T_PYFMT "i", position, 0);
if (ret == NULL) {
return -1;
}
Py_DECREF(ret);
return 0;
}
static NPY_INLINE int
npy_PyFile_Check(PyObject *file)
{
int fd;
fd = PyObject_AsFileDescriptor(file);
if (fd == -1) {
PyErr_Clear();
return 0;
}
return 1;
}
#else
#define npy_PyFile_Dup(file, mode) PyFile_AsFile(file)
#define npy_PyFile_DupClose(file, handle) (0)
#define npy_PyFile_Check PyFile_Check
#endif
static NPY_INLINE PyObject*
npy_PyFile_OpenFile(PyObject *filename, const char *mode)
{
PyObject *open;
open = PyDict_GetItemString(PyEval_GetBuiltins(), "open");
if (open == NULL) {
return NULL;
}
return PyObject_CallFunction(open, "Os", filename, mode);
}
static NPY_INLINE int
npy_PyFile_CloseFile(PyObject *file)
{
PyObject *ret;
ret = PyObject_CallMethod(file, "close", NULL);
if (ret == NULL) {
return -1;
}
Py_DECREF(ret);
return 0;
}
/*
* PyObject_Cmp
*/
#if defined(NPY_PY3K)
static NPY_INLINE int
PyObject_Cmp(PyObject *i1, PyObject *i2, int *cmp)
{
int v;
v = PyObject_RichCompareBool(i1, i2, Py_LT);
if (v == 0) {
*cmp = -1;
return 1;
}
else if (v == -1) {
return -1;
}
v = PyObject_RichCompareBool(i1, i2, Py_GT);
if (v == 0) {
*cmp = 1;
return 1;
}
else if (v == -1) {
return -1;
}
v = PyObject_RichCompareBool(i1, i2, Py_EQ);
if (v == 0) {
*cmp = 0;
return 1;
}
else {
*cmp = 0;
return -1;
}
}
#endif
/*
* PyCObject functions adapted to PyCapsules.
*
* The main job here is to get rid of the improved error handling
* of PyCapsules. It's a shame...
*/
#if PY_VERSION_HEX >= 0x03000000
static NPY_INLINE PyObject *
NpyCapsule_FromVoidPtr(void *ptr, void (*dtor)(PyObject *))
{
PyObject *ret = PyCapsule_New(ptr, NULL, dtor);
if (ret == NULL) {
PyErr_Clear();
}
return ret;
}
static NPY_INLINE PyObject *
NpyCapsule_FromVoidPtrAndDesc(void *ptr, void* context, void (*dtor)(PyObject *))
{
PyObject *ret = NpyCapsule_FromVoidPtr(ptr, dtor);
if (ret != NULL && PyCapsule_SetContext(ret, context) != 0) {
PyErr_Clear();
Py_DECREF(ret);
ret = NULL;
}
return ret;
}
static NPY_INLINE void *
NpyCapsule_AsVoidPtr(PyObject *obj)
{
void *ret = PyCapsule_GetPointer(obj, NULL);
if (ret == NULL) {
PyErr_Clear();
}
return ret;
}
static NPY_INLINE void *
NpyCapsule_GetDesc(PyObject *obj)
{
return PyCapsule_GetContext(obj);
}
static NPY_INLINE int
NpyCapsule_Check(PyObject *ptr)
{
return PyCapsule_CheckExact(ptr);
}
static NPY_INLINE void
simple_capsule_dtor(PyObject *cap)
{
PyArray_free(PyCapsule_GetPointer(cap, NULL));
}
#else
static NPY_INLINE PyObject *
NpyCapsule_FromVoidPtr(void *ptr, void (*dtor)(void *))
{
return PyCObject_FromVoidPtr(ptr, dtor);
}
static NPY_INLINE PyObject *
NpyCapsule_FromVoidPtrAndDesc(void *ptr, void* context,
void (*dtor)(void *, void *))
{
return PyCObject_FromVoidPtrAndDesc(ptr, context, dtor);
}
static NPY_INLINE void *
NpyCapsule_AsVoidPtr(PyObject *ptr)
{
return PyCObject_AsVoidPtr(ptr);
}
static NPY_INLINE void *
NpyCapsule_GetDesc(PyObject *obj)
{
return PyCObject_GetDesc(obj);
}
static NPY_INLINE int
NpyCapsule_Check(PyObject *ptr)
{
return PyCObject_Check(ptr);
}
static NPY_INLINE void
simple_capsule_dtor(void *ptr)
{
PyArray_free(ptr);
}
#endif
/*
* Hash value compatibility.
* As of Python 3.2 hash values are of type Py_hash_t.
* Previous versions use C long.
*/
#if PY_VERSION_HEX < 0x03020000
typedef long npy_hash_t;
#define NPY_SIZEOF_HASH_T NPY_SIZEOF_LONG
#else
typedef Py_hash_t npy_hash_t;
#define NPY_SIZEOF_HASH_T NPY_SIZEOF_INTP
#endif
#ifdef __cplusplus
}
#endif
#endif /* _NPY_3KCOMPAT_H_ */

View File

@ -1,930 +0,0 @@
#ifndef _NPY_COMMON_H_
#define _NPY_COMMON_H_
/* numpconfig.h is auto-generated */
#include "numpyconfig.h"
#if defined(_MSC_VER)
#define NPY_INLINE __inline
#elif defined(__GNUC__)
#if defined(__STRICT_ANSI__)
#define NPY_INLINE __inline__
#else
#define NPY_INLINE inline
#endif
#else
#define NPY_INLINE
#endif
/* Enable 64 bit file position support on win-amd64. Ticket #1660 */
#if defined(_MSC_VER) && defined(_WIN64) && (_MSC_VER > 1400)
#define npy_fseek _fseeki64
#define npy_ftell _ftelli64
#else
#define npy_fseek fseek
#define npy_ftell ftell
#endif
/* enums for detected endianness */
enum {
NPY_CPU_UNKNOWN_ENDIAN,
NPY_CPU_LITTLE,
NPY_CPU_BIG
};
/*
* This is to typedef npy_intp to the appropriate pointer size for
* this platform. Py_intptr_t, Py_uintptr_t are defined in pyport.h.
*/
typedef Py_intptr_t npy_intp;
typedef Py_uintptr_t npy_uintp;
#define NPY_SIZEOF_CHAR 1
#define NPY_SIZEOF_BYTE 1
#define NPY_SIZEOF_INTP NPY_SIZEOF_PY_INTPTR_T
#define NPY_SIZEOF_UINTP NPY_SIZEOF_PY_INTPTR_T
#define NPY_SIZEOF_CFLOAT NPY_SIZEOF_COMPLEX_FLOAT
#define NPY_SIZEOF_CDOUBLE NPY_SIZEOF_COMPLEX_DOUBLE
#define NPY_SIZEOF_CLONGDOUBLE NPY_SIZEOF_COMPLEX_LONGDOUBLE
#ifdef constchar
#undef constchar
#endif
#if (PY_VERSION_HEX < 0x02050000)
#ifndef PY_SSIZE_T_MIN
typedef int Py_ssize_t;
#define PY_SSIZE_T_MAX INT_MAX
#define PY_SSIZE_T_MIN INT_MIN
#endif
#define NPY_SSIZE_T_PYFMT "i"
#define constchar const char
#else
#define NPY_SSIZE_T_PYFMT "n"
#define constchar char
#endif
/* NPY_INTP_FMT Note:
* Unlike the other NPY_*_FMT macros which are used with
* PyOS_snprintf, NPY_INTP_FMT is used with PyErr_Format and
* PyString_Format. These functions use different formatting
* codes which are portably specified according to the Python
* documentation. See ticket #1795.
*
* On Windows x64, the LONGLONG formatter should be used, but
* in Python 2.6 the %lld formatter is not supported. In this
* case we work around the problem by using the %zd formatter.
*/
#if NPY_SIZEOF_PY_INTPTR_T == NPY_SIZEOF_INT
#define NPY_INTP NPY_INT
#define NPY_UINTP NPY_UINT
#define PyIntpArrType_Type PyIntArrType_Type
#define PyUIntpArrType_Type PyUIntArrType_Type
#define NPY_MAX_INTP NPY_MAX_INT
#define NPY_MIN_INTP NPY_MIN_INT
#define NPY_MAX_UINTP NPY_MAX_UINT
#define NPY_INTP_FMT "d"
#elif NPY_SIZEOF_PY_INTPTR_T == NPY_SIZEOF_LONG
#define NPY_INTP NPY_LONG
#define NPY_UINTP NPY_ULONG
#define PyIntpArrType_Type PyLongArrType_Type
#define PyUIntpArrType_Type PyULongArrType_Type
#define NPY_MAX_INTP NPY_MAX_LONG
#define NPY_MIN_INTP NPY_MIN_LONG
#define NPY_MAX_UINTP NPY_MAX_ULONG
#define NPY_INTP_FMT "ld"
#elif defined(PY_LONG_LONG) && (NPY_SIZEOF_PY_INTPTR_T == NPY_SIZEOF_LONGLONG)
#define NPY_INTP NPY_LONGLONG
#define NPY_UINTP NPY_ULONGLONG
#define PyIntpArrType_Type PyLongLongArrType_Type
#define PyUIntpArrType_Type PyULongLongArrType_Type
#define NPY_MAX_INTP NPY_MAX_LONGLONG
#define NPY_MIN_INTP NPY_MIN_LONGLONG
#define NPY_MAX_UINTP NPY_MAX_ULONGLONG
#if (PY_VERSION_HEX >= 0x02070000)
#define NPY_INTP_FMT "lld"
#else
#define NPY_INTP_FMT "zd"
#endif
#endif
/*
* We can only use C99 formats for npy_int_p if it is the same as
* intp_t, hence the condition on HAVE_UNITPTR_T
*/
#if (NPY_USE_C99_FORMATS) == 1 \
&& (defined HAVE_UINTPTR_T) \
&& (defined HAVE_INTTYPES_H)
#include <inttypes.h>
#undef NPY_INTP_FMT
#define NPY_INTP_FMT PRIdPTR
#endif
/*
* Some platforms don't define bool, long long, or long double.
* Handle that here.
*/
#define NPY_BYTE_FMT "hhd"
#define NPY_UBYTE_FMT "hhu"
#define NPY_SHORT_FMT "hd"
#define NPY_USHORT_FMT "hu"
#define NPY_INT_FMT "d"
#define NPY_UINT_FMT "u"
#define NPY_LONG_FMT "ld"
#define NPY_ULONG_FMT "lu"
#define NPY_HALF_FMT "g"
#define NPY_FLOAT_FMT "g"
#define NPY_DOUBLE_FMT "g"
#ifdef PY_LONG_LONG
typedef PY_LONG_LONG npy_longlong;
typedef unsigned PY_LONG_LONG npy_ulonglong;
# ifdef _MSC_VER
# define NPY_LONGLONG_FMT "I64d"
# define NPY_ULONGLONG_FMT "I64u"
# elif defined(__APPLE__) || defined(__FreeBSD__)
/* "%Ld" only parses 4 bytes -- "L" is floating modifier on MacOS X/BSD */
# define NPY_LONGLONG_FMT "lld"
# define NPY_ULONGLONG_FMT "llu"
/*
another possible variant -- *quad_t works on *BSD, but is deprecated:
#define LONGLONG_FMT "qd"
#define ULONGLONG_FMT "qu"
*/
# else
# define NPY_LONGLONG_FMT "Ld"
# define NPY_ULONGLONG_FMT "Lu"
# endif
# ifdef _MSC_VER
# define NPY_LONGLONG_SUFFIX(x) (x##i64)
# define NPY_ULONGLONG_SUFFIX(x) (x##Ui64)
# else
# define NPY_LONGLONG_SUFFIX(x) (x##LL)
# define NPY_ULONGLONG_SUFFIX(x) (x##ULL)
# endif
#else
typedef long npy_longlong;
typedef unsigned long npy_ulonglong;
# define NPY_LONGLONG_SUFFIX(x) (x##L)
# define NPY_ULONGLONG_SUFFIX(x) (x##UL)
#endif
typedef unsigned char npy_bool;
#define NPY_FALSE 0
#define NPY_TRUE 1
#if NPY_SIZEOF_LONGDOUBLE == NPY_SIZEOF_DOUBLE
typedef double npy_longdouble;
#define NPY_LONGDOUBLE_FMT "g"
#else
typedef long double npy_longdouble;
#define NPY_LONGDOUBLE_FMT "Lg"
#endif
#ifndef Py_USING_UNICODE
#error Must use Python with unicode enabled.
#endif
typedef signed char npy_byte;
typedef unsigned char npy_ubyte;
typedef unsigned short npy_ushort;
typedef unsigned int npy_uint;
typedef unsigned long npy_ulong;
/* These are for completeness */
typedef char npy_char;
typedef short npy_short;
typedef int npy_int;
typedef long npy_long;
typedef float npy_float;
typedef double npy_double;
/*
* Disabling C99 complex usage: a lot of C code in numpy/scipy rely on being
* able to do .real/.imag. Will have to convert code first.
*/
#if 0
#if defined(NPY_USE_C99_COMPLEX) && defined(NPY_HAVE_COMPLEX_DOUBLE)
typedef complex npy_cdouble;
#else
typedef struct { double real, imag; } npy_cdouble;
#endif
#if defined(NPY_USE_C99_COMPLEX) && defined(NPY_HAVE_COMPLEX_FLOAT)
typedef complex float npy_cfloat;
#else
typedef struct { float real, imag; } npy_cfloat;
#endif
#if defined(NPY_USE_C99_COMPLEX) && defined(NPY_HAVE_COMPLEX_LONG_DOUBLE)
typedef complex long double npy_clongdouble;
#else
typedef struct {npy_longdouble real, imag;} npy_clongdouble;
#endif
#endif
#if NPY_SIZEOF_COMPLEX_DOUBLE != 2 * NPY_SIZEOF_DOUBLE
#error npy_cdouble definition is not compatible with C99 complex definition ! \
Please contact Numpy maintainers and give detailed information about your \
compiler and platform
#endif
typedef struct { double real, imag; } npy_cdouble;
#if NPY_SIZEOF_COMPLEX_FLOAT != 2 * NPY_SIZEOF_FLOAT
#error npy_cfloat definition is not compatible with C99 complex definition ! \
Please contact Numpy maintainers and give detailed information about your \
compiler and platform
#endif
typedef struct { float real, imag; } npy_cfloat;
#if NPY_SIZEOF_COMPLEX_LONGDOUBLE != 2 * NPY_SIZEOF_LONGDOUBLE
#error npy_clongdouble definition is not compatible with C99 complex definition ! \
Please contact Numpy maintainers and give detailed information about your \
compiler and platform
#endif
typedef struct { npy_longdouble real, imag; } npy_clongdouble;
/*
* numarray-style bit-width typedefs
*/
#define NPY_MAX_INT8 127
#define NPY_MIN_INT8 -128
#define NPY_MAX_UINT8 255
#define NPY_MAX_INT16 32767
#define NPY_MIN_INT16 -32768
#define NPY_MAX_UINT16 65535
#define NPY_MAX_INT32 2147483647
#define NPY_MIN_INT32 (-NPY_MAX_INT32 - 1)
#define NPY_MAX_UINT32 4294967295U
#define NPY_MAX_INT64 NPY_LONGLONG_SUFFIX(9223372036854775807)
#define NPY_MIN_INT64 (-NPY_MAX_INT64 - NPY_LONGLONG_SUFFIX(1))
#define NPY_MAX_UINT64 NPY_ULONGLONG_SUFFIX(18446744073709551615)
#define NPY_MAX_INT128 NPY_LONGLONG_SUFFIX(85070591730234615865843651857942052864)
#define NPY_MIN_INT128 (-NPY_MAX_INT128 - NPY_LONGLONG_SUFFIX(1))
#define NPY_MAX_UINT128 NPY_ULONGLONG_SUFFIX(170141183460469231731687303715884105728)
#define NPY_MAX_INT256 NPY_LONGLONG_SUFFIX(57896044618658097711785492504343953926634992332820282019728792003956564819967)
#define NPY_MIN_INT256 (-NPY_MAX_INT256 - NPY_LONGLONG_SUFFIX(1))
#define NPY_MAX_UINT256 NPY_ULONGLONG_SUFFIX(115792089237316195423570985008687907853269984665640564039457584007913129639935)
#define NPY_MIN_DATETIME NPY_MIN_INT64
#define NPY_MAX_DATETIME NPY_MAX_INT64
#define NPY_MIN_TIMEDELTA NPY_MIN_INT64
#define NPY_MAX_TIMEDELTA NPY_MAX_INT64
/* Need to find the number of bits for each type and
make definitions accordingly.
C states that sizeof(char) == 1 by definition
So, just using the sizeof keyword won't help.
It also looks like Python itself uses sizeof(char) quite a
bit, which by definition should be 1 all the time.
Idea: Make Use of CHAR_BIT which should tell us how many
BITS per CHARACTER
*/
/* Include platform definitions -- These are in the C89/90 standard */
#include <limits.h>
#define NPY_MAX_BYTE SCHAR_MAX
#define NPY_MIN_BYTE SCHAR_MIN
#define NPY_MAX_UBYTE UCHAR_MAX
#define NPY_MAX_SHORT SHRT_MAX
#define NPY_MIN_SHORT SHRT_MIN
#define NPY_MAX_USHORT USHRT_MAX
#define NPY_MAX_INT INT_MAX
#ifndef INT_MIN
#define INT_MIN (-INT_MAX - 1)
#endif
#define NPY_MIN_INT INT_MIN
#define NPY_MAX_UINT UINT_MAX
#define NPY_MAX_LONG LONG_MAX
#define NPY_MIN_LONG LONG_MIN
#define NPY_MAX_ULONG ULONG_MAX
#define NPY_SIZEOF_HALF 2
#define NPY_SIZEOF_DATETIME 8
#define NPY_SIZEOF_TIMEDELTA 8
#define NPY_BITSOF_BOOL (sizeof(npy_bool) * CHAR_BIT)
#define NPY_BITSOF_CHAR CHAR_BIT
#define NPY_BITSOF_BYTE (NPY_SIZEOF_BYTE * CHAR_BIT)
#define NPY_BITSOF_SHORT (NPY_SIZEOF_SHORT * CHAR_BIT)
#define NPY_BITSOF_INT (NPY_SIZEOF_INT * CHAR_BIT)
#define NPY_BITSOF_LONG (NPY_SIZEOF_LONG * CHAR_BIT)
#define NPY_BITSOF_LONGLONG (NPY_SIZEOF_LONGLONG * CHAR_BIT)
#define NPY_BITSOF_INTP (NPY_SIZEOF_INTP * CHAR_BIT)
#define NPY_BITSOF_HALF (NPY_SIZEOF_HALF * CHAR_BIT)
#define NPY_BITSOF_FLOAT (NPY_SIZEOF_FLOAT * CHAR_BIT)
#define NPY_BITSOF_DOUBLE (NPY_SIZEOF_DOUBLE * CHAR_BIT)
#define NPY_BITSOF_LONGDOUBLE (NPY_SIZEOF_LONGDOUBLE * CHAR_BIT)
#define NPY_BITSOF_CFLOAT (NPY_SIZEOF_CFLOAT * CHAR_BIT)
#define NPY_BITSOF_CDOUBLE (NPY_SIZEOF_CDOUBLE * CHAR_BIT)
#define NPY_BITSOF_CLONGDOUBLE (NPY_SIZEOF_CLONGDOUBLE * CHAR_BIT)
#define NPY_BITSOF_DATETIME (NPY_SIZEOF_DATETIME * CHAR_BIT)
#define NPY_BITSOF_TIMEDELTA (NPY_SIZEOF_TIMEDELTA * CHAR_BIT)
#if NPY_BITSOF_LONG == 8
#define NPY_INT8 NPY_LONG
#define NPY_UINT8 NPY_ULONG
typedef long npy_int8;
typedef unsigned long npy_uint8;
#define PyInt8ScalarObject PyLongScalarObject
#define PyInt8ArrType_Type PyLongArrType_Type
#define PyUInt8ScalarObject PyULongScalarObject
#define PyUInt8ArrType_Type PyULongArrType_Type
#define NPY_INT8_FMT NPY_LONG_FMT
#define NPY_UINT8_FMT NPY_ULONG_FMT
#elif NPY_BITSOF_LONG == 16
#define NPY_INT16 NPY_LONG
#define NPY_UINT16 NPY_ULONG
typedef long npy_int16;
typedef unsigned long npy_uint16;
#define PyInt16ScalarObject PyLongScalarObject
#define PyInt16ArrType_Type PyLongArrType_Type
#define PyUInt16ScalarObject PyULongScalarObject
#define PyUInt16ArrType_Type PyULongArrType_Type
#define NPY_INT16_FMT NPY_LONG_FMT
#define NPY_UINT16_FMT NPY_ULONG_FMT
#elif NPY_BITSOF_LONG == 32
#define NPY_INT32 NPY_LONG
#define NPY_UINT32 NPY_ULONG
typedef long npy_int32;
typedef unsigned long npy_uint32;
typedef unsigned long npy_ucs4;
#define PyInt32ScalarObject PyLongScalarObject
#define PyInt32ArrType_Type PyLongArrType_Type
#define PyUInt32ScalarObject PyULongScalarObject
#define PyUInt32ArrType_Type PyULongArrType_Type
#define NPY_INT32_FMT NPY_LONG_FMT
#define NPY_UINT32_FMT NPY_ULONG_FMT
#elif NPY_BITSOF_LONG == 64
#define NPY_INT64 NPY_LONG
#define NPY_UINT64 NPY_ULONG
typedef long npy_int64;
typedef unsigned long npy_uint64;
#define PyInt64ScalarObject PyLongScalarObject
#define PyInt64ArrType_Type PyLongArrType_Type
#define PyUInt64ScalarObject PyULongScalarObject
#define PyUInt64ArrType_Type PyULongArrType_Type
#define NPY_INT64_FMT NPY_LONG_FMT
#define NPY_UINT64_FMT NPY_ULONG_FMT
#define MyPyLong_FromInt64 PyLong_FromLong
#define MyPyLong_AsInt64 PyLong_AsLong
#elif NPY_BITSOF_LONG == 128
#define NPY_INT128 NPY_LONG
#define NPY_UINT128 NPY_ULONG
typedef long npy_int128;
typedef unsigned long npy_uint128;
#define PyInt128ScalarObject PyLongScalarObject
#define PyInt128ArrType_Type PyLongArrType_Type
#define PyUInt128ScalarObject PyULongScalarObject
#define PyUInt128ArrType_Type PyULongArrType_Type
#define NPY_INT128_FMT NPY_LONG_FMT
#define NPY_UINT128_FMT NPY_ULONG_FMT
#endif
#if NPY_BITSOF_LONGLONG == 8
# ifndef NPY_INT8
# define NPY_INT8 NPY_LONGLONG
# define NPY_UINT8 NPY_ULONGLONG
typedef npy_longlong npy_int8;
typedef npy_ulonglong npy_uint8;
# define PyInt8ScalarObject PyLongLongScalarObject
# define PyInt8ArrType_Type PyLongLongArrType_Type
# define PyUInt8ScalarObject PyULongLongScalarObject
# define PyUInt8ArrType_Type PyULongLongArrType_Type
#define NPY_INT8_FMT NPY_LONGLONG_FMT
#define NPY_UINT8_FMT NPY_ULONGLONG_FMT
# endif
# define NPY_MAX_LONGLONG NPY_MAX_INT8
# define NPY_MIN_LONGLONG NPY_MIN_INT8
# define NPY_MAX_ULONGLONG NPY_MAX_UINT8
#elif NPY_BITSOF_LONGLONG == 16
# ifndef NPY_INT16
# define NPY_INT16 NPY_LONGLONG
# define NPY_UINT16 NPY_ULONGLONG
typedef npy_longlong npy_int16;
typedef npy_ulonglong npy_uint16;
# define PyInt16ScalarObject PyLongLongScalarObject
# define PyInt16ArrType_Type PyLongLongArrType_Type
# define PyUInt16ScalarObject PyULongLongScalarObject
# define PyUInt16ArrType_Type PyULongLongArrType_Type
#define NPY_INT16_FMT NPY_LONGLONG_FMT
#define NPY_UINT16_FMT NPY_ULONGLONG_FMT
# endif
# define NPY_MAX_LONGLONG NPY_MAX_INT16
# define NPY_MIN_LONGLONG NPY_MIN_INT16
# define NPY_MAX_ULONGLONG NPY_MAX_UINT16
#elif NPY_BITSOF_LONGLONG == 32
# ifndef NPY_INT32
# define NPY_INT32 NPY_LONGLONG
# define NPY_UINT32 NPY_ULONGLONG
typedef npy_longlong npy_int32;
typedef npy_ulonglong npy_uint32;
typedef npy_ulonglong npy_ucs4;
# define PyInt32ScalarObject PyLongLongScalarObject
# define PyInt32ArrType_Type PyLongLongArrType_Type
# define PyUInt32ScalarObject PyULongLongScalarObject
# define PyUInt32ArrType_Type PyULongLongArrType_Type
#define NPY_INT32_FMT NPY_LONGLONG_FMT
#define NPY_UINT32_FMT NPY_ULONGLONG_FMT
# endif
# define NPY_MAX_LONGLONG NPY_MAX_INT32
# define NPY_MIN_LONGLONG NPY_MIN_INT32
# define NPY_MAX_ULONGLONG NPY_MAX_UINT32
#elif NPY_BITSOF_LONGLONG == 64
# ifndef NPY_INT64
# define NPY_INT64 NPY_LONGLONG
# define NPY_UINT64 NPY_ULONGLONG
typedef npy_longlong npy_int64;
typedef npy_ulonglong npy_uint64;
# define PyInt64ScalarObject PyLongLongScalarObject
# define PyInt64ArrType_Type PyLongLongArrType_Type
# define PyUInt64ScalarObject PyULongLongScalarObject
# define PyUInt64ArrType_Type PyULongLongArrType_Type
#define NPY_INT64_FMT NPY_LONGLONG_FMT
#define NPY_UINT64_FMT NPY_ULONGLONG_FMT
# define MyPyLong_FromInt64 PyLong_FromLongLong
# define MyPyLong_AsInt64 PyLong_AsLongLong
# endif
# define NPY_MAX_LONGLONG NPY_MAX_INT64
# define NPY_MIN_LONGLONG NPY_MIN_INT64
# define NPY_MAX_ULONGLONG NPY_MAX_UINT64
#elif NPY_BITSOF_LONGLONG == 128
# ifndef NPY_INT128
# define NPY_INT128 NPY_LONGLONG
# define NPY_UINT128 NPY_ULONGLONG
typedef npy_longlong npy_int128;
typedef npy_ulonglong npy_uint128;
# define PyInt128ScalarObject PyLongLongScalarObject
# define PyInt128ArrType_Type PyLongLongArrType_Type
# define PyUInt128ScalarObject PyULongLongScalarObject
# define PyUInt128ArrType_Type PyULongLongArrType_Type
#define NPY_INT128_FMT NPY_LONGLONG_FMT
#define NPY_UINT128_FMT NPY_ULONGLONG_FMT
# endif
# define NPY_MAX_LONGLONG NPY_MAX_INT128
# define NPY_MIN_LONGLONG NPY_MIN_INT128
# define NPY_MAX_ULONGLONG NPY_MAX_UINT128
#elif NPY_BITSOF_LONGLONG == 256
# define NPY_INT256 NPY_LONGLONG
# define NPY_UINT256 NPY_ULONGLONG
typedef npy_longlong npy_int256;
typedef npy_ulonglong npy_uint256;
# define PyInt256ScalarObject PyLongLongScalarObject
# define PyInt256ArrType_Type PyLongLongArrType_Type
# define PyUInt256ScalarObject PyULongLongScalarObject
# define PyUInt256ArrType_Type PyULongLongArrType_Type
#define NPY_INT256_FMT NPY_LONGLONG_FMT
#define NPY_UINT256_FMT NPY_ULONGLONG_FMT
# define NPY_MAX_LONGLONG NPY_MAX_INT256
# define NPY_MIN_LONGLONG NPY_MIN_INT256
# define NPY_MAX_ULONGLONG NPY_MAX_UINT256
#endif
#if NPY_BITSOF_INT == 8
#ifndef NPY_INT8
#define NPY_INT8 NPY_INT
#define NPY_UINT8 NPY_UINT
typedef int npy_int8;
typedef unsigned int npy_uint8;
# define PyInt8ScalarObject PyIntScalarObject
# define PyInt8ArrType_Type PyIntArrType_Type
# define PyUInt8ScalarObject PyUIntScalarObject
# define PyUInt8ArrType_Type PyUIntArrType_Type
#define NPY_INT8_FMT NPY_INT_FMT
#define NPY_UINT8_FMT NPY_UINT_FMT
#endif
#elif NPY_BITSOF_INT == 16
#ifndef NPY_INT16
#define NPY_INT16 NPY_INT
#define NPY_UINT16 NPY_UINT
typedef int npy_int16;
typedef unsigned int npy_uint16;
# define PyInt16ScalarObject PyIntScalarObject
# define PyInt16ArrType_Type PyIntArrType_Type
# define PyUInt16ScalarObject PyIntUScalarObject
# define PyUInt16ArrType_Type PyIntUArrType_Type
#define NPY_INT16_FMT NPY_INT_FMT
#define NPY_UINT16_FMT NPY_UINT_FMT
#endif
#elif NPY_BITSOF_INT == 32
#ifndef NPY_INT32
#define NPY_INT32 NPY_INT
#define NPY_UINT32 NPY_UINT
typedef int npy_int32;
typedef unsigned int npy_uint32;
typedef unsigned int npy_ucs4;
# define PyInt32ScalarObject PyIntScalarObject
# define PyInt32ArrType_Type PyIntArrType_Type
# define PyUInt32ScalarObject PyUIntScalarObject
# define PyUInt32ArrType_Type PyUIntArrType_Type
#define NPY_INT32_FMT NPY_INT_FMT
#define NPY_UINT32_FMT NPY_UINT_FMT
#endif
#elif NPY_BITSOF_INT == 64
#ifndef NPY_INT64
#define NPY_INT64 NPY_INT
#define NPY_UINT64 NPY_UINT
typedef int npy_int64;
typedef unsigned int npy_uint64;
# define PyInt64ScalarObject PyIntScalarObject
# define PyInt64ArrType_Type PyIntArrType_Type
# define PyUInt64ScalarObject PyUIntScalarObject
# define PyUInt64ArrType_Type PyUIntArrType_Type
#define NPY_INT64_FMT NPY_INT_FMT
#define NPY_UINT64_FMT NPY_UINT_FMT
# define MyPyLong_FromInt64 PyLong_FromLong
# define MyPyLong_AsInt64 PyLong_AsLong
#endif
#elif NPY_BITSOF_INT == 128
#ifndef NPY_INT128
#define NPY_INT128 NPY_INT
#define NPY_UINT128 NPY_UINT
typedef int npy_int128;
typedef unsigned int npy_uint128;
# define PyInt128ScalarObject PyIntScalarObject
# define PyInt128ArrType_Type PyIntArrType_Type
# define PyUInt128ScalarObject PyUIntScalarObject
# define PyUInt128ArrType_Type PyUIntArrType_Type
#define NPY_INT128_FMT NPY_INT_FMT
#define NPY_UINT128_FMT NPY_UINT_FMT
#endif
#endif
#if NPY_BITSOF_SHORT == 8
#ifndef NPY_INT8
#define NPY_INT8 NPY_SHORT
#define NPY_UINT8 NPY_USHORT
typedef short npy_int8;
typedef unsigned short npy_uint8;
# define PyInt8ScalarObject PyShortScalarObject
# define PyInt8ArrType_Type PyShortArrType_Type
# define PyUInt8ScalarObject PyUShortScalarObject
# define PyUInt8ArrType_Type PyUShortArrType_Type
#define NPY_INT8_FMT NPY_SHORT_FMT
#define NPY_UINT8_FMT NPY_USHORT_FMT
#endif
#elif NPY_BITSOF_SHORT == 16
#ifndef NPY_INT16
#define NPY_INT16 NPY_SHORT
#define NPY_UINT16 NPY_USHORT
typedef short npy_int16;
typedef unsigned short npy_uint16;
# define PyInt16ScalarObject PyShortScalarObject
# define PyInt16ArrType_Type PyShortArrType_Type
# define PyUInt16ScalarObject PyUShortScalarObject
# define PyUInt16ArrType_Type PyUShortArrType_Type
#define NPY_INT16_FMT NPY_SHORT_FMT
#define NPY_UINT16_FMT NPY_USHORT_FMT
#endif
#elif NPY_BITSOF_SHORT == 32
#ifndef NPY_INT32
#define NPY_INT32 NPY_SHORT
#define NPY_UINT32 NPY_USHORT
typedef short npy_int32;
typedef unsigned short npy_uint32;
typedef unsigned short npy_ucs4;
# define PyInt32ScalarObject PyShortScalarObject
# define PyInt32ArrType_Type PyShortArrType_Type
# define PyUInt32ScalarObject PyUShortScalarObject
# define PyUInt32ArrType_Type PyUShortArrType_Type
#define NPY_INT32_FMT NPY_SHORT_FMT
#define NPY_UINT32_FMT NPY_USHORT_FMT
#endif
#elif NPY_BITSOF_SHORT == 64
#ifndef NPY_INT64
#define NPY_INT64 NPY_SHORT
#define NPY_UINT64 NPY_USHORT
typedef short npy_int64;
typedef unsigned short npy_uint64;
# define PyInt64ScalarObject PyShortScalarObject
# define PyInt64ArrType_Type PyShortArrType_Type
# define PyUInt64ScalarObject PyUShortScalarObject
# define PyUInt64ArrType_Type PyUShortArrType_Type
#define NPY_INT64_FMT NPY_SHORT_FMT
#define NPY_UINT64_FMT NPY_USHORT_FMT
# define MyPyLong_FromInt64 PyLong_FromLong
# define MyPyLong_AsInt64 PyLong_AsLong
#endif
#elif NPY_BITSOF_SHORT == 128
#ifndef NPY_INT128
#define NPY_INT128 NPY_SHORT
#define NPY_UINT128 NPY_USHORT
typedef short npy_int128;
typedef unsigned short npy_uint128;
# define PyInt128ScalarObject PyShortScalarObject
# define PyInt128ArrType_Type PyShortArrType_Type
# define PyUInt128ScalarObject PyUShortScalarObject
# define PyUInt128ArrType_Type PyUShortArrType_Type
#define NPY_INT128_FMT NPY_SHORT_FMT
#define NPY_UINT128_FMT NPY_USHORT_FMT
#endif
#endif
#if NPY_BITSOF_CHAR == 8
#ifndef NPY_INT8
#define NPY_INT8 NPY_BYTE
#define NPY_UINT8 NPY_UBYTE
typedef signed char npy_int8;
typedef unsigned char npy_uint8;
# define PyInt8ScalarObject PyByteScalarObject
# define PyInt8ArrType_Type PyByteArrType_Type
# define PyUInt8ScalarObject PyUByteScalarObject
# define PyUInt8ArrType_Type PyUByteArrType_Type
#define NPY_INT8_FMT NPY_BYTE_FMT
#define NPY_UINT8_FMT NPY_UBYTE_FMT
#endif
#elif NPY_BITSOF_CHAR == 16
#ifndef NPY_INT16
#define NPY_INT16 NPY_BYTE
#define NPY_UINT16 NPY_UBYTE
typedef signed char npy_int16;
typedef unsigned char npy_uint16;
# define PyInt16ScalarObject PyByteScalarObject
# define PyInt16ArrType_Type PyByteArrType_Type
# define PyUInt16ScalarObject PyUByteScalarObject
# define PyUInt16ArrType_Type PyUByteArrType_Type
#define NPY_INT16_FMT NPY_BYTE_FMT
#define NPY_UINT16_FMT NPY_UBYTE_FMT
#endif
#elif NPY_BITSOF_CHAR == 32
#ifndef NPY_INT32
#define NPY_INT32 NPY_BYTE
#define NPY_UINT32 NPY_UBYTE
typedef signed char npy_int32;
typedef unsigned char npy_uint32;
typedef unsigned char npy_ucs4;
# define PyInt32ScalarObject PyByteScalarObject
# define PyInt32ArrType_Type PyByteArrType_Type
# define PyUInt32ScalarObject PyUByteScalarObject
# define PyUInt32ArrType_Type PyUByteArrType_Type
#define NPY_INT32_FMT NPY_BYTE_FMT
#define NPY_UINT32_FMT NPY_UBYTE_FMT
#endif
#elif NPY_BITSOF_CHAR == 64
#ifndef NPY_INT64
#define NPY_INT64 NPY_BYTE
#define NPY_UINT64 NPY_UBYTE
typedef signed char npy_int64;
typedef unsigned char npy_uint64;
# define PyInt64ScalarObject PyByteScalarObject
# define PyInt64ArrType_Type PyByteArrType_Type
# define PyUInt64ScalarObject PyUByteScalarObject
# define PyUInt64ArrType_Type PyUByteArrType_Type
#define NPY_INT64_FMT NPY_BYTE_FMT
#define NPY_UINT64_FMT NPY_UBYTE_FMT
# define MyPyLong_FromInt64 PyLong_FromLong
# define MyPyLong_AsInt64 PyLong_AsLong
#endif
#elif NPY_BITSOF_CHAR == 128
#ifndef NPY_INT128
#define NPY_INT128 NPY_BYTE
#define NPY_UINT128 NPY_UBYTE
typedef signed char npy_int128;
typedef unsigned char npy_uint128;
# define PyInt128ScalarObject PyByteScalarObject
# define PyInt128ArrType_Type PyByteArrType_Type
# define PyUInt128ScalarObject PyUByteScalarObject
# define PyUInt128ArrType_Type PyUByteArrType_Type
#define NPY_INT128_FMT NPY_BYTE_FMT
#define NPY_UINT128_FMT NPY_UBYTE_FMT
#endif
#endif
#if NPY_BITSOF_DOUBLE == 32
#ifndef NPY_FLOAT32
#define NPY_FLOAT32 NPY_DOUBLE
#define NPY_COMPLEX64 NPY_CDOUBLE
typedef double npy_float32;
typedef npy_cdouble npy_complex64;
# define PyFloat32ScalarObject PyDoubleScalarObject
# define PyComplex64ScalarObject PyCDoubleScalarObject
# define PyFloat32ArrType_Type PyDoubleArrType_Type
# define PyComplex64ArrType_Type PyCDoubleArrType_Type
#define NPY_FLOAT32_FMT NPY_DOUBLE_FMT
#define NPY_COMPLEX64_FMT NPY_CDOUBLE_FMT
#endif
#elif NPY_BITSOF_DOUBLE == 64
#ifndef NPY_FLOAT64
#define NPY_FLOAT64 NPY_DOUBLE
#define NPY_COMPLEX128 NPY_CDOUBLE
typedef double npy_float64;
typedef npy_cdouble npy_complex128;
# define PyFloat64ScalarObject PyDoubleScalarObject
# define PyComplex128ScalarObject PyCDoubleScalarObject
# define PyFloat64ArrType_Type PyDoubleArrType_Type
# define PyComplex128ArrType_Type PyCDoubleArrType_Type
#define NPY_FLOAT64_FMT NPY_DOUBLE_FMT
#define NPY_COMPLEX128_FMT NPY_CDOUBLE_FMT
#endif
#elif NPY_BITSOF_DOUBLE == 80
#ifndef NPY_FLOAT80
#define NPY_FLOAT80 NPY_DOUBLE
#define NPY_COMPLEX160 NPY_CDOUBLE
typedef double npy_float80;
typedef npy_cdouble npy_complex160;
# define PyFloat80ScalarObject PyDoubleScalarObject
# define PyComplex160ScalarObject PyCDoubleScalarObject
# define PyFloat80ArrType_Type PyDoubleArrType_Type
# define PyComplex160ArrType_Type PyCDoubleArrType_Type
#define NPY_FLOAT80_FMT NPY_DOUBLE_FMT
#define NPY_COMPLEX160_FMT NPY_CDOUBLE_FMT
#endif
#elif NPY_BITSOF_DOUBLE == 96
#ifndef NPY_FLOAT96
#define NPY_FLOAT96 NPY_DOUBLE
#define NPY_COMPLEX192 NPY_CDOUBLE
typedef double npy_float96;
typedef npy_cdouble npy_complex192;
# define PyFloat96ScalarObject PyDoubleScalarObject
# define PyComplex192ScalarObject PyCDoubleScalarObject
# define PyFloat96ArrType_Type PyDoubleArrType_Type
# define PyComplex192ArrType_Type PyCDoubleArrType_Type
#define NPY_FLOAT96_FMT NPY_DOUBLE_FMT
#define NPY_COMPLEX192_FMT NPY_CDOUBLE_FMT
#endif
#elif NPY_BITSOF_DOUBLE == 128
#ifndef NPY_FLOAT128
#define NPY_FLOAT128 NPY_DOUBLE
#define NPY_COMPLEX256 NPY_CDOUBLE
typedef double npy_float128;
typedef npy_cdouble npy_complex256;
# define PyFloat128ScalarObject PyDoubleScalarObject
# define PyComplex256ScalarObject PyCDoubleScalarObject
# define PyFloat128ArrType_Type PyDoubleArrType_Type
# define PyComplex256ArrType_Type PyCDoubleArrType_Type
#define NPY_FLOAT128_FMT NPY_DOUBLE_FMT
#define NPY_COMPLEX256_FMT NPY_CDOUBLE_FMT
#endif
#endif
#if NPY_BITSOF_FLOAT == 32
#ifndef NPY_FLOAT32
#define NPY_FLOAT32 NPY_FLOAT
#define NPY_COMPLEX64 NPY_CFLOAT
typedef float npy_float32;
typedef npy_cfloat npy_complex64;
# define PyFloat32ScalarObject PyFloatScalarObject
# define PyComplex64ScalarObject PyCFloatScalarObject
# define PyFloat32ArrType_Type PyFloatArrType_Type
# define PyComplex64ArrType_Type PyCFloatArrType_Type
#define NPY_FLOAT32_FMT NPY_FLOAT_FMT
#define NPY_COMPLEX64_FMT NPY_CFLOAT_FMT
#endif
#elif NPY_BITSOF_FLOAT == 64
#ifndef NPY_FLOAT64
#define NPY_FLOAT64 NPY_FLOAT
#define NPY_COMPLEX128 NPY_CFLOAT
typedef float npy_float64;
typedef npy_cfloat npy_complex128;
# define PyFloat64ScalarObject PyFloatScalarObject
# define PyComplex128ScalarObject PyCFloatScalarObject
# define PyFloat64ArrType_Type PyFloatArrType_Type
# define PyComplex128ArrType_Type PyCFloatArrType_Type
#define NPY_FLOAT64_FMT NPY_FLOAT_FMT
#define NPY_COMPLEX128_FMT NPY_CFLOAT_FMT
#endif
#elif NPY_BITSOF_FLOAT == 80
#ifndef NPY_FLOAT80
#define NPY_FLOAT80 NPY_FLOAT
#define NPY_COMPLEX160 NPY_CFLOAT
typedef float npy_float80;
typedef npy_cfloat npy_complex160;
# define PyFloat80ScalarObject PyFloatScalarObject
# define PyComplex160ScalarObject PyCFloatScalarObject
# define PyFloat80ArrType_Type PyFloatArrType_Type
# define PyComplex160ArrType_Type PyCFloatArrType_Type
#define NPY_FLOAT80_FMT NPY_FLOAT_FMT
#define NPY_COMPLEX160_FMT NPY_CFLOAT_FMT
#endif
#elif NPY_BITSOF_FLOAT == 96
#ifndef NPY_FLOAT96
#define NPY_FLOAT96 NPY_FLOAT
#define NPY_COMPLEX192 NPY_CFLOAT
typedef float npy_float96;
typedef npy_cfloat npy_complex192;
# define PyFloat96ScalarObject PyFloatScalarObject
# define PyComplex192ScalarObject PyCFloatScalarObject
# define PyFloat96ArrType_Type PyFloatArrType_Type
# define PyComplex192ArrType_Type PyCFloatArrType_Type
#define NPY_FLOAT96_FMT NPY_FLOAT_FMT
#define NPY_COMPLEX192_FMT NPY_CFLOAT_FMT
#endif
#elif NPY_BITSOF_FLOAT == 128
#ifndef NPY_FLOAT128
#define NPY_FLOAT128 NPY_FLOAT
#define NPY_COMPLEX256 NPY_CFLOAT
typedef float npy_float128;
typedef npy_cfloat npy_complex256;
# define PyFloat128ScalarObject PyFloatScalarObject
# define PyComplex256ScalarObject PyCFloatScalarObject
# define PyFloat128ArrType_Type PyFloatArrType_Type
# define PyComplex256ArrType_Type PyCFloatArrType_Type
#define NPY_FLOAT128_FMT NPY_FLOAT_FMT
#define NPY_COMPLEX256_FMT NPY_CFLOAT_FMT
#endif
#endif
/* half/float16 isn't a floating-point type in C */
#define NPY_FLOAT16 NPY_HALF
typedef npy_uint16 npy_half;
typedef npy_half npy_float16;
#if NPY_BITSOF_LONGDOUBLE == 32
#ifndef NPY_FLOAT32
#define NPY_FLOAT32 NPY_LONGDOUBLE
#define NPY_COMPLEX64 NPY_CLONGDOUBLE
typedef npy_longdouble npy_float32;
typedef npy_clongdouble npy_complex64;
# define PyFloat32ScalarObject PyLongDoubleScalarObject
# define PyComplex64ScalarObject PyCLongDoubleScalarObject
# define PyFloat32ArrType_Type PyLongDoubleArrType_Type
# define PyComplex64ArrType_Type PyCLongDoubleArrType_Type
#define NPY_FLOAT32_FMT NPY_LONGDOUBLE_FMT
#define NPY_COMPLEX64_FMT NPY_CLONGDOUBLE_FMT
#endif
#elif NPY_BITSOF_LONGDOUBLE == 64
#ifndef NPY_FLOAT64
#define NPY_FLOAT64 NPY_LONGDOUBLE
#define NPY_COMPLEX128 NPY_CLONGDOUBLE
typedef npy_longdouble npy_float64;
typedef npy_clongdouble npy_complex128;
# define PyFloat64ScalarObject PyLongDoubleScalarObject
# define PyComplex128ScalarObject PyCLongDoubleScalarObject
# define PyFloat64ArrType_Type PyLongDoubleArrType_Type
# define PyComplex128ArrType_Type PyCLongDoubleArrType_Type
#define NPY_FLOAT64_FMT NPY_LONGDOUBLE_FMT
#define NPY_COMPLEX128_FMT NPY_CLONGDOUBLE_FMT
#endif
#elif NPY_BITSOF_LONGDOUBLE == 80
#ifndef NPY_FLOAT80
#define NPY_FLOAT80 NPY_LONGDOUBLE
#define NPY_COMPLEX160 NPY_CLONGDOUBLE
typedef npy_longdouble npy_float80;
typedef npy_clongdouble npy_complex160;
# define PyFloat80ScalarObject PyLongDoubleScalarObject
# define PyComplex160ScalarObject PyCLongDoubleScalarObject
# define PyFloat80ArrType_Type PyLongDoubleArrType_Type
# define PyComplex160ArrType_Type PyCLongDoubleArrType_Type
#define NPY_FLOAT80_FMT NPY_LONGDOUBLE_FMT
#define NPY_COMPLEX160_FMT NPY_CLONGDOUBLE_FMT
#endif
#elif NPY_BITSOF_LONGDOUBLE == 96
#ifndef NPY_FLOAT96
#define NPY_FLOAT96 NPY_LONGDOUBLE
#define NPY_COMPLEX192 NPY_CLONGDOUBLE
typedef npy_longdouble npy_float96;
typedef npy_clongdouble npy_complex192;
# define PyFloat96ScalarObject PyLongDoubleScalarObject
# define PyComplex192ScalarObject PyCLongDoubleScalarObject
# define PyFloat96ArrType_Type PyLongDoubleArrType_Type
# define PyComplex192ArrType_Type PyCLongDoubleArrType_Type
#define NPY_FLOAT96_FMT NPY_LONGDOUBLE_FMT
#define NPY_COMPLEX192_FMT NPY_CLONGDOUBLE_FMT
#endif
#elif NPY_BITSOF_LONGDOUBLE == 128
#ifndef NPY_FLOAT128
#define NPY_FLOAT128 NPY_LONGDOUBLE
#define NPY_COMPLEX256 NPY_CLONGDOUBLE
typedef npy_longdouble npy_float128;
typedef npy_clongdouble npy_complex256;
# define PyFloat128ScalarObject PyLongDoubleScalarObject
# define PyComplex256ScalarObject PyCLongDoubleScalarObject
# define PyFloat128ArrType_Type PyLongDoubleArrType_Type
# define PyComplex256ArrType_Type PyCLongDoubleArrType_Type
#define NPY_FLOAT128_FMT NPY_LONGDOUBLE_FMT
#define NPY_COMPLEX256_FMT NPY_CLONGDOUBLE_FMT
#endif
#elif NPY_BITSOF_LONGDOUBLE == 256
#define NPY_FLOAT256 NPY_LONGDOUBLE
#define NPY_COMPLEX512 NPY_CLONGDOUBLE
typedef npy_longdouble npy_float256;
typedef npy_clongdouble npy_complex512;
# define PyFloat256ScalarObject PyLongDoubleScalarObject
# define PyComplex512ScalarObject PyCLongDoubleScalarObject
# define PyFloat256ArrType_Type PyLongDoubleArrType_Type
# define PyComplex512ArrType_Type PyCLongDoubleArrType_Type
#define NPY_FLOAT256_FMT NPY_LONGDOUBLE_FMT
#define NPY_COMPLEX512_FMT NPY_CLONGDOUBLE_FMT
#endif
/* datetime typedefs */
typedef npy_int64 npy_timedelta;
typedef npy_int64 npy_datetime;
#define NPY_DATETIME_FMT NPY_INT64_FMT
#define NPY_TIMEDELTA_FMT NPY_INT64_FMT
/* End of typedefs for numarray style bit-width names */
#endif

View File

@ -1,109 +0,0 @@
/*
* This set (target) cpu specific macros:
* - Possible values:
* NPY_CPU_X86
* NPY_CPU_AMD64
* NPY_CPU_PPC
* NPY_CPU_PPC64
* NPY_CPU_SPARC
* NPY_CPU_S390
* NPY_CPU_IA64
* NPY_CPU_HPPA
* NPY_CPU_ALPHA
* NPY_CPU_ARMEL
* NPY_CPU_ARMEB
* NPY_CPU_SH_LE
* NPY_CPU_SH_BE
*/
#ifndef _NPY_CPUARCH_H_
#define _NPY_CPUARCH_H_
#include "numpyconfig.h"
#if defined( __i386__ ) || defined(i386) || defined(_M_IX86)
/*
* __i386__ is defined by gcc and Intel compiler on Linux,
* _M_IX86 by VS compiler,
* i386 by Sun compilers on opensolaris at least
*/
#define NPY_CPU_X86
#elif defined(__x86_64__) || defined(__amd64__) || defined(__x86_64) || defined(_M_AMD64)
/*
* both __x86_64__ and __amd64__ are defined by gcc
* __x86_64 defined by sun compiler on opensolaris at least
* _M_AMD64 defined by MS compiler
*/
#define NPY_CPU_AMD64
#elif defined(__ppc__) || defined(__powerpc__) || defined(_ARCH_PPC)
/*
* __ppc__ is defined by gcc, I remember having seen __powerpc__ once,
* but can't find it ATM
* _ARCH_PPC is used by at least gcc on AIX
*/
#define NPY_CPU_PPC
#elif defined(__ppc64__)
#define NPY_CPU_PPC64
#elif defined(__sparc__) || defined(__sparc)
/* __sparc__ is defined by gcc and Forte (e.g. Sun) compilers */
#define NPY_CPU_SPARC
#elif defined(__s390__)
#define NPY_CPU_S390
#elif defined(__ia64)
#define NPY_CPU_IA64
#elif defined(__hppa)
#define NPY_CPU_HPPA
#elif defined(__alpha__)
#define NPY_CPU_ALPHA
#elif defined(__arm__) && defined(__ARMEL__)
#define NPY_CPU_ARMEL
#elif defined(__arm__) && defined(__ARMEB__)
#define NPY_CPU_ARMEB
#elif defined(__sh__) && defined(__LITTLE_ENDIAN__)
#define NPY_CPU_SH_LE
#elif defined(__sh__) && defined(__BIG_ENDIAN__)
#define NPY_CPU_SH_BE
#elif defined(__MIPSEL__)
#define NPY_CPU_MIPSEL
#elif defined(__MIPSEB__)
#define NPY_CPU_MIPSEB
#elif defined(__aarch64__)
#define NPY_CPU_AARCH64
#else
#error Unknown CPU, please report this to numpy maintainers with \
information about your platform (OS, CPU and compiler)
#endif
/*
This "white-lists" the architectures that we know don't require
pointer alignment. We white-list, since the memcpy version will
work everywhere, whereas assignment will only work where pointer
dereferencing doesn't require alignment.
TODO: There may be more architectures we can white list.
*/
#if defined(NPY_CPU_X86) || defined(NPY_CPU_AMD64)
#define NPY_COPY_PYOBJECT_PTR(dst, src) (*((PyObject **)(dst)) = *((PyObject **)(src)))
#else
#if NPY_SIZEOF_PY_INTPTR_T == 4
#define NPY_COPY_PYOBJECT_PTR(dst, src) \
((char*)(dst))[0] = ((char*)(src))[0]; \
((char*)(dst))[1] = ((char*)(src))[1]; \
((char*)(dst))[2] = ((char*)(src))[2]; \
((char*)(dst))[3] = ((char*)(src))[3];
#elif NPY_SIZEOF_PY_INTPTR_T == 8
#define NPY_COPY_PYOBJECT_PTR(dst, src) \
((char*)(dst))[0] = ((char*)(src))[0]; \
((char*)(dst))[1] = ((char*)(src))[1]; \
((char*)(dst))[2] = ((char*)(src))[2]; \
((char*)(dst))[3] = ((char*)(src))[3]; \
((char*)(dst))[4] = ((char*)(src))[4]; \
((char*)(dst))[5] = ((char*)(src))[5]; \
((char*)(dst))[6] = ((char*)(src))[6]; \
((char*)(dst))[7] = ((char*)(src))[7];
#else
#error Unknown architecture, please report this to numpy maintainers with \
information about your platform (OS, CPU and compiler)
#endif
#endif
#endif

View File

@ -1,129 +0,0 @@
#ifndef _NPY_DEPRECATED_API_H
#define _NPY_DEPRECATED_API_H
#if defined(_WIN32)
#define _WARN___STR2__(x) #x
#define _WARN___STR1__(x) _WARN___STR2__(x)
#define _WARN___LOC__ __FILE__ "(" _WARN___STR1__(__LINE__) ") : Warning Msg: "
#pragma message(_WARN___LOC__"Using deprecated NumPy API, disable it by " \
"#defining NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION")
#elif defined(__GNUC__)
#warning "Using deprecated NumPy API, disable it by #defining NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION"
#endif
/* TODO: How to do this warning message for other compilers? */
/*
* This header exists to collect all dangerous/deprecated NumPy API.
*
* This is an attempt to remove bad API, the proliferation of macros,
* and namespace pollution currently produced by the NumPy headers.
*/
#if defined(NPY_NO_DEPRECATED_API)
#error Should never include npy_deprecated_api directly.
#endif
/* These array flags are deprecated as of NumPy 1.7 */
#define NPY_CONTIGUOUS NPY_ARRAY_C_CONTIGUOUS
#define NPY_FORTRAN NPY_ARRAY_F_CONTIGUOUS
/*
* The consistent NPY_ARRAY_* names which don't pollute the NPY_*
* namespace were added in NumPy 1.7.
*
* These versions of the carray flags are deprecated, but
* probably should only be removed after two releases instead of one.
*/
#define NPY_C_CONTIGUOUS NPY_ARRAY_C_CONTIGUOUS
#define NPY_F_CONTIGUOUS NPY_ARRAY_F_CONTIGUOUS
#define NPY_OWNDATA NPY_ARRAY_OWNDATA
#define NPY_FORCECAST NPY_ARRAY_FORCECAST
#define NPY_ENSURECOPY NPY_ARRAY_ENSURECOPY
#define NPY_ENSUREARRAY NPY_ARRAY_ENSUREARRAY
#define NPY_ELEMENTSTRIDES NPY_ARRAY_ELEMENTSTRIDES
#define NPY_ALIGNED NPY_ARRAY_ALIGNED
#define NPY_NOTSWAPPED NPY_ARRAY_NOTSWAPPED
#define NPY_WRITEABLE NPY_ARRAY_WRITEABLE
#define NPY_UPDATEIFCOPY NPY_ARRAY_UPDATEIFCOPY
#define NPY_BEHAVED NPY_ARRAY_BEHAVED
#define NPY_BEHAVED_NS NPY_ARRAY_BEHAVED_NS
#define NPY_CARRAY NPY_ARRAY_CARRAY
#define NPY_CARRAY_RO NPY_ARRAY_CARRAY_RO
#define NPY_FARRAY NPY_ARRAY_FARRAY
#define NPY_FARRAY_RO NPY_ARRAY_FARRAY_RO
#define NPY_DEFAULT NPY_ARRAY_DEFAULT
#define NPY_IN_ARRAY NPY_ARRAY_IN_ARRAY
#define NPY_OUT_ARRAY NPY_ARRAY_OUT_ARRAY
#define NPY_INOUT_ARRAY NPY_ARRAY_INOUT_ARRAY
#define NPY_IN_FARRAY NPY_ARRAY_IN_FARRAY
#define NPY_OUT_FARRAY NPY_ARRAY_OUT_FARRAY
#define NPY_INOUT_FARRAY NPY_ARRAY_INOUT_FARRAY
#define NPY_UPDATE_ALL NPY_ARRAY_UPDATE_ALL
/* This way of accessing the default type is deprecated as of NumPy 1.7 */
#define PyArray_DEFAULT NPY_DEFAULT_TYPE
/* These DATETIME bits aren't used internally */
#if PY_VERSION_HEX >= 0x03000000
#define PyDataType_GetDatetimeMetaData(descr) \
((descr->metadata == NULL) ? NULL : \
((PyArray_DatetimeMetaData *)(PyCapsule_GetPointer( \
PyDict_GetItemString( \
descr->metadata, NPY_METADATA_DTSTR), NULL))))
#else
#define PyDataType_GetDatetimeMetaData(descr) \
((descr->metadata == NULL) ? NULL : \
((PyArray_DatetimeMetaData *)(PyCObject_AsVoidPtr( \
PyDict_GetItemString(descr->metadata, NPY_METADATA_DTSTR)))))
#endif
/*
* Deprecated as of NumPy 1.7, this kind of shortcut doesn't
* belong in the public API.
*/
#define NPY_AO PyArrayObject
/*
* Deprecated as of NumPy 1.7, an all-lowercase macro doesn't
* belong in the public API.
*/
#define fortran fortran_
/*
* Deprecated as of NumPy 1.7, as it is a namespace-polluting
* macro.
*/
#define FORTRAN_IF PyArray_FORTRAN_IF
/* Deprecated as of NumPy 1.7, datetime64 uses c_metadata instead */
#define NPY_METADATA_DTSTR "__timeunit__"
/*
* Deprecated as of NumPy 1.7.
* The reasoning:
* - These are for datetime, but there's no datetime "namespace".
* - They just turn NPY_STR_<x> into "<x>", which is just
* making something simple be indirected.
*/
#define NPY_STR_Y "Y"
#define NPY_STR_M "M"
#define NPY_STR_W "W"
#define NPY_STR_D "D"
#define NPY_STR_h "h"
#define NPY_STR_m "m"
#define NPY_STR_s "s"
#define NPY_STR_ms "ms"
#define NPY_STR_us "us"
#define NPY_STR_ns "ns"
#define NPY_STR_ps "ps"
#define NPY_STR_fs "fs"
#define NPY_STR_as "as"
/*
* The macros in old_defines.h are Deprecated as of NumPy 1.7 and will be
* removed in the next major release.
*/
#include "old_defines.h"
#endif

View File

@ -1,46 +0,0 @@
#ifndef _NPY_ENDIAN_H_
#define _NPY_ENDIAN_H_
/*
* NPY_BYTE_ORDER is set to the same value as BYTE_ORDER set by glibc in
* endian.h
*/
#ifdef NPY_HAVE_ENDIAN_H
/* Use endian.h if available */
#include <endian.h>
#define NPY_BYTE_ORDER __BYTE_ORDER
#define NPY_LITTLE_ENDIAN __LITTLE_ENDIAN
#define NPY_BIG_ENDIAN __BIG_ENDIAN
#else
/* Set endianness info using target CPU */
#include "npy_cpu.h"
#define NPY_LITTLE_ENDIAN 1234
#define NPY_BIG_ENDIAN 4321
#if defined(NPY_CPU_X86) \
|| defined(NPY_CPU_AMD64) \
|| defined(NPY_CPU_IA64) \
|| defined(NPY_CPU_ALPHA) \
|| defined(NPY_CPU_ARMEL) \
|| defined(NPY_CPU_AARCH64) \
|| defined(NPY_CPU_SH_LE) \
|| defined(NPY_CPU_MIPSEL)
#define NPY_BYTE_ORDER NPY_LITTLE_ENDIAN
#elif defined(NPY_CPU_PPC) \
|| defined(NPY_CPU_SPARC) \
|| defined(NPY_CPU_S390) \
|| defined(NPY_CPU_HPPA) \
|| defined(NPY_CPU_PPC64) \
|| defined(NPY_CPU_ARMEB) \
|| defined(NPY_CPU_SH_BE) \
|| defined(NPY_CPU_MIPSEB)
#define NPY_BYTE_ORDER NPY_BIG_ENDIAN
#else
#error Unknown CPU: can not set endianness
#endif
#endif
#endif

View File

@ -1,117 +0,0 @@
/* Signal handling:
This header file defines macros that allow your code to handle
interrupts received during processing. Interrupts that
could reasonably be handled:
SIGINT, SIGABRT, SIGALRM, SIGSEGV
****Warning***************
Do not allow code that creates temporary memory or increases reference
counts of Python objects to be interrupted unless you handle it
differently.
**************************
The mechanism for handling interrupts is conceptually simple:
- replace the signal handler with our own home-grown version
and store the old one.
- run the code to be interrupted -- if an interrupt occurs
the handler should basically just cause a return to the
calling function for finish work.
- restore the old signal handler
Of course, every code that allows interrupts must account for
returning via the interrupt and handle clean-up correctly. But,
even still, the simple paradigm is complicated by at least three
factors.
1) platform portability (i.e. Microsoft says not to use longjmp
to return from signal handling. They have a __try and __except
extension to C instead but what about mingw?).
2) how to handle threads: apparently whether signals are delivered to
every thread of the process or the "invoking" thread is platform
dependent. --- we don't handle threads for now.
3) do we need to worry about re-entrance. For now, assume the
code will not call-back into itself.
Ideas:
1) Start by implementing an approach that works on platforms that
can use setjmp and longjmp functionality and does nothing
on other platforms.
2) Ignore threads --- i.e. do not mix interrupt handling and threads
3) Add a default signal_handler function to the C-API but have the rest
use macros.
Simple Interface:
In your C-extension: around a block of code you want to be interruptable
with a SIGINT
NPY_SIGINT_ON
[code]
NPY_SIGINT_OFF
In order for this to work correctly, the
[code] block must not allocate any memory or alter the reference count of any
Python objects. In other words [code] must be interruptible so that continuation
after NPY_SIGINT_OFF will only be "missing some computations"
Interrupt handling does not work well with threads.
*/
/* Add signal handling macros
Make the global variable and signal handler part of the C-API
*/
#ifndef NPY_INTERRUPT_H
#define NPY_INTERRUPT_H
#ifndef NPY_NO_SIGNAL
#include <setjmp.h>
#include <signal.h>
#ifndef sigsetjmp
#define NPY_SIGSETJMP(arg1, arg2) setjmp(arg1)
#define NPY_SIGLONGJMP(arg1, arg2) longjmp(arg1, arg2)
#define NPY_SIGJMP_BUF jmp_buf
#else
#define NPY_SIGSETJMP(arg1, arg2) sigsetjmp(arg1, arg2)
#define NPY_SIGLONGJMP(arg1, arg2) siglongjmp(arg1, arg2)
#define NPY_SIGJMP_BUF sigjmp_buf
#endif
# define NPY_SIGINT_ON { \
PyOS_sighandler_t _npy_sig_save; \
_npy_sig_save = PyOS_setsig(SIGINT, _PyArray_SigintHandler); \
if (NPY_SIGSETJMP(*((NPY_SIGJMP_BUF *)_PyArray_GetSigintBuf()), \
1) == 0) { \
# define NPY_SIGINT_OFF } \
PyOS_setsig(SIGINT, _npy_sig_save); \
}
#else /* NPY_NO_SIGNAL */
#define NPY_SIGINT_ON
#define NPY_SIGINT_OFF
#endif /* HAVE_SIGSETJMP */
#endif /* NPY_INTERRUPT_H */

View File

@ -1,438 +0,0 @@
#ifndef __NPY_MATH_C99_H_
#define __NPY_MATH_C99_H_
#include <math.h>
#ifdef __SUNPRO_CC
#include <sunmath.h>
#endif
#include <numpy/npy_common.h>
/*
* NAN and INFINITY like macros (same behavior as glibc for NAN, same as C99
* for INFINITY)
*
* XXX: I should test whether INFINITY and NAN are available on the platform
*/
NPY_INLINE static float __npy_inff(void)
{
const union { npy_uint32 __i; float __f;} __bint = {0x7f800000UL};
return __bint.__f;
}
NPY_INLINE static float __npy_nanf(void)
{
const union { npy_uint32 __i; float __f;} __bint = {0x7fc00000UL};
return __bint.__f;
}
NPY_INLINE static float __npy_pzerof(void)
{
const union { npy_uint32 __i; float __f;} __bint = {0x00000000UL};
return __bint.__f;
}
NPY_INLINE static float __npy_nzerof(void)
{
const union { npy_uint32 __i; float __f;} __bint = {0x80000000UL};
return __bint.__f;
}
#define NPY_INFINITYF __npy_inff()
#define NPY_NANF __npy_nanf()
#define NPY_PZEROF __npy_pzerof()
#define NPY_NZEROF __npy_nzerof()
#define NPY_INFINITY ((npy_double)NPY_INFINITYF)
#define NPY_NAN ((npy_double)NPY_NANF)
#define NPY_PZERO ((npy_double)NPY_PZEROF)
#define NPY_NZERO ((npy_double)NPY_NZEROF)
#define NPY_INFINITYL ((npy_longdouble)NPY_INFINITYF)
#define NPY_NANL ((npy_longdouble)NPY_NANF)
#define NPY_PZEROL ((npy_longdouble)NPY_PZEROF)
#define NPY_NZEROL ((npy_longdouble)NPY_NZEROF)
/*
* Useful constants
*/
#define NPY_E 2.718281828459045235360287471352662498 /* e */
#define NPY_LOG2E 1.442695040888963407359924681001892137 /* log_2 e */
#define NPY_LOG10E 0.434294481903251827651128918916605082 /* log_10 e */
#define NPY_LOGE2 0.693147180559945309417232121458176568 /* log_e 2 */
#define NPY_LOGE10 2.302585092994045684017991454684364208 /* log_e 10 */
#define NPY_PI 3.141592653589793238462643383279502884 /* pi */
#define NPY_PI_2 1.570796326794896619231321691639751442 /* pi/2 */
#define NPY_PI_4 0.785398163397448309615660845819875721 /* pi/4 */
#define NPY_1_PI 0.318309886183790671537767526745028724 /* 1/pi */
#define NPY_2_PI 0.636619772367581343075535053490057448 /* 2/pi */
#define NPY_EULER 0.577215664901532860606512090082402431 /* Euler constant */
#define NPY_SQRT2 1.414213562373095048801688724209698079 /* sqrt(2) */
#define NPY_SQRT1_2 0.707106781186547524400844362104849039 /* 1/sqrt(2) */
#define NPY_Ef 2.718281828459045235360287471352662498F /* e */
#define NPY_LOG2Ef 1.442695040888963407359924681001892137F /* log_2 e */
#define NPY_LOG10Ef 0.434294481903251827651128918916605082F /* log_10 e */
#define NPY_LOGE2f 0.693147180559945309417232121458176568F /* log_e 2 */
#define NPY_LOGE10f 2.302585092994045684017991454684364208F /* log_e 10 */
#define NPY_PIf 3.141592653589793238462643383279502884F /* pi */
#define NPY_PI_2f 1.570796326794896619231321691639751442F /* pi/2 */
#define NPY_PI_4f 0.785398163397448309615660845819875721F /* pi/4 */
#define NPY_1_PIf 0.318309886183790671537767526745028724F /* 1/pi */
#define NPY_2_PIf 0.636619772367581343075535053490057448F /* 2/pi */
#define NPY_EULERf 0.577215664901532860606512090082402431F /* Euler constan*/
#define NPY_SQRT2f 1.414213562373095048801688724209698079F /* sqrt(2) */
#define NPY_SQRT1_2f 0.707106781186547524400844362104849039F /* 1/sqrt(2) */
#define NPY_El 2.718281828459045235360287471352662498L /* e */
#define NPY_LOG2El 1.442695040888963407359924681001892137L /* log_2 e */
#define NPY_LOG10El 0.434294481903251827651128918916605082L /* log_10 e */
#define NPY_LOGE2l 0.693147180559945309417232121458176568L /* log_e 2 */
#define NPY_LOGE10l 2.302585092994045684017991454684364208L /* log_e 10 */
#define NPY_PIl 3.141592653589793238462643383279502884L /* pi */
#define NPY_PI_2l 1.570796326794896619231321691639751442L /* pi/2 */
#define NPY_PI_4l 0.785398163397448309615660845819875721L /* pi/4 */
#define NPY_1_PIl 0.318309886183790671537767526745028724L /* 1/pi */
#define NPY_2_PIl 0.636619772367581343075535053490057448L /* 2/pi */
#define NPY_EULERl 0.577215664901532860606512090082402431L /* Euler constan*/
#define NPY_SQRT2l 1.414213562373095048801688724209698079L /* sqrt(2) */
#define NPY_SQRT1_2l 0.707106781186547524400844362104849039L /* 1/sqrt(2) */
/*
* C99 double math funcs
*/
double npy_sin(double x);
double npy_cos(double x);
double npy_tan(double x);
double npy_sinh(double x);
double npy_cosh(double x);
double npy_tanh(double x);
double npy_asin(double x);
double npy_acos(double x);
double npy_atan(double x);
double npy_aexp(double x);
double npy_alog(double x);
double npy_asqrt(double x);
double npy_afabs(double x);
double npy_log(double x);
double npy_log10(double x);
double npy_exp(double x);
double npy_sqrt(double x);
double npy_fabs(double x);
double npy_ceil(double x);
double npy_fmod(double x, double y);
double npy_floor(double x);
double npy_expm1(double x);
double npy_log1p(double x);
double npy_hypot(double x, double y);
double npy_acosh(double x);
double npy_asinh(double xx);
double npy_atanh(double x);
double npy_rint(double x);
double npy_trunc(double x);
double npy_exp2(double x);
double npy_log2(double x);
double npy_atan2(double x, double y);
double npy_pow(double x, double y);
double npy_modf(double x, double* y);
double npy_copysign(double x, double y);
double npy_nextafter(double x, double y);
double npy_spacing(double x);
/*
* IEEE 754 fpu handling. Those are guaranteed to be macros
*/
#ifndef NPY_HAVE_DECL_ISNAN
#define npy_isnan(x) ((x) != (x))
#else
#ifdef _MSC_VER
#define npy_isnan(x) _isnan((x))
#else
#define npy_isnan(x) isnan((x))
#endif
#endif
#ifndef NPY_HAVE_DECL_ISFINITE
#ifdef _MSC_VER
#define npy_isfinite(x) _finite((x))
#else
#define npy_isfinite(x) !npy_isnan((x) + (-x))
#endif
#else
#define npy_isfinite(x) isfinite((x))
#endif
#ifndef NPY_HAVE_DECL_ISINF
#define npy_isinf(x) (!npy_isfinite(x) && !npy_isnan(x))
#else
#ifdef _MSC_VER
#define npy_isinf(x) (!_finite((x)) && !_isnan((x)))
#else
#define npy_isinf(x) isinf((x))
#endif
#endif
#ifndef NPY_HAVE_DECL_SIGNBIT
int _npy_signbit_f(float x);
int _npy_signbit_d(double x);
int _npy_signbit_ld(long double x);
#define npy_signbit(x) \
(sizeof (x) == sizeof (long double) ? _npy_signbit_ld (x) \
: sizeof (x) == sizeof (double) ? _npy_signbit_d (x) \
: _npy_signbit_f (x))
#else
#define npy_signbit(x) signbit((x))
#endif
/*
* float C99 math functions
*/
float npy_sinf(float x);
float npy_cosf(float x);
float npy_tanf(float x);
float npy_sinhf(float x);
float npy_coshf(float x);
float npy_tanhf(float x);
float npy_fabsf(float x);
float npy_floorf(float x);
float npy_ceilf(float x);
float npy_rintf(float x);
float npy_truncf(float x);
float npy_sqrtf(float x);
float npy_log10f(float x);
float npy_logf(float x);
float npy_expf(float x);
float npy_expm1f(float x);
float npy_asinf(float x);
float npy_acosf(float x);
float npy_atanf(float x);
float npy_asinhf(float x);
float npy_acoshf(float x);
float npy_atanhf(float x);
float npy_log1pf(float x);
float npy_exp2f(float x);
float npy_log2f(float x);
float npy_atan2f(float x, float y);
float npy_hypotf(float x, float y);
float npy_powf(float x, float y);
float npy_fmodf(float x, float y);
float npy_modff(float x, float* y);
float npy_copysignf(float x, float y);
float npy_nextafterf(float x, float y);
float npy_spacingf(float x);
/*
* float C99 math functions
*/
npy_longdouble npy_sinl(npy_longdouble x);
npy_longdouble npy_cosl(npy_longdouble x);
npy_longdouble npy_tanl(npy_longdouble x);
npy_longdouble npy_sinhl(npy_longdouble x);
npy_longdouble npy_coshl(npy_longdouble x);
npy_longdouble npy_tanhl(npy_longdouble x);
npy_longdouble npy_fabsl(npy_longdouble x);
npy_longdouble npy_floorl(npy_longdouble x);
npy_longdouble npy_ceill(npy_longdouble x);
npy_longdouble npy_rintl(npy_longdouble x);
npy_longdouble npy_truncl(npy_longdouble x);
npy_longdouble npy_sqrtl(npy_longdouble x);
npy_longdouble npy_log10l(npy_longdouble x);
npy_longdouble npy_logl(npy_longdouble x);
npy_longdouble npy_expl(npy_longdouble x);
npy_longdouble npy_expm1l(npy_longdouble x);
npy_longdouble npy_asinl(npy_longdouble x);
npy_longdouble npy_acosl(npy_longdouble x);
npy_longdouble npy_atanl(npy_longdouble x);
npy_longdouble npy_asinhl(npy_longdouble x);
npy_longdouble npy_acoshl(npy_longdouble x);
npy_longdouble npy_atanhl(npy_longdouble x);
npy_longdouble npy_log1pl(npy_longdouble x);
npy_longdouble npy_exp2l(npy_longdouble x);
npy_longdouble npy_log2l(npy_longdouble x);
npy_longdouble npy_atan2l(npy_longdouble x, npy_longdouble y);
npy_longdouble npy_hypotl(npy_longdouble x, npy_longdouble y);
npy_longdouble npy_powl(npy_longdouble x, npy_longdouble y);
npy_longdouble npy_fmodl(npy_longdouble x, npy_longdouble y);
npy_longdouble npy_modfl(npy_longdouble x, npy_longdouble* y);
npy_longdouble npy_copysignl(npy_longdouble x, npy_longdouble y);
npy_longdouble npy_nextafterl(npy_longdouble x, npy_longdouble y);
npy_longdouble npy_spacingl(npy_longdouble x);
/*
* Non standard functions
*/
double npy_deg2rad(double x);
double npy_rad2deg(double x);
double npy_logaddexp(double x, double y);
double npy_logaddexp2(double x, double y);
float npy_deg2radf(float x);
float npy_rad2degf(float x);
float npy_logaddexpf(float x, float y);
float npy_logaddexp2f(float x, float y);
npy_longdouble npy_deg2radl(npy_longdouble x);
npy_longdouble npy_rad2degl(npy_longdouble x);
npy_longdouble npy_logaddexpl(npy_longdouble x, npy_longdouble y);
npy_longdouble npy_logaddexp2l(npy_longdouble x, npy_longdouble y);
#define npy_degrees npy_rad2deg
#define npy_degreesf npy_rad2degf
#define npy_degreesl npy_rad2degl
#define npy_radians npy_deg2rad
#define npy_radiansf npy_deg2radf
#define npy_radiansl npy_deg2radl
/*
* Complex declarations
*/
/*
* C99 specifies that complex numbers have the same representation as
* an array of two elements, where the first element is the real part
* and the second element is the imaginary part.
*/
#define __NPY_CPACK_IMP(x, y, type, ctype) \
union { \
ctype z; \
type a[2]; \
} z1;; \
\
z1.a[0] = (x); \
z1.a[1] = (y); \
\
return z1.z;
static NPY_INLINE npy_cdouble npy_cpack(double x, double y)
{
__NPY_CPACK_IMP(x, y, double, npy_cdouble);
}
static NPY_INLINE npy_cfloat npy_cpackf(float x, float y)
{
__NPY_CPACK_IMP(x, y, float, npy_cfloat);
}
static NPY_INLINE npy_clongdouble npy_cpackl(npy_longdouble x, npy_longdouble y)
{
__NPY_CPACK_IMP(x, y, npy_longdouble, npy_clongdouble);
}
#undef __NPY_CPACK_IMP
/*
* Same remark as above, but in the other direction: extract first/second
* member of complex number, assuming a C99-compatible representation
*
* Those are defineds as static inline, and such as a reasonable compiler would
* most likely compile this to one or two instructions (on CISC at least)
*/
#define __NPY_CEXTRACT_IMP(z, index, type, ctype) \
union { \
ctype z; \
type a[2]; \
} __z_repr; \
__z_repr.z = z; \
\
return __z_repr.a[index];
static NPY_INLINE double npy_creal(npy_cdouble z)
{
__NPY_CEXTRACT_IMP(z, 0, double, npy_cdouble);
}
static NPY_INLINE double npy_cimag(npy_cdouble z)
{
__NPY_CEXTRACT_IMP(z, 1, double, npy_cdouble);
}
static NPY_INLINE float npy_crealf(npy_cfloat z)
{
__NPY_CEXTRACT_IMP(z, 0, float, npy_cfloat);
}
static NPY_INLINE float npy_cimagf(npy_cfloat z)
{
__NPY_CEXTRACT_IMP(z, 1, float, npy_cfloat);
}
static NPY_INLINE npy_longdouble npy_creall(npy_clongdouble z)
{
__NPY_CEXTRACT_IMP(z, 0, npy_longdouble, npy_clongdouble);
}
static NPY_INLINE npy_longdouble npy_cimagl(npy_clongdouble z)
{
__NPY_CEXTRACT_IMP(z, 1, npy_longdouble, npy_clongdouble);
}
#undef __NPY_CEXTRACT_IMP
/*
* Double precision complex functions
*/
double npy_cabs(npy_cdouble z);
double npy_carg(npy_cdouble z);
npy_cdouble npy_cexp(npy_cdouble z);
npy_cdouble npy_clog(npy_cdouble z);
npy_cdouble npy_cpow(npy_cdouble x, npy_cdouble y);
npy_cdouble npy_csqrt(npy_cdouble z);
npy_cdouble npy_ccos(npy_cdouble z);
npy_cdouble npy_csin(npy_cdouble z);
/*
* Single precision complex functions
*/
float npy_cabsf(npy_cfloat z);
float npy_cargf(npy_cfloat z);
npy_cfloat npy_cexpf(npy_cfloat z);
npy_cfloat npy_clogf(npy_cfloat z);
npy_cfloat npy_cpowf(npy_cfloat x, npy_cfloat y);
npy_cfloat npy_csqrtf(npy_cfloat z);
npy_cfloat npy_ccosf(npy_cfloat z);
npy_cfloat npy_csinf(npy_cfloat z);
/*
* Extended precision complex functions
*/
npy_longdouble npy_cabsl(npy_clongdouble z);
npy_longdouble npy_cargl(npy_clongdouble z);
npy_clongdouble npy_cexpl(npy_clongdouble z);
npy_clongdouble npy_clogl(npy_clongdouble z);
npy_clongdouble npy_cpowl(npy_clongdouble x, npy_clongdouble y);
npy_clongdouble npy_csqrtl(npy_clongdouble z);
npy_clongdouble npy_ccosl(npy_clongdouble z);
npy_clongdouble npy_csinl(npy_clongdouble z);
/*
* Functions that set the floating point error
* status word.
*/
void npy_set_floatstatus_divbyzero(void);
void npy_set_floatstatus_overflow(void);
void npy_set_floatstatus_underflow(void);
void npy_set_floatstatus_invalid(void);
#endif

View File

@ -1,19 +0,0 @@
/*
* This include file is provided for inclusion in Cython *.pyd files where
* one would like to define the NPY_NO_DEPRECATED_API macro. It can be
* included by
*
* cdef extern from "npy_no_deprecated_api.h": pass
*
*/
#ifndef NPY_NO_DEPRECATED_API
/* put this check here since there may be multiple includes in C extensions. */
#if defined(NDARRAYTYPES_H) || defined(_NPY_DEPRECATED_API_H) || \
defined(OLD_DEFINES_H)
#error "npy_no_deprecated_api.h" must be first among numpy includes.
#else
#define NPY_NO_DEPRECATED_API NPY_API_VERSION
#endif
#endif

View File

@ -1,30 +0,0 @@
#ifndef _NPY_OS_H_
#define _NPY_OS_H_
#if defined(linux) || defined(__linux) || defined(__linux__)
#define NPY_OS_LINUX
#elif defined(__FreeBSD__) || defined(__NetBSD__) || \
defined(__OpenBSD__) || defined(__DragonFly__)
#define NPY_OS_BSD
#ifdef __FreeBSD__
#define NPY_OS_FREEBSD
#elif defined(__NetBSD__)
#define NPY_OS_NETBSD
#elif defined(__OpenBSD__)
#define NPY_OS_OPENBSD
#elif defined(__DragonFly__)
#define NPY_OS_DRAGONFLY
#endif
#elif defined(sun) || defined(__sun)
#define NPY_OS_SOLARIS
#elif defined(__CYGWIN__)
#define NPY_OS_CYGWIN
#elif defined(_WIN32) || defined(__WIN32__) || defined(WIN32)
#define NPY_OS_WIN32
#elif defined(__APPLE__)
#define NPY_OS_DARWIN
#else
#define NPY_OS_UNKNOWN
#endif
#endif

View File

@ -1,33 +0,0 @@
#ifndef _NPY_NUMPYCONFIG_H_
#define _NPY_NUMPYCONFIG_H_
#include "_numpyconfig.h"
/*
* On Mac OS X, because there is only one configuration stage for all the archs
* in universal builds, any macro which depends on the arch needs to be
* harcoded
*/
#ifdef __APPLE__
#undef NPY_SIZEOF_LONG
#undef NPY_SIZEOF_PY_INTPTR_T
#ifdef __LP64__
#define NPY_SIZEOF_LONG 8
#define NPY_SIZEOF_PY_INTPTR_T 8
#else
#define NPY_SIZEOF_LONG 4
#define NPY_SIZEOF_PY_INTPTR_T 4
#endif
#endif
/**
* To help with the NPY_NO_DEPRECATED_API macro, we include API version
* numbers for specific versions of NumPy. To exclude all API that was
* deprecated as of 1.7, add the following before #including any NumPy
* headers:
* #define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION
*/
#define NPY_1_7_API_VERSION 0x00000007
#endif

View File

@ -1,187 +0,0 @@
/* This header is deprecated as of NumPy 1.7 */
#ifndef OLD_DEFINES_H
#define OLD_DEFINES_H
#if defined(NPY_NO_DEPRECATED_API) && NPY_NO_DEPRECATED_API >= NPY_1_7_API_VERSION
#error The header "old_defines.h" is deprecated as of NumPy 1.7.
#endif
#define NDARRAY_VERSION NPY_VERSION
#define PyArray_MIN_BUFSIZE NPY_MIN_BUFSIZE
#define PyArray_MAX_BUFSIZE NPY_MAX_BUFSIZE
#define PyArray_BUFSIZE NPY_BUFSIZE
#define PyArray_PRIORITY NPY_PRIORITY
#define PyArray_SUBTYPE_PRIORITY NPY_PRIORITY
#define PyArray_NUM_FLOATTYPE NPY_NUM_FLOATTYPE
#define NPY_MAX PyArray_MAX
#define NPY_MIN PyArray_MIN
#define PyArray_TYPES NPY_TYPES
#define PyArray_BOOL NPY_BOOL
#define PyArray_BYTE NPY_BYTE
#define PyArray_UBYTE NPY_UBYTE
#define PyArray_SHORT NPY_SHORT
#define PyArray_USHORT NPY_USHORT
#define PyArray_INT NPY_INT
#define PyArray_UINT NPY_UINT
#define PyArray_LONG NPY_LONG
#define PyArray_ULONG NPY_ULONG
#define PyArray_LONGLONG NPY_LONGLONG
#define PyArray_ULONGLONG NPY_ULONGLONG
#define PyArray_HALF NPY_HALF
#define PyArray_FLOAT NPY_FLOAT
#define PyArray_DOUBLE NPY_DOUBLE
#define PyArray_LONGDOUBLE NPY_LONGDOUBLE
#define PyArray_CFLOAT NPY_CFLOAT
#define PyArray_CDOUBLE NPY_CDOUBLE
#define PyArray_CLONGDOUBLE NPY_CLONGDOUBLE
#define PyArray_OBJECT NPY_OBJECT
#define PyArray_STRING NPY_STRING
#define PyArray_UNICODE NPY_UNICODE
#define PyArray_VOID NPY_VOID
#define PyArray_DATETIME NPY_DATETIME
#define PyArray_TIMEDELTA NPY_TIMEDELTA
#define PyArray_NTYPES NPY_NTYPES
#define PyArray_NOTYPE NPY_NOTYPE
#define PyArray_CHAR NPY_CHAR
#define PyArray_USERDEF NPY_USERDEF
#define PyArray_NUMUSERTYPES NPY_NUMUSERTYPES
#define PyArray_INTP NPY_INTP
#define PyArray_UINTP NPY_UINTP
#define PyArray_INT8 NPY_INT8
#define PyArray_UINT8 NPY_UINT8
#define PyArray_INT16 NPY_INT16
#define PyArray_UINT16 NPY_UINT16
#define PyArray_INT32 NPY_INT32
#define PyArray_UINT32 NPY_UINT32
#ifdef NPY_INT64
#define PyArray_INT64 NPY_INT64
#define PyArray_UINT64 NPY_UINT64
#endif
#ifdef NPY_INT128
#define PyArray_INT128 NPY_INT128
#define PyArray_UINT128 NPY_UINT128
#endif
#ifdef NPY_FLOAT16
#define PyArray_FLOAT16 NPY_FLOAT16
#define PyArray_COMPLEX32 NPY_COMPLEX32
#endif
#ifdef NPY_FLOAT80
#define PyArray_FLOAT80 NPY_FLOAT80
#define PyArray_COMPLEX160 NPY_COMPLEX160
#endif
#ifdef NPY_FLOAT96
#define PyArray_FLOAT96 NPY_FLOAT96
#define PyArray_COMPLEX192 NPY_COMPLEX192
#endif
#ifdef NPY_FLOAT128
#define PyArray_FLOAT128 NPY_FLOAT128
#define PyArray_COMPLEX256 NPY_COMPLEX256
#endif
#define PyArray_FLOAT32 NPY_FLOAT32
#define PyArray_COMPLEX64 NPY_COMPLEX64
#define PyArray_FLOAT64 NPY_FLOAT64
#define PyArray_COMPLEX128 NPY_COMPLEX128
#define PyArray_TYPECHAR NPY_TYPECHAR
#define PyArray_BOOLLTR NPY_BOOLLTR
#define PyArray_BYTELTR NPY_BYTELTR
#define PyArray_UBYTELTR NPY_UBYTELTR
#define PyArray_SHORTLTR NPY_SHORTLTR
#define PyArray_USHORTLTR NPY_USHORTLTR
#define PyArray_INTLTR NPY_INTLTR
#define PyArray_UINTLTR NPY_UINTLTR
#define PyArray_LONGLTR NPY_LONGLTR
#define PyArray_ULONGLTR NPY_ULONGLTR
#define PyArray_LONGLONGLTR NPY_LONGLONGLTR
#define PyArray_ULONGLONGLTR NPY_ULONGLONGLTR
#define PyArray_HALFLTR NPY_HALFLTR
#define PyArray_FLOATLTR NPY_FLOATLTR
#define PyArray_DOUBLELTR NPY_DOUBLELTR
#define PyArray_LONGDOUBLELTR NPY_LONGDOUBLELTR
#define PyArray_CFLOATLTR NPY_CFLOATLTR
#define PyArray_CDOUBLELTR NPY_CDOUBLELTR
#define PyArray_CLONGDOUBLELTR NPY_CLONGDOUBLELTR
#define PyArray_OBJECTLTR NPY_OBJECTLTR
#define PyArray_STRINGLTR NPY_STRINGLTR
#define PyArray_STRINGLTR2 NPY_STRINGLTR2
#define PyArray_UNICODELTR NPY_UNICODELTR
#define PyArray_VOIDLTR NPY_VOIDLTR
#define PyArray_DATETIMELTR NPY_DATETIMELTR
#define PyArray_TIMEDELTALTR NPY_TIMEDELTALTR
#define PyArray_CHARLTR NPY_CHARLTR
#define PyArray_INTPLTR NPY_INTPLTR
#define PyArray_UINTPLTR NPY_UINTPLTR
#define PyArray_GENBOOLLTR NPY_GENBOOLLTR
#define PyArray_SIGNEDLTR NPY_SIGNEDLTR
#define PyArray_UNSIGNEDLTR NPY_UNSIGNEDLTR
#define PyArray_FLOATINGLTR NPY_FLOATINGLTR
#define PyArray_COMPLEXLTR NPY_COMPLEXLTR
#define PyArray_QUICKSORT NPY_QUICKSORT
#define PyArray_HEAPSORT NPY_HEAPSORT
#define PyArray_MERGESORT NPY_MERGESORT
#define PyArray_SORTKIND NPY_SORTKIND
#define PyArray_NSORTS NPY_NSORTS
#define PyArray_NOSCALAR NPY_NOSCALAR
#define PyArray_BOOL_SCALAR NPY_BOOL_SCALAR
#define PyArray_INTPOS_SCALAR NPY_INTPOS_SCALAR
#define PyArray_INTNEG_SCALAR NPY_INTNEG_SCALAR
#define PyArray_FLOAT_SCALAR NPY_FLOAT_SCALAR
#define PyArray_COMPLEX_SCALAR NPY_COMPLEX_SCALAR
#define PyArray_OBJECT_SCALAR NPY_OBJECT_SCALAR
#define PyArray_SCALARKIND NPY_SCALARKIND
#define PyArray_NSCALARKINDS NPY_NSCALARKINDS
#define PyArray_ANYORDER NPY_ANYORDER
#define PyArray_CORDER NPY_CORDER
#define PyArray_FORTRANORDER NPY_FORTRANORDER
#define PyArray_ORDER NPY_ORDER
#define PyDescr_ISBOOL PyDataType_ISBOOL
#define PyDescr_ISUNSIGNED PyDataType_ISUNSIGNED
#define PyDescr_ISSIGNED PyDataType_ISSIGNED
#define PyDescr_ISINTEGER PyDataType_ISINTEGER
#define PyDescr_ISFLOAT PyDataType_ISFLOAT
#define PyDescr_ISNUMBER PyDataType_ISNUMBER
#define PyDescr_ISSTRING PyDataType_ISSTRING
#define PyDescr_ISCOMPLEX PyDataType_ISCOMPLEX
#define PyDescr_ISPYTHON PyDataType_ISPYTHON
#define PyDescr_ISFLEXIBLE PyDataType_ISFLEXIBLE
#define PyDescr_ISUSERDEF PyDataType_ISUSERDEF
#define PyDescr_ISEXTENDED PyDataType_ISEXTENDED
#define PyDescr_ISOBJECT PyDataType_ISOBJECT
#define PyDescr_HASFIELDS PyDataType_HASFIELDS
#define PyArray_LITTLE NPY_LITTLE
#define PyArray_BIG NPY_BIG
#define PyArray_NATIVE NPY_NATIVE
#define PyArray_SWAP NPY_SWAP
#define PyArray_IGNORE NPY_IGNORE
#define PyArray_NATBYTE NPY_NATBYTE
#define PyArray_OPPBYTE NPY_OPPBYTE
#define PyArray_MAX_ELSIZE NPY_MAX_ELSIZE
#define PyArray_USE_PYMEM NPY_USE_PYMEM
#define PyArray_RemoveLargest PyArray_RemoveSmallest
#define PyArray_UCS4 npy_ucs4
#endif

View File

@ -1,23 +0,0 @@
#include "arrayobject.h"
#ifndef REFCOUNT
# define REFCOUNT NPY_REFCOUNT
# define MAX_ELSIZE 16
#endif
#define PyArray_UNSIGNED_TYPES
#define PyArray_SBYTE NPY_BYTE
#define PyArray_CopyArray PyArray_CopyInto
#define _PyArray_multiply_list PyArray_MultiplyIntList
#define PyArray_ISSPACESAVER(m) NPY_FALSE
#define PyScalarArray_Check PyArray_CheckScalar
#define CONTIGUOUS NPY_CONTIGUOUS
#define OWN_DIMENSIONS 0
#define OWN_STRIDES 0
#define OWN_DATA NPY_OWNDATA
#define SAVESPACE 0
#define SAVESPACEBIT 0
#undef import_array
#define import_array() { if (_import_array() < 0) {PyErr_Print(); PyErr_SetString(PyExc_ImportError, "numpy.core.multiarray failed to import"); } }

View File

@ -1,312 +0,0 @@
=================
Numpy Ufunc C-API
=================
::
PyObject *
PyUFunc_FromFuncAndData(PyUFuncGenericFunction *func, void
**data, char *types, int ntypes, int nin, int
nout, int identity, char *name, char *doc, int
check_return)
::
int
PyUFunc_RegisterLoopForType(PyUFuncObject *ufunc, int
usertype, PyUFuncGenericFunction
function, int *arg_types, void *data)
::
int
PyUFunc_GenericFunction(PyUFuncObject *ufunc, PyObject *args, PyObject
*kwds, PyArrayObject **op)
This generic function is called with the ufunc object, the arguments to it,
and an array of (pointers to) PyArrayObjects which are NULL.
'op' is an array of at least NPY_MAXARGS PyArrayObject *.
::
void
PyUFunc_f_f_As_d_d(char **args, npy_intp *dimensions, npy_intp
*steps, void *func)
::
void
PyUFunc_d_d(char **args, npy_intp *dimensions, npy_intp *steps, void
*func)
::
void
PyUFunc_f_f(char **args, npy_intp *dimensions, npy_intp *steps, void
*func)
::
void
PyUFunc_g_g(char **args, npy_intp *dimensions, npy_intp *steps, void
*func)
::
void
PyUFunc_F_F_As_D_D(char **args, npy_intp *dimensions, npy_intp
*steps, void *func)
::
void
PyUFunc_F_F(char **args, npy_intp *dimensions, npy_intp *steps, void
*func)
::
void
PyUFunc_D_D(char **args, npy_intp *dimensions, npy_intp *steps, void
*func)
::
void
PyUFunc_G_G(char **args, npy_intp *dimensions, npy_intp *steps, void
*func)
::
void
PyUFunc_O_O(char **args, npy_intp *dimensions, npy_intp *steps, void
*func)
::
void
PyUFunc_ff_f_As_dd_d(char **args, npy_intp *dimensions, npy_intp
*steps, void *func)
::
void
PyUFunc_ff_f(char **args, npy_intp *dimensions, npy_intp *steps, void
*func)
::
void
PyUFunc_dd_d(char **args, npy_intp *dimensions, npy_intp *steps, void
*func)
::
void
PyUFunc_gg_g(char **args, npy_intp *dimensions, npy_intp *steps, void
*func)
::
void
PyUFunc_FF_F_As_DD_D(char **args, npy_intp *dimensions, npy_intp
*steps, void *func)
::
void
PyUFunc_DD_D(char **args, npy_intp *dimensions, npy_intp *steps, void
*func)
::
void
PyUFunc_FF_F(char **args, npy_intp *dimensions, npy_intp *steps, void
*func)
::
void
PyUFunc_GG_G(char **args, npy_intp *dimensions, npy_intp *steps, void
*func)
::
void
PyUFunc_OO_O(char **args, npy_intp *dimensions, npy_intp *steps, void
*func)
::
void
PyUFunc_O_O_method(char **args, npy_intp *dimensions, npy_intp
*steps, void *func)
::
void
PyUFunc_OO_O_method(char **args, npy_intp *dimensions, npy_intp
*steps, void *func)
::
void
PyUFunc_On_Om(char **args, npy_intp *dimensions, npy_intp *steps, void
*func)
::
int
PyUFunc_GetPyValues(char *name, int *bufsize, int *errmask, PyObject
**errobj)
On return, if errobj is populated with a non-NULL value, the caller
owns a new reference to errobj.
::
int
PyUFunc_checkfperr(int errmask, PyObject *errobj, int *first)
::
void
PyUFunc_clearfperr()
::
int
PyUFunc_getfperr(void )
::
int
PyUFunc_handlefperr(int errmask, PyObject *errobj, int retstatus, int
*first)
::
int
PyUFunc_ReplaceLoopBySignature(PyUFuncObject
*func, PyUFuncGenericFunction
newfunc, int
*signature, PyUFuncGenericFunction
*oldfunc)
::
PyObject *
PyUFunc_FromFuncAndDataAndSignature(PyUFuncGenericFunction *func, void
**data, char *types, int
ntypes, int nin, int nout, int
identity, char *name, char
*doc, int check_return, const char
*signature)
::
int
PyUFunc_SetUsesArraysAsData(void **data, size_t i)
::
void
PyUFunc_e_e(char **args, npy_intp *dimensions, npy_intp *steps, void
*func)
::
void
PyUFunc_e_e_As_f_f(char **args, npy_intp *dimensions, npy_intp
*steps, void *func)
::
void
PyUFunc_e_e_As_d_d(char **args, npy_intp *dimensions, npy_intp
*steps, void *func)
::
void
PyUFunc_ee_e(char **args, npy_intp *dimensions, npy_intp *steps, void
*func)
::
void
PyUFunc_ee_e_As_ff_f(char **args, npy_intp *dimensions, npy_intp
*steps, void *func)
::
void
PyUFunc_ee_e_As_dd_d(char **args, npy_intp *dimensions, npy_intp
*steps, void *func)
::
int
PyUFunc_DefaultTypeResolver(PyUFuncObject *ufunc, NPY_CASTING
casting, PyArrayObject
**operands, PyObject
*type_tup, PyArray_Descr **out_dtypes)
This function applies the default type resolution rules
for the provided ufunc.
Returns 0 on success, -1 on error.
::
int
PyUFunc_ValidateCasting(PyUFuncObject *ufunc, NPY_CASTING
casting, PyArrayObject
**operands, PyArray_Descr **dtypes)
Validates that the input operands can be cast to
the input types, and the output types can be cast to
the output operands where provided.
Returns 0 on success, -1 (with exception raised) on validation failure.

View File

@ -1,446 +0,0 @@
#ifndef Py_UFUNCOBJECT_H
#define Py_UFUNCOBJECT_H
#include <numpy/npy_math.h>
#ifdef __cplusplus
extern "C" {
#endif
/*
* The legacy generic inner loop for a standard element-wise or
* generalized ufunc.
*/
typedef void (*PyUFuncGenericFunction)
(char **args,
npy_intp *dimensions,
npy_intp *strides,
void *innerloopdata);
/*
* The most generic one-dimensional inner loop for
* a standard element-wise ufunc. This typedef is also
* more consistent with the other NumPy function pointer typedefs
* than PyUFuncGenericFunction.
*/
typedef void (PyUFunc_StridedInnerLoopFunc)(
char **dataptrs, npy_intp *strides,
npy_intp count,
NpyAuxData *innerloopdata);
/*
* The most generic one-dimensional inner loop for
* a masked standard element-wise ufunc. "Masked" here means that it skips
* doing calculations on any items for which the maskptr array has a true
* value.
*/
typedef void (PyUFunc_MaskedStridedInnerLoopFunc)(
char **dataptrs, npy_intp *strides,
char *maskptr, npy_intp mask_stride,
npy_intp count,
NpyAuxData *innerloopdata);
/* Forward declaration for the type resolver and loop selector typedefs */
struct _tagPyUFuncObject;
/*
* Given the operands for calling a ufunc, should determine the
* calculation input and output data types and return an inner loop function.
* This function should validate that the casting rule is being followed,
* and fail if it is not.
*
* For backwards compatibility, the regular type resolution function does not
* support auxiliary data with object semantics. The type resolution call
* which returns a masked generic function returns a standard NpyAuxData
* object, for which the NPY_AUXDATA_FREE and NPY_AUXDATA_CLONE macros
* work.
*
* ufunc: The ufunc object.
* casting: The 'casting' parameter provided to the ufunc.
* operands: An array of length (ufunc->nin + ufunc->nout),
* with the output parameters possibly NULL.
* type_tup: Either NULL, or the type_tup passed to the ufunc.
* out_dtypes: An array which should be populated with new
* references to (ufunc->nin + ufunc->nout) new
* dtypes, one for each input and output. These
* dtypes should all be in native-endian format.
*
* Should return 0 on success, -1 on failure (with exception set),
* or -2 if Py_NotImplemented should be returned.
*/
typedef int (PyUFunc_TypeResolutionFunc)(
struct _tagPyUFuncObject *ufunc,
NPY_CASTING casting,
PyArrayObject **operands,
PyObject *type_tup,
PyArray_Descr **out_dtypes);
/*
* Given an array of DTypes as returned by the PyUFunc_TypeResolutionFunc,
* and an array of fixed strides (the array will contain NPY_MAX_INTP for
* strides which are not necessarily fixed), returns an inner loop
* with associated auxiliary data.
*
* For backwards compatibility, there is a variant of the inner loop
* selection which returns an inner loop irrespective of the strides,
* and with a void* static auxiliary data instead of an NpyAuxData *
* dynamically allocatable auxiliary data.
*
* ufunc: The ufunc object.
* dtypes: An array which has been populated with dtypes,
* in most cases by the type resolution funciton
* for the same ufunc.
* fixed_strides: For each input/output, either the stride that
* will be used every time the function is called
* or NPY_MAX_INTP if the stride might change or
* is not known ahead of time. The loop selection
* function may use this stride to pick inner loops
* which are optimized for contiguous or 0-stride
* cases.
* out_innerloop: Should be populated with the correct ufunc inner
* loop for the given type.
* out_innerloopdata: Should be populated with the void* data to
* be passed into the out_innerloop function.
* out_needs_api: If the inner loop needs to use the Python API,
* should set the to 1, otherwise should leave
* this untouched.
*/
typedef int (PyUFunc_LegacyInnerLoopSelectionFunc)(
struct _tagPyUFuncObject *ufunc,
PyArray_Descr **dtypes,
PyUFuncGenericFunction *out_innerloop,
void **out_innerloopdata,
int *out_needs_api);
typedef int (PyUFunc_InnerLoopSelectionFunc)(
struct _tagPyUFuncObject *ufunc,
PyArray_Descr **dtypes,
npy_intp *fixed_strides,
PyUFunc_StridedInnerLoopFunc **out_innerloop,
NpyAuxData **out_innerloopdata,
int *out_needs_api);
typedef int (PyUFunc_MaskedInnerLoopSelectionFunc)(
struct _tagPyUFuncObject *ufunc,
PyArray_Descr **dtypes,
PyArray_Descr *mask_dtype,
npy_intp *fixed_strides,
npy_intp fixed_mask_stride,
PyUFunc_MaskedStridedInnerLoopFunc **out_innerloop,
NpyAuxData **out_innerloopdata,
int *out_needs_api);
typedef struct _tagPyUFuncObject {
PyObject_HEAD
/*
* nin: Number of inputs
* nout: Number of outputs
* nargs: Always nin + nout (Why is it stored?)
*/
int nin, nout, nargs;
/* Identity for reduction, either PyUFunc_One or PyUFunc_Zero */
int identity;
/* Array of one-dimensional core loops */
PyUFuncGenericFunction *functions;
/* Array of funcdata that gets passed into the functions */
void **data;
/* The number of elements in 'functions' and 'data' */
int ntypes;
/* Does not appear to be used */
int check_return;
/* The name of the ufunc */
char *name;
/* Array of type numbers, of size ('nargs' * 'ntypes') */
char *types;
/* Documentation string */
char *doc;
void *ptr;
PyObject *obj;
PyObject *userloops;
/* generalized ufunc parameters */
/* 0 for scalar ufunc; 1 for generalized ufunc */
int core_enabled;
/* number of distinct dimension names in signature */
int core_num_dim_ix;
/*
* dimension indices of input/output argument k are stored in
* core_dim_ixs[core_offsets[k]..core_offsets[k]+core_num_dims[k]-1]
*/
/* numbers of core dimensions of each argument */
int *core_num_dims;
/*
* dimension indices in a flatted form; indices
* are in the range of [0,core_num_dim_ix)
*/
int *core_dim_ixs;
/*
* positions of 1st core dimensions of each
* argument in core_dim_ixs
*/
int *core_offsets;
/* signature string for printing purpose */
char *core_signature;
/*
* A function which resolves the types and fills an array
* with the dtypes for the inputs and outputs.
*/
PyUFunc_TypeResolutionFunc *type_resolver;
/*
* A function which returns an inner loop written for
* NumPy 1.6 and earlier ufuncs. This is for backwards
* compatibility, and may be NULL if inner_loop_selector
* is specified.
*/
PyUFunc_LegacyInnerLoopSelectionFunc *legacy_inner_loop_selector;
/*
* A function which returns an inner loop for the new mechanism
* in NumPy 1.7 and later. If provided, this is used, otherwise
* if NULL the legacy_inner_loop_selector is used instead.
*/
PyUFunc_InnerLoopSelectionFunc *inner_loop_selector;
/*
* A function which returns a masked inner loop for the ufunc.
*/
PyUFunc_MaskedInnerLoopSelectionFunc *masked_inner_loop_selector;
} PyUFuncObject;
#include "arrayobject.h"
#define UFUNC_ERR_IGNORE 0
#define UFUNC_ERR_WARN 1
#define UFUNC_ERR_RAISE 2
#define UFUNC_ERR_CALL 3
#define UFUNC_ERR_PRINT 4
#define UFUNC_ERR_LOG 5
/* Python side integer mask */
#define UFUNC_MASK_DIVIDEBYZERO 0x07
#define UFUNC_MASK_OVERFLOW 0x3f
#define UFUNC_MASK_UNDERFLOW 0x1ff
#define UFUNC_MASK_INVALID 0xfff
#define UFUNC_SHIFT_DIVIDEBYZERO 0
#define UFUNC_SHIFT_OVERFLOW 3
#define UFUNC_SHIFT_UNDERFLOW 6
#define UFUNC_SHIFT_INVALID 9
/* platform-dependent code translates floating point
status to an integer sum of these values
*/
#define UFUNC_FPE_DIVIDEBYZERO 1
#define UFUNC_FPE_OVERFLOW 2
#define UFUNC_FPE_UNDERFLOW 4
#define UFUNC_FPE_INVALID 8
/* Error mode that avoids look-up (no checking) */
#define UFUNC_ERR_DEFAULT 0
#define UFUNC_OBJ_ISOBJECT 1
#define UFUNC_OBJ_NEEDS_API 2
/* Default user error mode */
#define UFUNC_ERR_DEFAULT2 \
(UFUNC_ERR_WARN << UFUNC_SHIFT_DIVIDEBYZERO) + \
(UFUNC_ERR_WARN << UFUNC_SHIFT_OVERFLOW) + \
(UFUNC_ERR_WARN << UFUNC_SHIFT_INVALID)
#if NPY_ALLOW_THREADS
#define NPY_LOOP_BEGIN_THREADS do {if (!(loop->obj & UFUNC_OBJ_NEEDS_API)) _save = PyEval_SaveThread();} while (0);
#define NPY_LOOP_END_THREADS do {if (!(loop->obj & UFUNC_OBJ_NEEDS_API)) PyEval_RestoreThread(_save);} while (0);
#else
#define NPY_LOOP_BEGIN_THREADS
#define NPY_LOOP_END_THREADS
#endif
/*
* UFunc has unit of 1, and the order of operations can be reordered
* This case allows reduction with multiple axes at once.
*/
#define PyUFunc_One 1
/*
* UFunc has unit of 0, and the order of operations can be reordered
* This case allows reduction with multiple axes at once.
*/
#define PyUFunc_Zero 0
/*
* UFunc has no unit, and the order of operations cannot be reordered.
* This case does not allow reduction with multiple axes at once.
*/
#define PyUFunc_None -1
/*
* UFunc has no unit, and the order of operations can be reordered
* This case allows reduction with multiple axes at once.
*/
#define PyUFunc_ReorderableNone -2
#define UFUNC_REDUCE 0
#define UFUNC_ACCUMULATE 1
#define UFUNC_REDUCEAT 2
#define UFUNC_OUTER 3
typedef struct {
int nin;
int nout;
PyObject *callable;
} PyUFunc_PyFuncData;
/* A linked-list of function information for
user-defined 1-d loops.
*/
typedef struct _loop1d_info {
PyUFuncGenericFunction func;
void *data;
int *arg_types;
struct _loop1d_info *next;
} PyUFunc_Loop1d;
#include "__ufunc_api.h"
#define UFUNC_PYVALS_NAME "UFUNC_PYVALS"
#define UFUNC_CHECK_ERROR(arg) \
do {if ((((arg)->obj & UFUNC_OBJ_NEEDS_API) && PyErr_Occurred()) || \
((arg)->errormask && \
PyUFunc_checkfperr((arg)->errormask, \
(arg)->errobj, \
&(arg)->first))) \
goto fail;} while (0)
/* This code checks the IEEE status flags in a platform-dependent way */
/* Adapted from Numarray */
#if (defined(__unix__) || defined(unix)) && !defined(USG)
#include <sys/param.h>
#endif
/* OSF/Alpha (Tru64) ---------------------------------------------*/
#if defined(__osf__) && defined(__alpha)
#include <machine/fpu.h>
#define UFUNC_CHECK_STATUS(ret) { \
unsigned long fpstatus; \
\
fpstatus = ieee_get_fp_control(); \
/* clear status bits as well as disable exception mode if on */ \
ieee_set_fp_control( 0 ); \
ret = ((IEEE_STATUS_DZE & fpstatus) ? UFUNC_FPE_DIVIDEBYZERO : 0) \
| ((IEEE_STATUS_OVF & fpstatus) ? UFUNC_FPE_OVERFLOW : 0) \
| ((IEEE_STATUS_UNF & fpstatus) ? UFUNC_FPE_UNDERFLOW : 0) \
| ((IEEE_STATUS_INV & fpstatus) ? UFUNC_FPE_INVALID : 0); \
}
/* MS Windows -----------------------------------------------------*/
#elif defined(_MSC_VER)
#include <float.h>
/* Clear the floating point exception default of Borland C++ */
#if defined(__BORLANDC__)
#define UFUNC_NOFPE _control87(MCW_EM, MCW_EM);
#endif
#define UFUNC_CHECK_STATUS(ret) { \
int fpstatus = (int) _clearfp(); \
\
ret = ((SW_ZERODIVIDE & fpstatus) ? UFUNC_FPE_DIVIDEBYZERO : 0) \
| ((SW_OVERFLOW & fpstatus) ? UFUNC_FPE_OVERFLOW : 0) \
| ((SW_UNDERFLOW & fpstatus) ? UFUNC_FPE_UNDERFLOW : 0) \
| ((SW_INVALID & fpstatus) ? UFUNC_FPE_INVALID : 0); \
}
/* Solaris --------------------------------------------------------*/
/* --------ignoring SunOS ieee_flags approach, someone else can
** deal with that! */
#elif defined(sun) || defined(__BSD__) || defined(__OpenBSD__) || \
(defined(__FreeBSD__) && (__FreeBSD_version < 502114)) || \
defined(__NetBSD__)
#include <ieeefp.h>
#define UFUNC_CHECK_STATUS(ret) { \
int fpstatus; \
\
fpstatus = (int) fpgetsticky(); \
ret = ((FP_X_DZ & fpstatus) ? UFUNC_FPE_DIVIDEBYZERO : 0) \
| ((FP_X_OFL & fpstatus) ? UFUNC_FPE_OVERFLOW : 0) \
| ((FP_X_UFL & fpstatus) ? UFUNC_FPE_UNDERFLOW : 0) \
| ((FP_X_INV & fpstatus) ? UFUNC_FPE_INVALID : 0); \
(void) fpsetsticky(0); \
}
#elif defined(__GLIBC__) || defined(__APPLE__) || \
defined(__CYGWIN__) || defined(__MINGW32__) || \
(defined(__FreeBSD__) && (__FreeBSD_version >= 502114))
#if defined(__GLIBC__) || defined(__APPLE__) || \
defined(__MINGW32__) || defined(__FreeBSD__)
#include <fenv.h>
#endif
#define UFUNC_CHECK_STATUS(ret) { \
int fpstatus = (int) fetestexcept(FE_DIVBYZERO | FE_OVERFLOW | \
FE_UNDERFLOW | FE_INVALID); \
ret = ((FE_DIVBYZERO & fpstatus) ? UFUNC_FPE_DIVIDEBYZERO : 0) \
| ((FE_OVERFLOW & fpstatus) ? UFUNC_FPE_OVERFLOW : 0) \
| ((FE_UNDERFLOW & fpstatus) ? UFUNC_FPE_UNDERFLOW : 0) \
| ((FE_INVALID & fpstatus) ? UFUNC_FPE_INVALID : 0); \
(void) feclearexcept(FE_DIVBYZERO | FE_OVERFLOW | \
FE_UNDERFLOW | FE_INVALID); \
}
#elif defined(_AIX)
#include <float.h>
#include <fpxcp.h>
#define UFUNC_CHECK_STATUS(ret) { \
fpflag_t fpstatus; \
\
fpstatus = fp_read_flag(); \
ret = ((FP_DIV_BY_ZERO & fpstatus) ? UFUNC_FPE_DIVIDEBYZERO : 0) \
| ((FP_OVERFLOW & fpstatus) ? UFUNC_FPE_OVERFLOW : 0) \
| ((FP_UNDERFLOW & fpstatus) ? UFUNC_FPE_UNDERFLOW : 0) \
| ((FP_INVALID & fpstatus) ? UFUNC_FPE_INVALID : 0); \
fp_swap_flag(0); \
}
#else
#define NO_FLOATING_POINT_SUPPORT
#define UFUNC_CHECK_STATUS(ret) { \
ret = 0; \
}
#endif
/*
* THESE MACROS ARE DEPRECATED.
* Use npy_set_floatstatus_* in the npymath library.
*/
#define generate_divbyzero_error() npy_set_floatstatus_divbyzero()
#define generate_overflow_error() npy_set_floatstatus_overflow()
/* Make sure it gets defined if it isn't already */
#ifndef UFUNC_NOFPE
#define UFUNC_NOFPE
#endif
#ifdef __cplusplus
}
#endif
#endif /* !Py_UFUNCOBJECT_H */

View File

@ -1,19 +0,0 @@
#ifndef __NUMPY_UTILS_HEADER__
#define __NUMPY_UTILS_HEADER__
#ifndef __COMP_NPY_UNUSED
#if defined(__GNUC__)
#define __COMP_NPY_UNUSED __attribute__ ((__unused__))
# elif defined(__ICC)
#define __COMP_NPY_UNUSED __attribute__ ((__unused__))
#else
#define __COMP_NPY_UNUSED
#endif
#endif
/* Use this to tag a variable as not used. It will remove unused variable
* warning on support platforms (see __COM_NPY_UNUSED) and mangle the variable
* to avoid accidental use */
#define NPY_UNUSED(x) (__NPY_UNUSED_TAGGED ## x) __COMP_NPY_UNUSED
#endif

View File

@ -4,7 +4,6 @@ import sys
import platform
from distutils.command.build_ext import build_ext
from distutils.sysconfig import get_python_inc
from distutils import ccompiler, msvccompiler
import numpy
from pathlib import Path
import shutil
@ -195,13 +194,7 @@ def setup_package():
include_dirs = [
get_python_inc(plat_specific=True),
numpy.get_include(),
str(ROOT / "include"),
]
if (
ccompiler.new_compiler().compiler_type == "msvc"
and msvccompiler.get_build_version() == 9
):
include_dirs.append(str(ROOT / "include" / "msvc9"))
ext_modules = []
for name in MOD_NAMES:
mod_path = name.replace(".", "/") + ".pyx"

View File

@ -27,18 +27,23 @@ if sys.maxunicode == 65535:
def load(
name: Union[str, Path],
disable: Iterable[str] = tuple(),
disable: Iterable[str] = util.SimpleFrozenList(),
exclude: Iterable[str] = util.SimpleFrozenList(),
config: Union[Dict[str, Any], Config] = util.SimpleFrozenDict(),
) -> Language:
"""Load a spaCy model from an installed package or a local path.
name (str): Package name or model path.
disable (Iterable[str]): Names of pipeline components to disable.
disable (Iterable[str]): Names of pipeline components to disable. Disabled
pipes will be loaded but they won't be run unless you explicitly
enable them by calling nlp.enable_pipe.
exclude (Iterable[str]): Names of pipeline components to exclude. Excluded
components won't be loaded.
config (Dict[str, Any] / Config): Config overrides as nested dict or dict
keyed by section values in dot notation.
RETURNS (Language): The loaded nlp object.
"""
return util.load_model(name, disable=disable, config=config)
return util.load_model(name, disable=disable, exclude=exclude, config=config)
def blank(name: str, **overrides) -> Language:

View File

@ -2,7 +2,6 @@ from typing import Optional
from pathlib import Path
from wasabi import msg
import subprocess
import shutil
import re
from ... import about

View File

@ -1,6 +1,6 @@
"""This module contains helpers and subcommands for integrating spaCy projects
with Data Version Controk (DVC). https://dvc.org"""
from typing import Dict, Any, List, Optional
from typing import Dict, Any, List, Optional, Iterable
import subprocess
from pathlib import Path
from wasabi import msg
@ -8,6 +8,7 @@ from wasabi import msg
from .._util import PROJECT_FILE, load_project_config, get_hash, project_cli
from .._util import Arg, Opt, NAME, COMMAND
from ...util import working_dir, split_command, join_command, run_command
from ...util import SimpleFrozenList
DVC_CONFIG = "dvc.yaml"
@ -130,7 +131,7 @@ def update_dvc_config(
def run_dvc_commands(
commands: List[str] = tuple(), flags: Dict[str, bool] = {},
commands: Iterable[str] = SimpleFrozenList(), flags: Dict[str, bool] = {},
) -> None:
"""Run a sequence of DVC commands in a subprocess, in order.

View File

@ -1,10 +1,11 @@
from typing import Optional, List, Dict, Sequence, Any
from typing import Optional, List, Dict, Sequence, Any, Iterable
from pathlib import Path
from wasabi import msg
import sys
import srsly
from ...util import working_dir, run_command, split_command, is_cwd, join_command
from ...util import SimpleFrozenList
from .._util import PROJECT_FILE, PROJECT_LOCK, load_project_config, get_hash
from .._util import get_checksum, project_cli, Arg, Opt, COMMAND
@ -115,7 +116,9 @@ def print_run_help(project_dir: Path, subcommand: Optional[str] = None) -> None:
def run_commands(
commands: List[str] = tuple(), silent: bool = False, dry: bool = False,
commands: Iterable[str] = SimpleFrozenList(),
silent: bool = False,
dry: bool = False,
) -> None:
"""Run a sequence of commands in a subprocess, in order.

View File

@ -11,6 +11,7 @@ use_pytorch_for_gpu_memory = false
[nlp]
lang = null
pipeline = []
disabled = []
load_vocab_data = true
before_creation = null
after_creation = null

View File

@ -128,7 +128,8 @@ class Errors:
"got {component} (name: '{name}'). If you're using a custom "
"component factory, double-check that it correctly returns your "
"initialized component.")
E004 = ("Can't set up pipeline component: a factory for '{name}' already exists.")
E004 = ("Can't set up pipeline component: a factory for '{name}' already "
"exists. Existing factory: {func}. New factory: {new_func}")
E005 = ("Pipeline component '{name}' returned None. If you're using a "
"custom component, maybe you forgot to return the processed Doc?")
E006 = ("Invalid constraints for adding pipeline component. You can only "
@ -136,11 +137,10 @@ class Errors:
"after (component name or index), first (True) or last (True). "
"Invalid configuration: {args}. Existing components: {opts}")
E007 = ("'{name}' already exists in pipeline. Existing names: {opts}")
E008 = ("Some current components would be lost when restoring previous "
"pipeline state. If you added components after calling "
"`nlp.select_pipes()`, you should remove them explicitly with "
"`nlp.remove_pipe()` before the pipeline is restored. Names of "
"the new components: {names}")
E008 = ("Can't restore disabled pipeline component '{name}' because it "
"doesn't exist in the pipeline anymore. If you want to remove "
"components from the pipeline, you should do it before calling "
"`nlp.select_pipes()` or after restoring the disabled components.")
E010 = ("Word vectors set to length 0. This may be because you don't have "
"a model installed or loaded, or because your model doesn't "
"include word vectors. For more info, see the docs:\n"
@ -473,6 +473,13 @@ class Errors:
E199 = ("Unable to merge 0-length span at doc[{start}:{end}].")
# TODO: fix numbering after merging develop into master
E926 = ("It looks like you're trying to modify nlp.{attr} directly. This "
"doesn't work because it's an immutable computed property. If you "
"need to modify the pipeline, use the built-in methods like "
"nlp.add_pipe, nlp.remove_pipe, nlp.disable_pipe or nlp.enable_pipe "
"instead.")
E927 = ("Can't write to frozen list Maybe you're trying to modify a computed "
"property or default function argument?")
E928 = ("A 'KnowledgeBase' should be written to / read from a file, but the "
"provided argument {loc} is an existing directory.")
E929 = ("A 'KnowledgeBase' could not be read from {loc} - the path does "

View File

@ -9,7 +9,7 @@ from wasabi import msg
@registry.loggers("spacy.ConsoleLogger.v1")
def console_logger():
def setup_printer(
nlp: "Language"
nlp: "Language",
) -> Tuple[Callable[[Dict[str, Any]], None], Callable]:
score_cols = list(nlp.config["training"]["score_weights"])
score_widths = [max(len(col), 6) for col in score_cols]
@ -73,7 +73,7 @@ def wandb_logger(project_name: str, remove_config_values: List[str] = []):
console = console_logger()
def setup_logger(
nlp: "Language"
nlp: "Language",
) -> Tuple[Callable[[Dict[str, Any]], None], Callable]:
config = nlp.config.interpolate()
config_dot = util.dict_to_dot(config)

View File

@ -6,7 +6,7 @@ import itertools
import weakref
import functools
from contextlib import contextmanager
from copy import copy, deepcopy
from copy import deepcopy
from pathlib import Path
import warnings
from thinc.api import get_current_ops, Config, require_gpu, Optimizer
@ -20,7 +20,7 @@ from .vocab import Vocab, create_vocab
from .pipe_analysis import validate_attrs, analyze_pipes, print_pipe_analysis
from .gold import Example, validate_examples
from .scorer import Scorer
from .util import create_default_optimizer, registry
from .util import create_default_optimizer, registry, SimpleFrozenList
from .util import SimpleFrozenDict, combine_score_weights, CONFIG_SECTION_ORDER
from .lang.tokenizer_exceptions import URL_MATCH, BASE_EXCEPTIONS
from .lang.punctuation import TOKENIZER_PREFIXES, TOKENIZER_SUFFIXES
@ -159,7 +159,8 @@ class Language:
self.vocab: Vocab = vocab
if self.lang is None:
self.lang = self.vocab.lang
self.pipeline = []
self._components = []
self._disabled = set()
self.max_length = max_length
self.resolved = {}
# Create the default tokenizer from the default config
@ -206,10 +207,11 @@ class Language:
"keys": self.vocab.vectors.n_keys,
"name": self.vocab.vectors.name,
}
self._meta["labels"] = self.pipe_labels
self._meta["labels"] = dict(self.pipe_labels)
# TODO: Adding this back to prevent breaking people's code etc., but
# we should consider removing it
self._meta["pipeline"] = self.pipe_names
self._meta["pipeline"] = list(self.pipe_names)
self._meta["disabled"] = list(self.disabled)
return self._meta
@meta.setter
@ -232,13 +234,14 @@ class Language:
# we can populate the config again later
pipeline = {}
score_weights = []
for pipe_name in self.pipe_names:
for pipe_name in self.component_names:
pipe_meta = self.get_pipe_meta(pipe_name)
pipe_config = self.get_pipe_config(pipe_name)
pipeline[pipe_name] = {"factory": pipe_meta.factory, **pipe_config}
if pipe_meta.default_score_weights:
score_weights.append(pipe_meta.default_score_weights)
self._config["nlp"]["pipeline"] = self.pipe_names
self._config["nlp"]["pipeline"] = list(self.component_names)
self._config["nlp"]["disabled"] = list(self.disabled)
self._config["components"] = pipeline
self._config["training"]["score_weights"] = combine_score_weights(score_weights)
if not srsly.is_json_serializable(self._config):
@ -249,21 +252,64 @@ class Language:
def config(self, value: Config) -> None:
self._config = value
@property
def disabled(self) -> List[str]:
"""Get the names of all disabled components.
RETURNS (List[str]): The disabled components.
"""
# Make sure the disabled components are returned in the order they
# appear in the pipeline (which isn't guaranteed by the set)
names = [name for name, _ in self._components if name in self._disabled]
return SimpleFrozenList(names, error=Errors.E926.format(attr="disabled"))
@property
def factory_names(self) -> List[str]:
"""Get names of all available factories.
RETURNS (List[str]): The factory names.
"""
return list(self.factories.keys())
names = list(self.factories.keys())
return SimpleFrozenList(names)
@property
def pipe_names(self) -> List[str]:
"""Get names of available pipeline components.
def components(self) -> List[Tuple[str, Callable[[Doc], Doc]]]:
"""Get all (name, component) tuples in the pipeline, including the
currently disabled components.
"""
return SimpleFrozenList(
self._components, error=Errors.E926.format(attr="components")
)
@property
def component_names(self) -> List[str]:
"""Get the names of the available pipeline components. Includes all
active and inactive pipeline components.
RETURNS (List[str]): List of component name strings, in order.
"""
return [pipe_name for pipe_name, _ in self.pipeline]
names = [pipe_name for pipe_name, _ in self._components]
return SimpleFrozenList(names, error=Errors.E926.format(attr="component_names"))
@property
def pipeline(self) -> List[Tuple[str, Callable[[Doc], Doc]]]:
"""The processing pipeline consisting of (name, component) tuples. The
components are called on the Doc in order as it passes through the
pipeline.
RETURNS (List[Tuple[str, Callable[[Doc], Doc]]]): The pipeline.
"""
pipes = [(n, p) for n, p in self._components if n not in self._disabled]
return SimpleFrozenList(pipes, error=Errors.E926.format(attr="pipeline"))
@property
def pipe_names(self) -> List[str]:
"""Get names of available active pipeline components.
RETURNS (List[str]): List of component name strings, in order.
"""
names = [pipe_name for pipe_name, _ in self.pipeline]
return SimpleFrozenList(names, error=Errors.E926.format(attr="pipe_names"))
@property
def pipe_factories(self) -> Dict[str, str]:
@ -272,9 +318,9 @@ class Language:
RETURNS (Dict[str, str]): Factory names, keyed by component names.
"""
factories = {}
for pipe_name, pipe in self.pipeline:
for pipe_name, pipe in self._components:
factories[pipe_name] = self.get_pipe_meta(pipe_name).factory
return factories
return SimpleFrozenDict(factories)
@property
def pipe_labels(self) -> Dict[str, List[str]]:
@ -284,10 +330,10 @@ class Language:
RETURNS (Dict[str, List[str]]): Labels keyed by component name.
"""
labels = {}
for name, pipe in self.pipeline:
for name, pipe in self._components:
if hasattr(pipe, "labels"):
labels[name] = list(pipe.labels)
return labels
return SimpleFrozenDict(labels)
@classmethod
def has_factory(cls, name: str) -> bool:
@ -358,10 +404,10 @@ class Language:
name: str,
*,
default_config: Dict[str, Any] = SimpleFrozenDict(),
assigns: Iterable[str] = tuple(),
requires: Iterable[str] = tuple(),
assigns: Iterable[str] = SimpleFrozenList(),
requires: Iterable[str] = SimpleFrozenList(),
retokenizes: bool = False,
scores: Iterable[str] = tuple(),
scores: Iterable[str] = SimpleFrozenList(),
default_score_weights: Dict[str, float] = SimpleFrozenDict(),
func: Optional[Callable] = None,
) -> Callable:
@ -396,13 +442,21 @@ class Language:
style="default config", name=name, cfg_type=type(default_config)
)
raise ValueError(err)
internal_name = cls.get_factory_name(name)
if internal_name in registry.factories:
# We only check for the internal name here it's okay if it's a
# subclass and the base class has a factory of the same name
raise ValueError(Errors.E004.format(name=name))
def add_factory(factory_func: Callable) -> Callable:
internal_name = cls.get_factory_name(name)
if internal_name in registry.factories:
# We only check for the internal name here it's okay if it's a
# subclass and the base class has a factory of the same name. We
# also only raise if the function is different to prevent raising
# if module is reloaded.
existing_func = registry.factories.get(internal_name)
if not util.is_same_func(factory_func, existing_func):
err = Errors.E004.format(
name=name, func=existing_func, new_func=factory_func
)
raise ValueError(err)
arg_names = util.get_arg_names(factory_func)
if "nlp" not in arg_names or "name" not in arg_names:
raise ValueError(Errors.E964.format(name=name))
@ -439,8 +493,8 @@ class Language:
cls,
name: Optional[str] = None,
*,
assigns: Iterable[str] = tuple(),
requires: Iterable[str] = tuple(),
assigns: Iterable[str] = SimpleFrozenList(),
requires: Iterable[str] = SimpleFrozenList(),
retokenizes: bool = False,
func: Optional[Callable[[Doc], Doc]] = None,
) -> Callable:
@ -472,6 +526,21 @@ class Language:
def factory_func(nlp: cls, name: str) -> Callable[[Doc], Doc]:
return component_func
internal_name = cls.get_factory_name(name)
if internal_name in registry.factories:
# We only check for the internal name here it's okay if it's a
# subclass and the base class has a factory of the same name. We
# also only raise if the function is different to prevent raising
# if module is reloaded. It's hacky, but we need to check the
# existing functure for a closure and whether that's identical
# to the component function (because factory_func created above
# will always be different, even for the same function)
existing_func = registry.factories.get(internal_name)
closure = existing_func.__closure__
wrapped = [c.cell_contents for c in closure][0] if closure else None
if util.is_same_func(wrapped, component_func):
factory_func = existing_func # noqa: F811
cls.factory(
component_name,
assigns=assigns,
@ -512,10 +581,10 @@ class Language:
DOCS: https://spacy.io/api/language#get_pipe
"""
for pipe_name, component in self.pipeline:
for pipe_name, component in self._components:
if pipe_name == name:
return component
raise KeyError(Errors.E001.format(name=name, opts=self.pipe_names))
raise KeyError(Errors.E001.format(name=name, opts=self.component_names))
def create_pipe(
self,
@ -660,8 +729,8 @@ class Language:
err = Errors.E966.format(component=bad_val, name=name)
raise ValueError(err)
name = name if name is not None else factory_name
if name in self.pipe_names:
raise ValueError(Errors.E007.format(name=name, opts=self.pipe_names))
if name in self.component_names:
raise ValueError(Errors.E007.format(name=name, opts=self.component_names))
if source is not None:
# We're loading the component from a model. After loading the
# component, we know its real factory name
@ -686,7 +755,7 @@ class Language:
)
pipe_index = self._get_pipe_index(before, after, first, last)
self._pipe_meta[name] = self.get_factory_meta(factory_name)
self.pipeline.insert(pipe_index, (name, pipe_component))
self._components.insert(pipe_index, (name, pipe_component))
return pipe_component
def _get_pipe_index(
@ -707,32 +776,42 @@ class Language:
"""
all_args = {"before": before, "after": after, "first": first, "last": last}
if sum(arg is not None for arg in [before, after, first, last]) >= 2:
raise ValueError(Errors.E006.format(args=all_args, opts=self.pipe_names))
raise ValueError(
Errors.E006.format(args=all_args, opts=self.component_names)
)
if last or not any(value is not None for value in [first, before, after]):
return len(self.pipeline)
return len(self._components)
elif first:
return 0
elif isinstance(before, str):
if before not in self.pipe_names:
raise ValueError(Errors.E001.format(name=before, opts=self.pipe_names))
return self.pipe_names.index(before)
if before not in self.component_names:
raise ValueError(
Errors.E001.format(name=before, opts=self.component_names)
)
return self.component_names.index(before)
elif isinstance(after, str):
if after not in self.pipe_names:
raise ValueError(Errors.E001.format(name=after, opts=self.pipe_names))
return self.pipe_names.index(after) + 1
if after not in self.component_names:
raise ValueError(
Errors.E001.format(name=after, opts=self.component_names)
)
return self.component_names.index(after) + 1
# We're only accepting indices referring to components that exist
# (can't just do isinstance here because bools are instance of int, too)
elif type(before) == int:
if before >= len(self.pipeline) or before < 0:
err = Errors.E959.format(dir="before", idx=before, opts=self.pipe_names)
if before >= len(self._components) or before < 0:
err = Errors.E959.format(
dir="before", idx=before, opts=self.component_names
)
raise ValueError(err)
return before
elif type(after) == int:
if after >= len(self.pipeline) or after < 0:
err = Errors.E959.format(dir="after", idx=after, opts=self.pipe_names)
if after >= len(self._components) or after < 0:
err = Errors.E959.format(
dir="after", idx=after, opts=self.component_names
)
raise ValueError(err)
return after + 1
raise ValueError(Errors.E006.format(args=all_args, opts=self.pipe_names))
raise ValueError(Errors.E006.format(args=all_args, opts=self.component_names))
def has_pipe(self, name: str) -> bool:
"""Check if a component name is present in the pipeline. Equivalent to
@ -773,7 +852,7 @@ class Language:
# to Language.pipeline to make sure the configs are handled correctly
pipe_index = self.pipe_names.index(name)
self.remove_pipe(name)
if not len(self.pipeline) or pipe_index == len(self.pipeline):
if not len(self._components) or pipe_index == len(self._components):
# we have no components to insert before/after, or we're replacing the last component
self.add_pipe(factory_name, name=name, config=config, validate=validate)
else:
@ -793,12 +872,16 @@ class Language:
DOCS: https://spacy.io/api/language#rename_pipe
"""
if old_name not in self.pipe_names:
raise ValueError(Errors.E001.format(name=old_name, opts=self.pipe_names))
if new_name in self.pipe_names:
raise ValueError(Errors.E007.format(name=new_name, opts=self.pipe_names))
i = self.pipe_names.index(old_name)
self.pipeline[i] = (new_name, self.pipeline[i][1])
if old_name not in self.component_names:
raise ValueError(
Errors.E001.format(name=old_name, opts=self.component_names)
)
if new_name in self.component_names:
raise ValueError(
Errors.E007.format(name=new_name, opts=self.component_names)
)
i = self.component_names.index(old_name)
self._components[i] = (new_name, self._components[i][1])
self._pipe_meta[new_name] = self._pipe_meta.pop(old_name)
self._pipe_configs[new_name] = self._pipe_configs.pop(old_name)
@ -810,20 +893,45 @@ class Language:
DOCS: https://spacy.io/api/language#remove_pipe
"""
if name not in self.pipe_names:
raise ValueError(Errors.E001.format(name=name, opts=self.pipe_names))
removed = self.pipeline.pop(self.pipe_names.index(name))
if name not in self.component_names:
raise ValueError(Errors.E001.format(name=name, opts=self.component_names))
removed = self._components.pop(self.component_names.index(name))
# We're only removing the component itself from the metas/configs here
# because factory may be used for something else
self._pipe_meta.pop(name)
self._pipe_configs.pop(name)
# Make sure the name is also removed from the set of disabled components
if name in self.disabled:
self._disabled.remove(name)
return removed
def disable_pipe(self, name: str) -> None:
"""Disable a pipeline component. The component will still exist on
the nlp object, but it won't be run as part of the pipeline. Does
nothing if the component is already disabled.
name (str): The name of the component to disable.
"""
if name not in self.component_names:
raise ValueError(Errors.E001.format(name=name, opts=self.component_names))
self._disabled.add(name)
def enable_pipe(self, name: str) -> None:
"""Enable a previously disabled pipeline component so it's run as part
of the pipeline. Does nothing if the component is already enabled.
name (str): The name of the component to enable.
"""
if name not in self.component_names:
raise ValueError(Errors.E001.format(name=name, opts=self.component_names))
if name in self.disabled:
self._disabled.remove(name)
def __call__(
self,
text: str,
*,
disable: Iterable[str] = tuple(),
disable: Iterable[str] = SimpleFrozenList(),
component_cfg: Optional[Dict[str, Dict[str, Any]]] = None,
) -> Doc:
"""Apply the pipeline to some text. The text can span multiple sentences,
@ -869,7 +977,7 @@ class Language:
warnings.warn(Warnings.W096, DeprecationWarning)
if len(names) == 1 and isinstance(names[0], (list, tuple)):
names = names[0] # support list of names instead of spread
return DisabledPipes(self, names)
return self.select_pipes(disable=names)
def select_pipes(
self,
@ -922,7 +1030,7 @@ class Language:
sgd: Optional[Optimizer] = None,
losses: Optional[Dict[str, float]] = None,
component_cfg: Optional[Dict[str, Dict[str, Any]]] = None,
exclude: Iterable[str] = tuple(),
exclude: Iterable[str] = SimpleFrozenList(),
):
"""Update the models in the pipeline.
@ -976,7 +1084,7 @@ class Language:
sgd: Optional[Optimizer] = None,
losses: Optional[Dict[str, float]] = None,
component_cfg: Optional[Dict[str, Dict[str, Any]]] = None,
exclude: Iterable[str] = tuple(),
exclude: Iterable[str] = SimpleFrozenList(),
) -> Dict[str, float]:
"""Make a "rehearsal" update to the models in the pipeline, to prevent
forgetting. Rehearsal updates run an initial copy of the model over some
@ -1205,7 +1313,7 @@ class Language:
*,
as_tuples: bool = False,
batch_size: int = 1000,
disable: Iterable[str] = tuple(),
disable: Iterable[str] = SimpleFrozenList(),
cleanup: bool = False,
component_cfg: Optional[Dict[str, Dict[str, Any]]] = None,
n_process: int = 1,
@ -1365,7 +1473,8 @@ class Language:
config: Union[Dict[str, Any], Config] = {},
*,
vocab: Union[Vocab, bool] = True,
disable: Iterable[str] = tuple(),
disable: Iterable[str] = SimpleFrozenList(),
exclude: Iterable[str] = SimpleFrozenList(),
auto_fill: bool = True,
validate: bool = True,
) -> "Language":
@ -1375,7 +1484,11 @@ class Language:
config (Dict[str, Any] / Config): The loaded config.
vocab (Vocab): A Vocab object. If True, a vocab is created.
disable (Iterable[str]): List of pipeline component names to disable.
disable (Iterable[str]): Names of pipeline components to disable.
Disabled pipes will be loaded but they won't be run unless you
explicitly enable them by calling nlp.enable_pipe.
exclude (Iterable[str]): Names of pipeline components to exclude.
Excluded components won't be loaded.
auto_fill (bool): Automatically fill in missing values in config based
on defaults and function argument annotations.
validate (bool): Validate the component config and arguments against
@ -1448,7 +1561,7 @@ class Language:
raise ValueError(Errors.E956.format(name=pipe_name, opts=opts))
pipe_cfg = util.copy_config(pipeline[pipe_name])
raw_config = Config(filled["components"][pipe_name])
if pipe_name not in disable:
if pipe_name not in exclude:
if "factory" not in pipe_cfg and "source" not in pipe_cfg:
err = Errors.E984.format(name=pipe_name, config=pipe_cfg)
raise ValueError(err)
@ -1473,6 +1586,8 @@ class Language:
)
source_name = pipe_cfg.get("component", pipe_name)
nlp.add_pipe(source_name, source=source_nlps[model], name=pipe_name)
disabled_pipes = [*config["nlp"]["disabled"], *disable]
nlp._disabled = set(p for p in disabled_pipes if p not in exclude)
nlp.config = filled if auto_fill else config
nlp.resolved = resolved
if after_pipeline_creation is not None:
@ -1484,7 +1599,7 @@ class Language:
return nlp
def to_disk(
self, path: Union[str, Path], *, exclude: Iterable[str] = tuple()
self, path: Union[str, Path], *, exclude: Iterable[str] = SimpleFrozenList()
) -> None:
"""Save the current state to a directory. If a model is loaded, this
will include the model.
@ -1502,9 +1617,7 @@ class Language:
)
serializers["meta.json"] = lambda p: srsly.write_json(p, self.meta)
serializers["config.cfg"] = lambda p: self.config.to_disk(p)
for name, proc in self.pipeline:
if not hasattr(proc, "name"):
continue
for name, proc in self._components:
if name in exclude:
continue
if not hasattr(proc, "to_disk"):
@ -1514,7 +1627,7 @@ class Language:
util.to_disk(path, serializers, exclude)
def from_disk(
self, path: Union[str, Path], *, exclude: Iterable[str] = tuple()
self, path: Union[str, Path], *, exclude: Iterable[str] = SimpleFrozenList()
) -> "Language":
"""Loads state from a directory. Modifies the object in place and
returns it. If the saved `Language` object contains a model, the
@ -1550,7 +1663,7 @@ class Language:
deserializers["tokenizer"] = lambda p: self.tokenizer.from_disk(
p, exclude=["vocab"]
)
for name, proc in self.pipeline:
for name, proc in self._components:
if name in exclude:
continue
if not hasattr(proc, "from_disk"):
@ -1566,7 +1679,7 @@ class Language:
self._link_components()
return self
def to_bytes(self, *, exclude: Iterable[str] = tuple()) -> bytes:
def to_bytes(self, *, exclude: Iterable[str] = SimpleFrozenList()) -> bytes:
"""Serialize the current state to a binary string.
exclude (list): Names of components or serialization fields to exclude.
@ -1579,7 +1692,7 @@ class Language:
serializers["tokenizer"] = lambda: self.tokenizer.to_bytes(exclude=["vocab"])
serializers["meta.json"] = lambda: srsly.json_dumps(self.meta)
serializers["config.cfg"] = lambda: self.config.to_bytes()
for name, proc in self.pipeline:
for name, proc in self._components:
if name in exclude:
continue
if not hasattr(proc, "to_bytes"):
@ -1588,7 +1701,7 @@ class Language:
return util.to_bytes(serializers, exclude)
def from_bytes(
self, bytes_data: bytes, *, exclude: Iterable[str] = tuple()
self, bytes_data: bytes, *, exclude: Iterable[str] = SimpleFrozenList()
) -> "Language":
"""Load state from a binary string.
@ -1615,7 +1728,7 @@ class Language:
deserializers["tokenizer"] = lambda b: self.tokenizer.from_bytes(
b, exclude=["vocab"]
)
for name, proc in self.pipeline:
for name, proc in self._components:
if name in exclude:
continue
if not hasattr(proc, "from_bytes"):
@ -1651,14 +1764,10 @@ class DisabledPipes(list):
def __init__(self, nlp: Language, names: List[str]) -> None:
self.nlp = nlp
self.names = names
# Important! Not deep copy -- we just want the container (but we also
# want to support people providing arbitrarily typed nlp.pipeline
# objects.)
self.original_pipeline = copy(nlp.pipeline)
self.metas = {name: nlp.get_pipe_meta(name) for name in names}
self.configs = {name: nlp.get_pipe_config(name) for name in names}
for name in self.names:
self.nlp.disable_pipe(name)
list.__init__(self)
self.extend(nlp.remove_pipe(name) for name in names)
self.extend(self.names)
def __enter__(self):
return self
@ -1668,14 +1777,10 @@ class DisabledPipes(list):
def restore(self) -> None:
"""Restore the pipeline to its state when DisabledPipes was created."""
current, self.nlp.pipeline = self.nlp.pipeline, self.original_pipeline
unexpected = [name for name, pipe in current if not self.nlp.has_pipe(name)]
if unexpected:
# Don't change the pipeline if we're raising an error.
self.nlp.pipeline = current
raise ValueError(Errors.E008.format(names=unexpected))
self.nlp._pipe_meta.update(self.metas)
self.nlp._pipe_configs.update(self.configs)
for name in self.names:
if name not in self.nlp.component_names:
raise ValueError(Errors.E008.format(name=name))
self.nlp.enable_pipe(name)
self[:] = []

View File

@ -47,7 +47,6 @@ def init(model, X=None, Y=None):
def resize_output(model, new_nO):
tok2vec = model.get_ref("tok2vec")
lower = model.get_ref("lower")
upper = model.get_ref("upper")
if not model.attrs["has_upper"]:

View File

@ -12,6 +12,7 @@ from ..symbols import IDS, TAG, POS, MORPH, LEMMA
from ..tokens import Doc, Span
from ..tokens._retokenize import normalize_token_attrs, set_token_attrs
from ..vocab import Vocab
from ..util import SimpleFrozenList
from .. import util
@ -78,7 +79,7 @@ class AttributeRuler(Pipe):
DOCS: https://spacy.io/api/attributeruler#call
"""
matches = self.matcher(doc)
matches = sorted(self.matcher(doc))
for match_id, start, end in matches:
span = Span(doc, start, end, label=match_id)
@ -220,7 +221,7 @@ class AttributeRuler(Pipe):
results.update(Scorer.score_token_attr(examples, "lemma", **kwargs))
return results
def to_bytes(self, exclude: Iterable[str] = tuple()) -> bytes:
def to_bytes(self, exclude: Iterable[str] = SimpleFrozenList()) -> bytes:
"""Serialize the AttributeRuler to a bytestring.
exclude (Iterable[str]): String names of serialization fields to exclude.
@ -230,13 +231,12 @@ class AttributeRuler(Pipe):
"""
serialize = {}
serialize["vocab"] = self.vocab.to_bytes
patterns = {k: self.matcher.get(k)[1] for k in range(len(self.attrs))}
serialize["patterns"] = lambda: srsly.msgpack_dumps(patterns)
serialize["attrs"] = lambda: srsly.msgpack_dumps(self.attrs)
serialize["indices"] = lambda: srsly.msgpack_dumps(self.indices)
serialize["patterns"] = lambda: srsly.msgpack_dumps(self.patterns)
return util.to_bytes(serialize, exclude)
def from_bytes(self, bytes_data: bytes, exclude: Iterable[str] = tuple()):
def from_bytes(
self, bytes_data: bytes, exclude: Iterable[str] = SimpleFrozenList()
):
"""Load the AttributeRuler from a bytestring.
bytes_data (bytes): The data to load.
@ -245,51 +245,35 @@ class AttributeRuler(Pipe):
DOCS: https://spacy.io/api/attributeruler#from_bytes
"""
data = {"patterns": b""}
def load_patterns(b):
data["patterns"] = srsly.msgpack_loads(b)
def load_attrs(b):
self.attrs = srsly.msgpack_loads(b)
def load_indices(b):
self.indices = srsly.msgpack_loads(b)
self.add_patterns(srsly.msgpack_loads(b))
deserialize = {
"vocab": lambda b: self.vocab.from_bytes(b),
"patterns": load_patterns,
"attrs": load_attrs,
"indices": load_indices,
}
util.from_bytes(bytes_data, deserialize, exclude)
if data["patterns"]:
for key, pattern in data["patterns"].items():
self.matcher.add(key, pattern)
assert len(self.attrs) == len(data["patterns"])
assert len(self.indices) == len(data["patterns"])
return self
def to_disk(self, path: Union[Path, str], exclude: Iterable[str] = tuple()) -> None:
def to_disk(
self, path: Union[Path, str], exclude: Iterable[str] = SimpleFrozenList()
) -> None:
"""Serialize the AttributeRuler to disk.
path (Union[Path, str]): A path to a directory.
exclude (Iterable[str]): String names of serialization fields to exclude.
DOCS: https://spacy.io/api/attributeruler#to_disk
"""
patterns = {k: self.matcher.get(k)[1] for k in range(len(self.attrs))}
serialize = {
"vocab": lambda p: self.vocab.to_disk(p),
"patterns": lambda p: srsly.write_msgpack(p, patterns),
"attrs": lambda p: srsly.write_msgpack(p, self.attrs),
"indices": lambda p: srsly.write_msgpack(p, self.indices),
"patterns": lambda p: srsly.write_msgpack(p, self.patterns),
}
util.to_disk(path, serialize, exclude)
def from_disk(
self, path: Union[Path, str], exclude: Iterable[str] = tuple()
self, path: Union[Path, str], exclude: Iterable[str] = SimpleFrozenList()
) -> None:
"""Load the AttributeRuler from disk.
@ -297,31 +281,16 @@ class AttributeRuler(Pipe):
exclude (Iterable[str]): String names of serialization fields to exclude.
DOCS: https://spacy.io/api/attributeruler#from_disk
"""
data = {"patterns": b""}
def load_patterns(p):
data["patterns"] = srsly.read_msgpack(p)
def load_attrs(p):
self.attrs = srsly.read_msgpack(p)
def load_indices(p):
self.indices = srsly.read_msgpack(p)
self.add_patterns(srsly.read_msgpack(p))
deserialize = {
"vocab": lambda p: self.vocab.from_disk(p),
"patterns": load_patterns,
"attrs": load_attrs,
"indices": load_indices,
}
util.from_disk(path, deserialize, exclude)
if data["patterns"]:
for key, pattern in data["patterns"].items():
self.matcher.add(key, pattern)
assert len(self.attrs) == len(data["patterns"])
assert len(self.indices) == len(data["patterns"])
return self

View File

@ -2,7 +2,7 @@ from typing import Optional, Iterable, Callable, Dict, Iterator, Union, List, Tu
from pathlib import Path
import srsly
import random
from thinc.api import CosineDistance, get_array_module, Model, Optimizer, Config
from thinc.api import CosineDistance, Model, Optimizer, Config
from thinc.api import set_dropout_rate
import warnings
@ -13,6 +13,7 @@ from ..language import Language
from ..vocab import Vocab
from ..gold import Example, validate_examples
from ..errors import Errors, Warnings
from ..util import SimpleFrozenList
from .. import util
@ -404,7 +405,7 @@ class EntityLinker(Pipe):
token.ent_kb_id_ = kb_id
def to_disk(
self, path: Union[str, Path], *, exclude: Iterable[str] = tuple()
self, path: Union[str, Path], *, exclude: Iterable[str] = SimpleFrozenList(),
) -> None:
"""Serialize the pipe to disk.
@ -421,7 +422,7 @@ class EntityLinker(Pipe):
util.to_disk(path, serialize, exclude)
def from_disk(
self, path: Union[str, Path], *, exclude: Iterable[str] = tuple()
self, path: Union[str, Path], *, exclude: Iterable[str] = SimpleFrozenList(),
) -> "EntityLinker":
"""Load the pipe from disk. Modifies the object in place and returns it.

View File

@ -5,7 +5,7 @@ import srsly
from ..language import Language
from ..errors import Errors
from ..util import ensure_path, to_disk, from_disk
from ..util import ensure_path, to_disk, from_disk, SimpleFrozenList
from ..tokens import Doc, Span
from ..matcher import Matcher, PhraseMatcher
from ..scorer import Scorer
@ -317,7 +317,7 @@ class EntityRuler:
return Scorer.score_spans(examples, "ents", **kwargs)
def from_bytes(
self, patterns_bytes: bytes, *, exclude: Iterable[str] = tuple()
self, patterns_bytes: bytes, *, exclude: Iterable[str] = SimpleFrozenList()
) -> "EntityRuler":
"""Load the entity ruler from a bytestring.
@ -341,7 +341,7 @@ class EntityRuler:
self.add_patterns(cfg)
return self
def to_bytes(self, *, exclude: Iterable[str] = tuple()) -> bytes:
def to_bytes(self, *, exclude: Iterable[str] = SimpleFrozenList()) -> bytes:
"""Serialize the entity ruler patterns to a bytestring.
RETURNS (bytes): The serialized patterns.
@ -357,7 +357,7 @@ class EntityRuler:
return srsly.msgpack_dumps(serial)
def from_disk(
self, path: Union[str, Path], *, exclude: Iterable[str] = tuple()
self, path: Union[str, Path], *, exclude: Iterable[str] = SimpleFrozenList()
) -> "EntityRuler":
"""Load the entity ruler from a file. Expects a file containing
newline-delimited JSON (JSONL) with one entry per line.
@ -394,7 +394,7 @@ class EntityRuler:
return self
def to_disk(
self, path: Union[str, Path], *, exclude: Iterable[str] = tuple()
self, path: Union[str, Path], *, exclude: Iterable[str] = SimpleFrozenList()
) -> None:
"""Save the entity ruler patterns to a directory. The patterns will be
saved as newline-delimited JSON (JSONL).

View File

@ -223,6 +223,7 @@ class ConfigSchemaNlp(BaseModel):
# fmt: off
lang: StrictStr = Field(..., title="The base language to use")
pipeline: List[StrictStr] = Field(..., title="The pipeline component names in order")
disabled: List[StrictStr] = Field(..., title="Pipeline components to disable by default")
tokenizer: Callable = Field(..., title="The tokenizer to use")
load_vocab_data: StrictBool = Field(..., title="Whether to load additional vocab data from spacy-lookups-data")
before_creation: Optional[Callable[[Type["Language"]], Type["Language"]]] = Field(..., title="Optional callback to modify Language class before initialization")

View File

@ -1,10 +1,10 @@
from typing import Optional, Iterable, Dict, Any, Callable, Tuple, TYPE_CHECKING
from typing import Optional, Iterable, Dict, Any, Callable, TYPE_CHECKING
import numpy as np
from .gold import Example
from .tokens import Token, Doc, Span
from .errors import Errors
from .util import get_lang_class
from .util import get_lang_class, SimpleFrozenList
from .morphology import Morphology
if TYPE_CHECKING:
@ -317,7 +317,7 @@ class Scorer:
attr: str,
*,
getter: Callable[[Doc, str], Any] = getattr,
labels: Iterable[str] = tuple(),
labels: Iterable[str] = SimpleFrozenList(),
multi_label: bool = True,
positive_label: Optional[str] = None,
threshold: Optional[float] = None,
@ -447,7 +447,7 @@ class Scorer:
getter: Callable[[Token, str], Any] = getattr,
head_attr: str = "head",
head_getter: Callable[[Token, str], Token] = getattr,
ignore_labels: Tuple[str] = tuple(),
ignore_labels: Iterable[str] = SimpleFrozenList(),
**cfg,
) -> Dict[str, Any]:
"""Returns the UAS, LAS, and LAS per type scores for dependency

View File

@ -104,7 +104,11 @@ def test_attributeruler_score(nlp, pattern_dicts):
assert doc[3].lemma_ == "cat"
assert doc[3].morph_ == "Case=Nom|Number=Sing"
dev_examples = [Example.from_dict(nlp.make_doc("This is a test."), {"lemmas": ["this", "is", "a", "cat", "."]})]
dev_examples = [
Example.from_dict(
nlp.make_doc("This is a test."), {"lemmas": ["this", "is", "a", "cat", "."]}
)
]
scores = nlp.evaluate(dev_examples)
# "cat" is the only correct lemma
assert scores["lemma_acc"] == pytest.approx(0.2)
@ -112,6 +116,22 @@ def test_attributeruler_score(nlp, pattern_dicts):
assert scores["morph_acc"] == pytest.approx(0.6)
def test_attributeruler_rule_order(nlp):
a = AttributeRuler(nlp.vocab)
patterns = [
{"patterns": [[{"TAG": "VBZ"}]], "attrs": {"POS": "VERB"}},
{"patterns": [[{"TAG": "VBZ"}]], "attrs": {"POS": "NOUN"}},
]
a.add_patterns(patterns)
doc = get_doc(
nlp.vocab,
words=["This", "is", "a", "test", "."],
tags=["DT", "VBZ", "DT", "NN", "."],
)
doc = a(doc)
assert doc[1].pos_ == "NOUN"
def test_attributeruler_tag_map(nlp, tag_map):
a = AttributeRuler(nlp.vocab)
a.load_from_tag_map(tag_map)
@ -215,6 +235,7 @@ def test_attributeruler_serialize(nlp, pattern_dicts):
assert a.to_bytes() == a_reloaded.to_bytes()
doc1 = a_reloaded(nlp.make_doc(text))
numpy.array_equal(doc.to_array(attrs), doc1.to_array(attrs))
assert a.patterns == a_reloaded.patterns
# disk roundtrip
with make_tempdir() as tmp_dir:
@ -223,3 +244,4 @@ def test_attributeruler_serialize(nlp, pattern_dicts):
doc2 = nlp2(text)
assert nlp2.get_pipe("attribute_ruler").to_bytes() == a.to_bytes()
assert numpy.array_equal(doc.to_array(attrs), doc2.to_array(attrs))
assert a.patterns == nlp2.get_pipe("attribute_ruler").patterns

View File

@ -438,3 +438,26 @@ def test_pipe_factories_from_source_config():
config = nlp.config["components"]["custom"]
assert config["factory"] == name
assert config["arg"] == "world"
def test_pipe_factories_decorator_idempotent():
"""Check that decorator can be run multiple times if the function is the
same. This is especially relevant for live reloading because we don't
want spaCy to raise an error if a module registering components is reloaded.
"""
name = "test_pipe_factories_decorator_idempotent"
func = lambda nlp, name: lambda doc: doc
for i in range(5):
Language.factory(name, func=func)
nlp = Language()
nlp.add_pipe(name)
Language.factory(name, func=func)
# Make sure it also works for component decorator, which creates the
# factory function
name2 = f"{name}2"
func2 = lambda doc: doc
for i in range(5):
Language.component(name2, func=func2)
nlp = Language()
nlp.add_pipe(name)
Language.component(name2, func=func2)

View File

@ -1,5 +1,6 @@
import pytest
from spacy.language import Language
from spacy.util import SimpleFrozenList
@pytest.fixture
@ -181,6 +182,11 @@ def test_select_pipes_errors(nlp):
with pytest.raises(ValueError):
nlp.select_pipes(enable=[], disable=["c3"])
disabled = nlp.select_pipes(disable=["c2"])
nlp.remove_pipe("c2")
with pytest.raises(ValueError):
disabled.restore()
@pytest.mark.parametrize("n_pipes", [100])
def test_add_lots_of_pipes(nlp, n_pipes):
@ -249,3 +255,94 @@ def test_add_pipe_before_after():
nlp.add_pipe("entity_ruler", before=True)
with pytest.raises(ValueError):
nlp.add_pipe("entity_ruler", first=False)
def test_disable_enable_pipes():
name = "test_disable_enable_pipes"
results = {}
def make_component(name):
results[name] = ""
def component(doc):
nonlocal results
results[name] = doc.text
return doc
return component
c1 = Language.component(f"{name}1", func=make_component(f"{name}1"))
c2 = Language.component(f"{name}2", func=make_component(f"{name}2"))
nlp = Language()
nlp.add_pipe(f"{name}1")
nlp.add_pipe(f"{name}2")
assert results[f"{name}1"] == ""
assert results[f"{name}2"] == ""
assert nlp.pipeline == [(f"{name}1", c1), (f"{name}2", c2)]
assert nlp.pipe_names == [f"{name}1", f"{name}2"]
nlp.disable_pipe(f"{name}1")
assert nlp.disabled == [f"{name}1"]
assert nlp.component_names == [f"{name}1", f"{name}2"]
assert nlp.pipe_names == [f"{name}2"]
assert nlp.config["nlp"]["disabled"] == [f"{name}1"]
nlp("hello")
assert results[f"{name}1"] == "" # didn't run
assert results[f"{name}2"] == "hello" # ran
nlp.enable_pipe(f"{name}1")
assert nlp.disabled == []
assert nlp.pipe_names == [f"{name}1", f"{name}2"]
assert nlp.config["nlp"]["disabled"] == []
nlp("world")
assert results[f"{name}1"] == "world"
assert results[f"{name}2"] == "world"
nlp.disable_pipe(f"{name}2")
nlp.remove_pipe(f"{name}2")
assert nlp.components == [(f"{name}1", c1)]
assert nlp.pipeline == [(f"{name}1", c1)]
assert nlp.component_names == [f"{name}1"]
assert nlp.pipe_names == [f"{name}1"]
assert nlp.disabled == []
assert nlp.config["nlp"]["disabled"] == []
nlp.rename_pipe(f"{name}1", name)
assert nlp.components == [(name, c1)]
assert nlp.component_names == [name]
nlp("!")
assert results[f"{name}1"] == "!"
assert results[f"{name}2"] == "world"
with pytest.raises(ValueError):
nlp.disable_pipe(f"{name}2")
nlp.disable_pipe(name)
assert nlp.component_names == [name]
assert nlp.pipe_names == []
assert nlp.config["nlp"]["disabled"] == [name]
nlp("?")
assert results[f"{name}1"] == "!"
def test_pipe_methods_frozen():
"""Test that spaCy raises custom error messages if "frozen" properties are
accessed. We still want to use a list here to not break backwards
compatibility, but users should see an error if they're trying to append
to nlp.pipeline etc."""
nlp = Language()
ner = nlp.add_pipe("ner")
assert nlp.pipe_names == ["ner"]
for prop in [
nlp.pipeline,
nlp.pipe_names,
nlp.components,
nlp.component_names,
nlp.disabled,
nlp.factory_names,
]:
assert isinstance(prop, list)
assert isinstance(prop, SimpleFrozenList)
with pytest.raises(NotImplementedError):
nlp.pipeline.append(("ner2", ner))
with pytest.raises(NotImplementedError):
nlp.pipe_names.pop()
with pytest.raises(NotImplementedError):
nlp.components.sort()
with pytest.raises(NotImplementedError):
nlp.component_names.clear()

View File

@ -161,6 +161,7 @@ def test_issue4674():
assert kb2.get_size_entities() == 1
@pytest.mark.skip(reason="API change: disable just disables, new exclude arg")
def test_issue4707():
"""Tests that disabled component names are also excluded from nlp.from_disk
by default when loading a model.

View File

@ -6,6 +6,8 @@ from spacy.pipeline.dep_parser import DEFAULT_PARSER_MODEL
from spacy.pipeline.tagger import DEFAULT_TAGGER_MODEL
from spacy.pipeline.textcat import DEFAULT_TEXTCAT_MODEL
from spacy.pipeline.senter import DEFAULT_SENTER_MODEL
from spacy.lang.en import English
import spacy
from ..util import make_tempdir
@ -173,3 +175,34 @@ def test_serialize_sentencerecognizer(en_vocab):
sr_b = sr.to_bytes()
sr_d = SentenceRecognizer(en_vocab, model).from_bytes(sr_b)
assert sr.to_bytes() == sr_d.to_bytes()
def test_serialize_pipeline_disable_enable():
nlp = English()
nlp.add_pipe("ner")
nlp.add_pipe("tagger")
nlp.disable_pipe("tagger")
assert nlp.config["nlp"]["disabled"] == ["tagger"]
config = nlp.config.copy()
nlp2 = English.from_config(config)
assert nlp2.pipe_names == ["ner"]
assert nlp2.component_names == ["ner", "tagger"]
assert nlp2.disabled == ["tagger"]
assert nlp2.config["nlp"]["disabled"] == ["tagger"]
with make_tempdir() as d:
nlp2.to_disk(d)
nlp3 = spacy.load(d)
assert nlp3.pipe_names == ["ner"]
assert nlp3.component_names == ["ner", "tagger"]
with make_tempdir() as d:
nlp3.to_disk(d)
nlp4 = spacy.load(d, disable=["ner"])
assert nlp4.pipe_names == []
assert nlp4.component_names == ["ner", "tagger"]
assert nlp4.disabled == ["ner", "tagger"]
with make_tempdir() as d:
nlp.to_disk(d)
nlp5 = spacy.load(d, exclude=["tagger"])
assert nlp5.pipe_names == ["ner"]
assert nlp5.component_names == ["ner"]
assert nlp5.disabled == []

View File

@ -373,8 +373,7 @@ def test_parse_config_overrides(args, expected):
@pytest.mark.parametrize(
"args",
[["--foo"], ["--x.foo", "bar", "--baz"]],
"args", [["--foo"], ["--x.foo", "bar", "--baz"]],
)
def test_parse_config_overrides_invalid(args):
with pytest.raises(NoSuchOption):
@ -382,8 +381,7 @@ def test_parse_config_overrides_invalid(args):
@pytest.mark.parametrize(
"args",
[["--x.foo", "bar", "baz"], ["x.foo"]],
"args", [["--x.foo", "bar", "baz"], ["x.foo"]],
)
def test_parse_config_overrides_invalid_2(args):
with pytest.raises(SystemExit):

View File

@ -3,10 +3,9 @@ import pytest
from .util import get_random_doc
from spacy import util
from spacy.util import dot_to_object
from spacy.util import dot_to_object, SimpleFrozenList
from thinc.api import Config, Optimizer
from spacy.gold.batchers import minibatch_by_words
from ..lang.en import English
from ..lang.nl import Dutch
from ..language import DEFAULT_CONFIG_PATH
@ -106,3 +105,20 @@ def test_util_dot_section():
assert not dot_to_object(en_config, "nlp.load_vocab_data")
assert dot_to_object(nl_config, "nlp.load_vocab_data")
assert isinstance(dot_to_object(nl_config, "training.optimizer"), Optimizer)
def test_simple_frozen_list():
t = SimpleFrozenList(["foo", "bar"])
assert t == ["foo", "bar"]
assert t.index("bar") == 1 # okay method
with pytest.raises(NotImplementedError):
t.append("baz")
with pytest.raises(NotImplementedError):
t.sort()
with pytest.raises(NotImplementedError):
t.extend(["baz"])
with pytest.raises(NotImplementedError):
t.pop()
t = SimpleFrozenList(["foo", "bar"], error="Error!")
with pytest.raises(NotImplementedError):
t.append("baz")

View File

@ -10,7 +10,7 @@ from ..vocab import Vocab
from ..compat import copy_reg
from ..attrs import SPACY, ORTH, intify_attr
from ..errors import Errors
from ..util import ensure_path
from ..util import ensure_path, SimpleFrozenList
# fmt: off
ALL_ATTRS = ("ORTH", "TAG", "HEAD", "DEP", "ENT_IOB", "ENT_TYPE", "ENT_KB_ID", "LEMMA", "MORPH", "POS")
@ -52,7 +52,7 @@ class DocBin:
self,
attrs: Iterable[str] = ALL_ATTRS,
store_user_data: bool = False,
docs: Iterable[Doc] = tuple(),
docs: Iterable[Doc] = SimpleFrozenList(),
) -> None:
"""Create a DocBin object to hold serialized annotations.

View File

@ -120,6 +120,47 @@ class SimpleFrozenDict(dict):
raise NotImplementedError(self.error)
class SimpleFrozenList(list):
"""Wrapper class around a list that lets us raise custom errors if certain
attributes/methods are accessed. Mostly used for properties like
Language.pipeline that return an immutable list (and that we don't want to
convert to a tuple to not break too much backwards compatibility). If a user
accidentally calls nlp.pipeline.append(), we can raise a more helpful error.
"""
def __init__(self, *args, error: str = Errors.E927) -> None:
"""Initialize the frozen list.
error (str): The error message when user tries to mutate the list.
"""
self.error = error
super().__init__(*args)
def append(self, *args, **kwargs):
raise NotImplementedError(self.error)
def clear(self, *args, **kwargs):
raise NotImplementedError(self.error)
def extend(self, *args, **kwargs):
raise NotImplementedError(self.error)
def insert(self, *args, **kwargs):
raise NotImplementedError(self.error)
def pop(self, *args, **kwargs):
raise NotImplementedError(self.error)
def remove(self, *args, **kwargs):
raise NotImplementedError(self.error)
def reverse(self, *args, **kwargs):
raise NotImplementedError(self.error)
def sort(self, *args, **kwargs):
raise NotImplementedError(self.error)
def lang_class_is_loaded(lang: str) -> bool:
"""Check whether a Language class is already loaded. Language classes are
loaded lazily, to avoid expensive setup code associated with the language
@ -215,7 +256,8 @@ def load_model(
name: Union[str, Path],
*,
vocab: Union["Vocab", bool] = True,
disable: Iterable[str] = tuple(),
disable: Iterable[str] = SimpleFrozenList(),
exclude: Iterable[str] = SimpleFrozenList(),
config: Union[Dict[str, Any], Config] = SimpleFrozenDict(),
) -> "Language":
"""Load a model from a package or data path.
@ -228,7 +270,7 @@ def load_model(
keyed by section values in dot notation.
RETURNS (Language): The loaded nlp object.
"""
kwargs = {"vocab": vocab, "disable": disable, "config": config}
kwargs = {"vocab": vocab, "disable": disable, "exclude": exclude, "config": config}
if isinstance(name, str): # name or string path
if name.startswith("blank:"): # shortcut for blank model
return get_lang_class(name.replace("blank:", ""))()
@ -247,7 +289,8 @@ def load_model_from_package(
name: str,
*,
vocab: Union["Vocab", bool] = True,
disable: Iterable[str] = tuple(),
disable: Iterable[str] = SimpleFrozenList(),
exclude: Iterable[str] = SimpleFrozenList(),
config: Union[Dict[str, Any], Config] = SimpleFrozenDict(),
) -> "Language":
"""Load a model from an installed package.
@ -255,13 +298,17 @@ def load_model_from_package(
name (str): The package name.
vocab (Vocab / True): Optional vocab to pass in on initialization. If True,
a new Vocab object will be created.
disable (Iterable[str]): Names of pipeline components to disable.
disable (Iterable[str]): Names of pipeline components to disable. Disabled
pipes will be loaded but they won't be run unless you explicitly
enable them by calling nlp.enable_pipe.
exclude (Iterable[str]): Names of pipeline components to exclude. Excluded
components won't be loaded.
config (Dict[str, Any] / Config): Config overrides as nested dict or dict
keyed by section values in dot notation.
RETURNS (Language): The loaded nlp object.
"""
cls = importlib.import_module(name)
return cls.load(vocab=vocab, disable=disable, config=config)
return cls.load(vocab=vocab, disable=disable, exclude=exclude, config=config)
def load_model_from_path(
@ -269,7 +316,8 @@ def load_model_from_path(
*,
meta: Optional[Dict[str, Any]] = None,
vocab: Union["Vocab", bool] = True,
disable: Iterable[str] = tuple(),
disable: Iterable[str] = SimpleFrozenList(),
exclude: Iterable[str] = SimpleFrozenList(),
config: Union[Dict[str, Any], Config] = SimpleFrozenDict(),
) -> "Language":
"""Load a model from a data directory path. Creates Language class with
@ -279,7 +327,11 @@ def load_model_from_path(
meta (Dict[str, Any]): Optional model meta.
vocab (Vocab / True): Optional vocab to pass in on initialization. If True,
a new Vocab object will be created.
disable (Iterable[str]): Names of pipeline components to disable.
disable (Iterable[str]): Names of pipeline components to disable. Disabled
pipes will be loaded but they won't be run unless you explicitly
enable them by calling nlp.enable_pipe.
exclude (Iterable[str]): Names of pipeline components to exclude. Excluded
components won't be loaded.
config (Dict[str, Any] / Config): Config overrides as nested dict or dict
keyed by section values in dot notation.
RETURNS (Language): The loaded nlp object.
@ -290,15 +342,18 @@ def load_model_from_path(
meta = get_model_meta(model_path)
config_path = model_path / "config.cfg"
config = load_config(config_path, overrides=dict_to_dot(config))
nlp, _ = load_model_from_config(config, vocab=vocab, disable=disable)
return nlp.from_disk(model_path, exclude=disable)
nlp, _ = load_model_from_config(
config, vocab=vocab, disable=disable, exclude=exclude
)
return nlp.from_disk(model_path, exclude=exclude)
def load_model_from_config(
config: Union[Dict[str, Any], Config],
*,
vocab: Union["Vocab", bool] = True,
disable: Iterable[str] = tuple(),
disable: Iterable[str] = SimpleFrozenList(),
exclude: Iterable[str] = SimpleFrozenList(),
auto_fill: bool = False,
validate: bool = True,
) -> Tuple["Language", Config]:
@ -309,7 +364,11 @@ def load_model_from_config(
meta (Dict[str, Any]): Optional model meta.
vocab (Vocab / True): Optional vocab to pass in on initialization. If True,
a new Vocab object will be created.
disable (Iterable[str]): Names of pipeline components to disable.
disable (Iterable[str]): Names of pipeline components to disable. Disabled
pipes will be loaded but they won't be run unless you explicitly
enable them by calling nlp.enable_pipe.
exclude (Iterable[str]): Names of pipeline components to exclude. Excluded
components won't be loaded.
auto_fill (bool): Whether to auto-fill config with missing defaults.
validate (bool): Whether to show config validation errors.
RETURNS (Language): The loaded nlp object.
@ -323,7 +382,12 @@ def load_model_from_config(
# registry, including custom subclasses provided via entry points
lang_cls = get_lang_class(nlp_config["lang"])
nlp = lang_cls.from_config(
config, vocab=vocab, disable=disable, auto_fill=auto_fill, validate=validate,
config,
vocab=vocab,
disable=disable,
exclude=exclude,
auto_fill=auto_fill,
validate=validate,
)
return nlp, nlp.resolved
@ -332,7 +396,8 @@ def load_model_from_init_py(
init_file: Union[Path, str],
*,
vocab: Union["Vocab", bool] = True,
disable: Iterable[str] = tuple(),
disable: Iterable[str] = SimpleFrozenList(),
exclude: Iterable[str] = SimpleFrozenList(),
config: Union[Dict[str, Any], Config] = SimpleFrozenDict(),
) -> "Language":
"""Helper function to use in the `load()` method of a model package's
@ -340,7 +405,11 @@ def load_model_from_init_py(
vocab (Vocab / True): Optional vocab to pass in on initialization. If True,
a new Vocab object will be created.
disable (Iterable[str]): Names of pipeline components to disable.
disable (Iterable[str]): Names of pipeline components to disable. Disabled
pipes will be loaded but they won't be run unless you explicitly
enable them by calling nlp.enable_pipe.
exclude (Iterable[str]): Names of pipeline components to exclude. Excluded
components won't be loaded.
config (Dict[str, Any] / Config): Config overrides as nested dict or dict
keyed by section values in dot notation.
RETURNS (Language): The loaded nlp object.
@ -352,7 +421,12 @@ def load_model_from_init_py(
if not model_path.exists():
raise IOError(Errors.E052.format(path=data_path))
return load_model_from_path(
data_path, vocab=vocab, meta=meta, disable=disable, config=config
data_path,
vocab=vocab,
meta=meta,
disable=disable,
exclude=exclude,
config=config,
)
@ -673,6 +747,25 @@ def get_object_name(obj: Any) -> str:
return repr(obj)
def is_same_func(func1: Callable, func2: Callable) -> bool:
"""Approximately decide whether two functions are the same, even if their
identity is different (e.g. after they have been live reloaded). Mostly
used in the @Language.component and @Language.factory decorators to decide
whether to raise if a factory already exists. Allows decorator to run
multiple times with the same function.
func1 (Callable): The first function.
func2 (Callable): The second function.
RETURNS (bool): Whether it's the same function (most likely).
"""
if not callable(func1) or not callable(func2):
return False
same_name = func1.__qualname__ == func2.__qualname__
same_file = inspect.getfile(func1) == inspect.getfile(func2)
same_code = inspect.getsourcelines(func1) == inspect.getsourcelines(func2)
return same_name and same_file and same_code
def get_cuda_stream(
require: bool = False, non_blocking: bool = True
) -> Optional[CudaStream]:

View File

@ -12,7 +12,8 @@ The attribute ruler lets you set token attributes for tokens identified by
[`Matcher` patterns](/usage/rule-based-matching#matcher). The attribute ruler is
typically used to handle exceptions for token attributes and to map values
between attributes such as mapping fine-grained POS tags to coarse-grained POS
tags.
tags. See the [usage guide](/usage/linguistic-features/#mappings-exceptions) for
examples.
## Config and implementation {#config}

View File

@ -74,15 +74,16 @@ your config and check that it's valid, you can run the
Defines the `nlp` object, its tokenizer and
[processing pipeline](/usage/processing-pipelines) component names.
| Name | Description |
| ------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `lang` | Model language [ISO code](https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes). Defaults to `null`. ~~str~~ |
| `pipeline` | Names of pipeline components in order. Should correspond to sections in the `[components]` block, e.g. `[components.ner]`. See docs on [defining components](/usage/training#config-components). Defaults to `[]`. ~~List[str]~~ |
| `load_vocab_data` | Whether to load additional lexeme and vocab data from [`spacy-lookups-data`](https://github.com/explosion/spacy-lookups-data) if available. Defaults to `true`. ~~bool~~ |
| `before_creation` | Optional [callback](/usage/training#custom-code-nlp-callbacks) to modify `Language` subclass before it's initialized. Defaults to `null`. ~~Optional[Callable[[Type[Language]], Type[Language]]]~~ |
| `after_creation` | Optional [callback](/usage/training#custom-code-nlp-callbacks) to modify `nlp` object right after it's initialized. Defaults to `null`. ~~Optional[Callable[[Language], Language]]~~ |
| `after_pipeline_creation` | Optional [callback](/usage/training#custom-code-nlp-callbacks) to modify `nlp` object after the pipeline components have been added. Defaults to `null`. ~~Optional[Callable[[Language], Language]]~~ |
| `tokenizer` | The tokenizer to use. Defaults to [`Tokenizer`](/api/tokenizer). ~~Callable[[str], Doc]~~ |
| Name | Description |
| ------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `lang` | Model language [ISO code](https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes). Defaults to `null`. ~~str~~ |
| `pipeline` | Names of pipeline components in order. Should correspond to sections in the `[components]` block, e.g. `[components.ner]`. See docs on [defining components](/usage/training#config-components). Defaults to `[]`. ~~List[str]~~ |
| `disabled` | Names of pipeline components that are loaded but disabled by default and not run as part of the pipeline. Should correspond to components listed in `pipeline`. After a model is loaded, disabled components can be enabled using [`Language.enable_pipe`](/api/language#enable_pipe). ~~List[str]~~ |
| `load_vocab_data` | Whether to load additional lexeme and vocab data from [`spacy-lookups-data`](https://github.com/explosion/spacy-lookups-data) if available. Defaults to `true`. ~~bool~~ |
| `before_creation` | Optional [callback](/usage/training#custom-code-nlp-callbacks) to modify `Language` subclass before it's initialized. Defaults to `null`. ~~Optional[Callable[[Type[Language]], Type[Language]]]~~ |
| `after_creation` | Optional [callback](/usage/training#custom-code-nlp-callbacks) to modify `nlp` object right after it's initialized. Defaults to `null`. ~~Optional[Callable[[Language], Language]]~~ |
| `after_pipeline_creation` | Optional [callback](/usage/training#custom-code-nlp-callbacks) to modify `nlp` object after the pipeline components have been added. Defaults to `null`. ~~Optional[Callable[[Language], Language]]~~ |
| `tokenizer` | The tokenizer to use. Defaults to [`Tokenizer`](/api/tokenizer). ~~Callable[[str], Doc]~~ |
### components {#config-components tag="section"}

View File

@ -357,35 +357,6 @@ their original weights after the block.
| -------- | ------------------------------------------------------ |
| `params` | A dictionary of parameters keyed by model ID. ~~dict~~ |
## Language.create_pipe {#create_pipe tag="method" new="2"}
Create a pipeline component from a factory.
<Infobox title="Changed in v3.0" variant="warning">
As of v3.0, the [`Language.add_pipe`](/api/language#add_pipe) method also takes
the string name of the factory, creates the component, adds it to the pipeline
and returns it. The `Language.create_pipe` method is now mostly used internally.
To create a component and add it to the pipeline, you should always use
`Language.add_pipe`.
</Infobox>
> #### Example
>
> ```python
> parser = nlp.create_pipe("parser")
> ```
| Name | Description |
| ------------------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `factory_name` | Name of the registered component factory. ~~str~~ |
| `name` | Optional unique name of pipeline component instance. If not set, the factory name is used. An error is raised if the name already exists in the pipeline. ~~Optional[str]~~ |
| _keyword-only_ | |
| `config` <Tag variant="new">3</Tag> | Optional config parameters to use for this component. Will be merged with the `default_config` specified by the component factory. ~~Optional[Dict[str, Any]]~~ |
| `validate` <Tag variant="new">3</Tag> | Whether to validate the component config and arguments against the types expected by the factory. Defaults to `True`. ~~bool~~ |
| **RETURNS** | The pipeline component. ~~Callable[[Doc], Doc]~~ |
## Language.add_pipe {#add_pipe tag="method" new="2"}
Add a component to the processing pipeline. Expects a name that maps to a
@ -434,6 +405,35 @@ component, adds it to the pipeline and returns it.
| `validate` <Tag variant="new">3</Tag> | Whether to validate the component config and arguments against the types expected by the factory. Defaults to `True`. ~~bool~~ |
| **RETURNS** | The pipeline component. ~~Callable[[Doc], Doc]~~ |
## Language.create_pipe {#create_pipe tag="method" new="2"}
Create a pipeline component from a factory.
<Infobox title="Changed in v3.0" variant="warning">
As of v3.0, the [`Language.add_pipe`](/api/language#add_pipe) method also takes
the string name of the factory, creates the component, adds it to the pipeline
and returns it. The `Language.create_pipe` method is now mostly used internally.
To create a component and add it to the pipeline, you should always use
`Language.add_pipe`.
</Infobox>
> #### Example
>
> ```python
> parser = nlp.create_pipe("parser")
> ```
| Name | Description |
| ------------------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `factory_name` | Name of the registered component factory. ~~str~~ |
| `name` | Optional unique name of pipeline component instance. If not set, the factory name is used. An error is raised if the name already exists in the pipeline. ~~Optional[str]~~ |
| _keyword-only_ | |
| `config` <Tag variant="new">3</Tag> | Optional config parameters to use for this component. Will be merged with the `default_config` specified by the component factory. ~~Optional[Dict[str, Any]]~~ |
| `validate` <Tag variant="new">3</Tag> | Whether to validate the component config and arguments against the types expected by the factory. Defaults to `True`. ~~bool~~ |
| **RETURNS** | The pipeline component. ~~Callable[[Doc], Doc]~~ |
## Language.has_factory {#has_factory tag="classmethod" new="3"}
Check whether a factory name is registered on the `Language` class or subclass.
@ -561,6 +561,54 @@ component function.
| `name` | Name of the component to remove. ~~str~~ |
| **RETURNS** | A `(name, component)` tuple of the removed component. ~~Tuple[str, Callable[[Doc], Doc]]~~ |
## Language.disable_pipe {#disable_pipe tag="method" new="3"}
Temporarily disable a pipeline component so it's not run as part of the
pipeline. Disabled components are listed in
[`nlp.disabled`](/api/language#attributes) and included in
[`nlp.components`](/api/language#attributes), but not in
[`nlp.pipeline`](/api/language#pipeline), so they're not run when you process a
`Doc` with the `nlp` object. If the component is already disabled, this method
does nothing.
> #### Example
>
> ```python
> nlp.add_pipe("ner")
> nlp.add_pipe("textcat")
> assert nlp.pipe_names == ["ner", "textcat"]
> nlp.disable_pipe("ner")
> assert nlp.pipe_names == ["textcat"]
> assert nlp.component_names == ["ner", "textcat"]
> assert nlp.disabled == ["ner"]
> ```
| Name | Description |
| ------ | ----------------------------------------- |
| `name` | Name of the component to disable. ~~str~~ |
## Language.enable_pipe {#enable_pipe tag="method" new="3"}
Enable a previously disable component (e.g. via
[`Language.disable_pipes`](/api/language#disable_pipes)) so it's run as part of
the pipeline, [`nlp.pipeline`](/api/language#pipeline). If the component is
already enabled, this method does nothing.
> #### Example
>
> ```python
> nlp.disable_pipe("ner")
> assert "ner" in nlp.disabled
> assert not "ner" in nlp.pipe_names
> nlp.enable_pipe("ner")
> assert not "ner" in nlp.disabled
> assert "ner" in nlp.pipe_names
> ```
| Name | Description |
| ------ | ---------------------------------------- |
| `name` | Name of the component to enable. ~~str~~ |
## Language.select_pipes {#select_pipes tag="contextmanager, method" new="3"}
Disable one or more pipeline components. If used as a context manager, the
@ -568,7 +616,9 @@ pipeline will be restored to the initial state at the end of the block.
Otherwise, a `DisabledPipes` object is returned, that has a `.restore()` method
you can use to undo your changes. You can specify either `disable` (as a list or
string), or `enable`. In the latter case, all components not in the `enable`
list, will be disabled.
list, will be disabled. Under the hood, this method calls into
[`disable_pipe`](/api/language#disable_pipe) and
[`enable_pipe`](/api/language#enable_pipe).
> #### Example
>
@ -860,18 +910,21 @@ available to the loaded object.
## Attributes {#attributes}
| Name | Description |
| --------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------- |
| `vocab` | A container for the lexical types. ~~Vocab~~ |
| `tokenizer` | The tokenizer. ~~Tokenizer~~ |
| `make_doc` | Callable that takes a string and returns a `Doc`. ~~Callable[[str], Doc]~~ |
| `pipeline` | List of `(name, component)` tuples describing the current processing pipeline, in order. ~~List[str, Callable[[Doc], Doc]]~~ |
| `pipe_names` <Tag variant="new">2</Tag> | List of pipeline component names, in order. ~~List[str]~~ |
| `pipe_labels` <Tag variant="new">2.2</Tag> | List of labels set by the pipeline components, if available, keyed by component name. ~~Dict[str, List[str]]~~ |
| `pipe_factories` <Tag variant="new">2.2</Tag> | Dictionary of pipeline component names, mapped to their factory names. ~~Dict[str, str]~~ |
| `factories` | All available factory functions, keyed by name. ~~Dict[str, Callable[[...], Callable[[Doc], Doc]]]~~ |
| `factory_names` <Tag variant="new">3</Tag> | List of all available factory names. ~~List[str]~~ |
| `path` <Tag variant="new">2</Tag> | Path to the model data directory, if a model is loaded. Otherwise `None`. ~~Optional[Path]~~ |
| Name | Description |
| --------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------- |
| `vocab` | A container for the lexical types. ~~Vocab~~ |
| `tokenizer` | The tokenizer. ~~Tokenizer~~ |
| `make_doc` | Callable that takes a string and returns a `Doc`. ~~Callable[[str], Doc]~~ |
| `pipeline` | List of `(name, component)` tuples describing the current processing pipeline, in order. ~~List[Tuple[str, Callable[[Doc], Doc]]]~~ |
| `pipe_names` <Tag variant="new">2</Tag> | List of pipeline component names, in order. ~~List[str]~~ |
| `pipe_labels` <Tag variant="new">2.2</Tag> | List of labels set by the pipeline components, if available, keyed by component name. ~~Dict[str, List[str]]~~ |
| `pipe_factories` <Tag variant="new">2.2</Tag> | Dictionary of pipeline component names, mapped to their factory names. ~~Dict[str, str]~~ |
| `factories` | All available factory functions, keyed by name. ~~Dict[str, Callable[[...], Callable[[Doc], Doc]]]~~ |
| `factory_names` <Tag variant="new">3</Tag> | List of all available factory names. ~~List[str]~~ |
| `components` <Tag variant="new">3</Tag> | List of all available `(name, component)` tuples, including components that are currently disabled. ~~List[Tuple[str, Callable[[Doc], Doc]]]~~ |
| `component_names` <Tag variant="new">3</Tag> | List of all available component names, including components that are currently disabled. ~~List[str]~~ |
| `disabled` <Tag variant="new">3</Tag> | Names of components that are currently disabled and don't run as part of the pipeline. ~~List[str]~~ |
| `path` <Tag variant="new">2</Tag> | Path to the model data directory, if a model is loaded. Otherwise `None`. ~~Optional[Path]~~ |
## Class attributes {#class-attributes}

View File

@ -25,9 +25,10 @@ added to your pipeline, and not a hidden part of the vocab that runs behind the
scenes. This makes it easier to customize how lemmas should be assigned in your
pipeline.
If the lemmatization mode is set to `"rule"` and requires part-of-speech tags to
be assigned, make sure a [`Tagger`](/api/tagger) or another component assigning
tags is available in the pipeline and runs _before_ the lemmatizer.
If the lemmatization mode is set to `"rule"`, which requires coarse-grained POS
(`Token.pos`) to be assigned, make sure a [`Tagger`](/api/tagger),
[`Morphologizer`](/api/morphologizer) or another component assigning POS is
available in the pipeline and runs _before_ the lemmatizer.
</Infobox>

View File

@ -10,7 +10,7 @@ api_trainable: true
---
A trainable pipeline component for sentence segmentation. For a simpler,
ruse-based strategy, see the [`Sentencizer`](/api/sentencizer).
rule-based strategy, see the [`Sentencizer`](/api/sentencizer).
## Config and implementation {#config}

View File

@ -23,6 +23,14 @@ path, spaCy will assume it's a data directory, load its
information to construct the `Language` class. The data will be loaded in via
[`Language.from_disk`](/api/language#from_disk).
<Infobox variant="warning" title="Changed in v3.0">
As of v3.0, the `disable` keyword argument specifies components to load but
disable, instead of components to not load at all. Those components can now be
specified separately using the new `exclude` keyword argument.
</Infobox>
> #### Example
>
> ```python
@ -30,16 +38,17 @@ information to construct the `Language` class. The data will be loaded in via
> nlp = spacy.load("/path/to/en") # string path
> nlp = spacy.load(Path("/path/to/en")) # pathlib Path
>
> nlp = spacy.load("en_core_web_sm", disable=["parser", "tagger"])
> nlp = spacy.load("en_core_web_sm", exclude=["parser", "tagger"])
> ```
| Name | Description |
| ----------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| `name` | Model to load, i.e. package name or path. ~~Union[str, Path]~~ |
| _keyword-only_ | |
| `disable` | Names of pipeline components to [disable](/usage/processing-pipelines#disabling). ~~List[str]~~ |
| `config` <Tag variant="new">3</Tag> | Optional config overrides, either as nested dict or dict keyed by section value in dot notation, e.g. `"components.name.value"`. ~~Union[Dict[str, Any], Config]~~ |
| **RETURNS** | A `Language` object with the loaded model. ~~Language~~ |
| Name | Description |
| ------------------------------------ | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `name` | Model to load, i.e. package name or path. ~~Union[str, Path]~~ |
| _keyword-only_ | |
| `disable` | Names of pipeline components to [disable](/usage/processing-pipelines#disabling). Disabled pipes will be loaded but they won't be run unless you explicitly enable them by calling [nlp.enable_pipe](/api/language#enable_pipe). ~~List[str]~~ |
| `exclude` <Tag variant="new">3</Tag> | Names of pipeline components to [exclude](/usage/processing-pipelines#disabling). Excluded components won't be loaded. ~~List[str]~~ |
| `config` <Tag variant="new">3</Tag> | Optional config overrides, either as nested dict or dict keyed by section value in dot notation, e.g. `"components.name.value"`. ~~Union[Dict[str, Any], Config]~~ |
| **RETURNS** | A `Language` object with the loaded model. ~~Language~~ |
Essentially, `spacy.load()` is a convenience wrapper that reads the model's
[`config.cfg`](/api/data-formats#config), uses the language and pipeline
@ -562,17 +571,18 @@ and create a `Language` object. The model data will then be loaded in via
>
> ```python
> nlp = util.load_model("en_core_web_sm")
> nlp = util.load_model("en_core_web_sm", disable=["ner"])
> nlp = util.load_model("en_core_web_sm", exclude=["ner"])
> nlp = util.load_model("/path/to/data")
> ```
| Name | Description |
| ----------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------- |
| `name` | Package name or model path. ~~str~~ |
| `vocab` <Tag variant="new">3</Tag> | Optional shared vocab to pass in on initialization. If `True` (default), a new `Vocab` object will be created. ~~Union[Vocab, bool]~~. |
| `disable` | Names of pipeline components to disable. ~~Iterable[str]~~ |
| `config` <Tag variant="new">3</Tag> | Config overrides as nested dict or flat dict keyed by section values in dot notation, e.g. `"nlp.pipeline"`. ~~Union[Dict[str, Any], Config]~~ |
| **RETURNS** | `Language` class with the loaded model. ~~Language~~ |
| Name | Description |
| ------------------------------------ | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `name` | Package name or model path. ~~str~~ |
| `vocab` <Tag variant="new">3</Tag> | Optional shared vocab to pass in on initialization. If `True` (default), a new `Vocab` object will be created. ~~Union[Vocab, bool]~~. |
| `disable` | Names of pipeline components to [disable](/usage/processing-pipelines#disabling). Disabled pipes will be loaded but they won't be run unless you explicitly enable them by calling [nlp.enable_pipe](/api/language#enable_pipe). ~~List[str]~~ |
| `exclude` <Tag variant="new">3</Tag> | Names of pipeline components to [exclude](/usage/processing-pipelines#disabling). Excluded components won't be loaded. ~~List[str]~~ |
| `config` <Tag variant="new">3</Tag> | Config overrides as nested dict or flat dict keyed by section values in dot notation, e.g. `"nlp.pipeline"`. ~~Union[Dict[str, Any], Config]~~ |
| **RETURNS** | `Language` class with the loaded model. ~~Language~~ |
### util.load_model_from_init_py {#util.load_model_from_init_py tag="function" new="2"}
@ -588,13 +598,14 @@ A helper function to use in the `load()` method of a model package's
> return load_model_from_init_py(__file__, **overrides)
> ```
| Name | Description |
| ----------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------- |
| `init_file` | Path to model's `__init__.py`, i.e. `__file__`. ~~Union[str, Path]~~ |
| `vocab` <Tag variant="new">3</Tag> | Optional shared vocab to pass in on initialization. If `True` (default), a new `Vocab` object will be created. ~~Union[Vocab, bool]~~. |
| `disable` | Names of pipeline components to disable. ~~Iterable[str]~~ |
| `config` <Tag variant="new">3</Tag> | Config overrides as nested dict or flat dict keyed by section values in dot notation, e.g. `"nlp.pipeline"`. ~~Union[Dict[str, Any], Config]~~ |
| **RETURNS** | `Language` class with the loaded model. ~~Language~~ |
| Name | Description |
| ------------------------------------ | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `init_file` | Path to model's `__init__.py`, i.e. `__file__`. ~~Union[str, Path]~~ |
| `vocab` <Tag variant="new">3</Tag> | Optional shared vocab to pass in on initialization. If `True` (default), a new `Vocab` object will be created. ~~Union[Vocab, bool]~~. |
| `disable` | Names of pipeline components to [disable](/usage/processing-pipelines#disabling). Disabled pipes will be loaded but they won't be run unless you explicitly enable them by calling [nlp.enable_pipe](/api/language#enable_pipe). ~~List[str]~~ |
| `exclude` <Tag variant="new">3</Tag> | Names of pipeline components to [exclude](/usage/processing-pipelines#disabling). Excluded components won't be loaded. ~~List[str]~~ |
| `config` <Tag variant="new">3</Tag> | Config overrides as nested dict or flat dict keyed by section values in dot notation, e.g. `"nlp.pipeline"`. ~~Union[Dict[str, Any], Config]~~ |
| **RETURNS** | `Language` class with the loaded model. ~~Language~~ |
### util.load_config {#util.load_config tag="function" new="3"}

View File

@ -22,15 +22,15 @@ values are defined in the [`Language.Defaults`](/api/language#defaults).
> nlp_de = German() # Includes German data
> ```
| Name | Description |
| ---------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------- |
| **Stop words**<br />[`stop_words.py`][stop_words.py] | List of most common words of a language that are often useful to filter out, for example "and" or "I". Matching tokens will return `True` for `is_stop`. |
| **Tokenizer exceptions**<br />[`tokenizer_exceptions.py`][tokenizer_exceptions.py] | Special-case rules for the tokenizer, for example, contractions like "can't" and abbreviations with punctuation, like "U.K.". |
| **Punctuation rules**<br />[`punctuation.py`][punctuation.py] | Regular expressions for splitting tokens, e.g. on punctuation or special characters like emoji. Includes rules for prefixes, suffixes and infixes. |
| **Character classes**<br />[`char_classes.py`][char_classes.py] | Character classes to be used in regular expressions, for example, latin characters, quotes, hyphens or icons. |
| **Lexical attributes**<br />[`lex_attrs.py`][lex_attrs.py] | Custom functions for setting lexical attributes on tokens, e.g. `like_num`, which includes language-specific words like "ten" or "hundred". |
| **Syntax iterators**<br />[`syntax_iterators.py`][syntax_iterators.py] | Functions that compute views of a `Doc` object based on its syntax. At the moment, only used for [noun chunks](/usage/linguistic-features#noun-chunks). |
| **Lemmatizer**<br />[`spacy-lookups-data`][spacy-lookups-data] | Lemmatization rules or a lookup-based lemmatization table to assign base forms, for example "be" for "was". |
| Name | Description |
| ----------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------- |
| **Stop words**<br />[`stop_words.py`][stop_words.py] | List of most common words of a language that are often useful to filter out, for example "and" or "I". Matching tokens will return `True` for `is_stop`. |
| **Tokenizer exceptions**<br />[`tokenizer_exceptions.py`][tokenizer_exceptions.py] | Special-case rules for the tokenizer, for example, contractions like "can't" and abbreviations with punctuation, like "U.K.". |
| **Punctuation rules**<br />[`punctuation.py`][punctuation.py] | Regular expressions for splitting tokens, e.g. on punctuation or special characters like emoji. Includes rules for prefixes, suffixes and infixes. |
| **Character classes**<br />[`char_classes.py`][char_classes.py] | Character classes to be used in regular expressions, for example, Latin characters, quotes, hyphens or icons. |
| **Lexical attributes**<br />[`lex_attrs.py`][lex_attrs.py] | Custom functions for setting lexical attributes on tokens, e.g. `like_num`, which includes language-specific words like "ten" or "hundred". |
| **Syntax iterators**<br />[`syntax_iterators.py`][syntax_iterators.py] | Functions that compute views of a `Doc` object based on its syntax. At the moment, only used for [noun chunks](/usage/linguistic-features#noun-chunks). |
| **Lemmatizer**<br />[`lemmatizer.py`][lemmatizer.py] [`spacy-lookups-data`][spacy-lookups-data] | Custom lemmatizer implementation and lemmatization tables. |
[stop_words.py]:
https://github.com/explosion/spaCy/tree/master/spacy/lang/en/stop_words.py
@ -44,4 +44,6 @@ values are defined in the [`Language.Defaults`](/api/language#defaults).
https://github.com/explosion/spaCy/tree/master/spacy/lang/en/lex_attrs.py
[syntax_iterators.py]:
https://github.com/explosion/spaCy/tree/master/spacy/lang/en/syntax_iterators.py
[lemmatizer.py]:
https://github.com/explosion/spaCy/tree/master/spacy/lang/fr/lemmatizer.py
[spacy-lookups-data]: https://github.com/explosion/spacy-lookups-data

View File

@ -1,9 +1,9 @@
When you call `nlp` on a text, spaCy first tokenizes the text to produce a `Doc`
object. The `Doc` is then processed in several different steps this is also
referred to as the **processing pipeline**. The pipeline used by the
[default models](/models) consists of a tagger, a parser and an entity
recognizer. Each pipeline component returns the processed `Doc`, which is then
passed on to the next component.
[default models](/models) typically include a tagger, a lemmatizer, a parser and
an entity recognizer. Each pipeline component returns the processed `Doc`, which
is then passed on to the next component.
![The processing pipeline](../../images/pipeline.svg)
@ -12,15 +12,16 @@ passed on to the next component.
> - **Creates:** Objects, attributes and properties modified and set by the
> component.
| Name | Component | Creates | Description |
| -------------- | ------------------------------------------------------------------ | --------------------------------------------------------- | ------------------------------------------------ |
| **tokenizer** | [`Tokenizer`](/api/tokenizer) | `Doc` | Segment text into tokens. |
| **tagger** | [`Tagger`](/api/tagger) | `Token.tag` | Assign part-of-speech tags. |
| **parser** | [`DependencyParser`](/api/dependencyparser) | `Token.head`, `Token.dep`, `Doc.sents`, `Doc.noun_chunks` | Assign dependency labels. |
| **ner** | [`EntityRecognizer`](/api/entityrecognizer) | `Doc.ents`, `Token.ent_iob`, `Token.ent_type` | Detect and label named entities. |
| **lemmatizer** | [`Lemmatizer`](/api/lemmatizer) | `Token.lemma` | Assign base forms. |
| **textcat** | [`TextCategorizer`](/api/textcategorizer) | `Doc.cats` | Assign document labels. |
| **custom** | [custom components](/usage/processing-pipelines#custom-components) | `Doc._.xxx`, `Token._.xxx`, `Span._.xxx` | Assign custom attributes, methods or properties. |
| Name | Component | Creates | Description |
| --------------------- | ------------------------------------------------------------------ | --------------------------------------------------------- | ------------------------------------------------ |
| **tokenizer** | [`Tokenizer`](/api/tokenizer) | `Doc` | Segment text into tokens. |
| _processing pipeline_ | | |
| **tagger** | [`Tagger`](/api/tagger) | `Token.tag` | Assign part-of-speech tags. |
| **parser** | [`DependencyParser`](/api/dependencyparser) | `Token.head`, `Token.dep`, `Doc.sents`, `Doc.noun_chunks` | Assign dependency labels. |
| **ner** | [`EntityRecognizer`](/api/entityrecognizer) | `Doc.ents`, `Token.ent_iob`, `Token.ent_type` | Detect and label named entities. |
| **lemmatizer** | [`Lemmatizer`](/api/lemmatizer) | `Token.lemma` | Assign base forms. |
| **textcat** | [`TextCategorizer`](/api/textcategorizer) | `Doc.cats` | Assign document labels. |
| **custom** | [custom components](/usage/processing-pipelines#custom-components) | `Doc._.xxx`, `Token._.xxx`, `Span._.xxx` | Assign custom attributes, methods or properties. |
The processing pipeline always **depends on the statistical model** and its
capabilities. For example, a pipeline can only include an entity recognizer

View File

@ -179,7 +179,7 @@ interoperates with [PyTorch](https://pytorch.org) and the
giving you access to thousands of pretrained models for your pipelines. There
are many [great guides](http://jalammar.github.io/illustrated-transformer/) to
transformer models, but for practical purposes, you can simply think of them as
a drop-in replacement that let you achieve **higher accuracy** in exchange for
drop-in replacements that let you achieve **higher accuracy** in exchange for
**higher training and runtime costs**.
### Setup and installation {#transformers-installation}
@ -225,10 +225,12 @@ transformers as subnetworks directly, you can also use them via the
![The processing pipeline with the transformer component](../images/pipeline_transformer.svg)
The `Transformer` component sets the
By default, the `Transformer` component sets the
[`Doc._.trf_data`](/api/transformer#custom_attributes) extension attribute,
which lets you access the transformers outputs at runtime.
<!-- TODO: update/confirm once we have final models trained -->
```cli
$ python -m spacy download en_core_trf_lg
```
@ -249,8 +251,8 @@ for doc in nlp.pipe(["some text", "some other text"]):
tokvecs = doc._.trf_data.tensors[-1]
```
You can also customize how the [`Transformer`](/api/transformer) component sets
annotations onto the [`Doc`](/api/doc), by customizing the `annotation_setter`.
You can customize how the [`Transformer`](/api/transformer) component sets
annotations onto the [`Doc`](/api/doc), by changing the `annotation_setter`.
This callback will be called with the raw input and output data for the whole
batch, along with the batch of `Doc` objects, allowing you to implement whatever
you need. The annotation setter is called with a batch of [`Doc`](/api/doc)
@ -259,13 +261,15 @@ containing the transformers data for the batch.
```python
def custom_annotation_setter(docs, trf_data):
# TODO:
...
doc_data = list(trf_data.doc_data)
for doc, data in zip(docs, doc_data):
doc._.custom_attr = data
nlp = spacy.load("en_core_trf_lg")
nlp.get_pipe("transformer").annotation_setter = custom_annotation_setter
doc = nlp("This is a text")
print() # TODO:
assert isinstance(doc._.custom_attr, TransformerData)
print(doc._.custom_attr.tensors)
```
### Training usage {#transformers-training}
@ -299,7 +303,7 @@ component:
>
> ```python
> from spacy_transformers import Transformer, TransformerModel
> from spacy_transformers.annotation_setters import null_annotation_setter
> from spacy_transformers.annotation_setters import configure_trfdata_setter
> from spacy_transformers.span_getters import get_doc_spans
>
> trf = Transformer(
@ -309,7 +313,7 @@ component:
> get_spans=get_doc_spans,
> tokenizer_config={"use_fast": True},
> ),
> annotation_setter=null_annotation_setter,
> annotation_setter=configure_trfdata_setter(),
> max_batch_items=4096,
> )
> ```
@ -329,7 +333,7 @@ tokenizer_config = {"use_fast": true}
@span_getters = "doc_spans.v1"
[components.transformer.annotation_setter]
@annotation_setters = "spacy-transformers.null_annotation_setter.v1"
@annotation_setters = "spacy-transformers.trfdata_setter.v1"
```
@ -343,9 +347,9 @@ in a block starts with `@`, it's **resolved to a function** and all other
settings are passed to the function as arguments. In this case, `name`,
`tokenizer_config` and `get_spans`.
`get_spans` is a function that takes a batch of `Doc` object and returns lists
`get_spans` is a function that takes a batch of `Doc` objects and returns lists
of potentially overlapping `Span` objects to process by the transformer. Several
[built-in functions](/api/transformer#span-getters) are available for example,
[built-in functions](/api/transformer#span_getters) are available for example,
to process the whole document or individual sentences. When the config is
resolved, the function is created and passed into the model as an argument.
@ -366,13 +370,17 @@ To change any of the settings, you can edit the `config.cfg` and re-run the
training. To change any of the functions, like the span getter, you can replace
the name of the referenced function e.g. `@span_getters = "sent_spans.v1"` to
process sentences. You can also register your own functions using the
`span_getters` registry:
[`span_getters` registry](/api/top-level#registry). For instance, the following
custom function returns [`Span`](/api/span) objects following sentence
boundaries, unless a sentence succeeds a certain amount of tokens, in which case
subsentences of at most `max_length` tokens are returned.
> #### config.cfg
>
> ```ini
> [components.transformer.model.get_spans]
> @span_getters = "custom_sent_spans"
> max_length = 25
> ```
```python
@ -380,18 +388,29 @@ process sentences. You can also register your own functions using the
import spacy_transformers
@spacy_transformers.registry.span_getters("custom_sent_spans")
def configure_custom_sent_spans():
# TODO: write custom example
def get_sent_spans(docs):
return [list(doc.sents) for doc in docs]
def configure_custom_sent_spans(max_length: int):
def get_custom_sent_spans(docs):
spans = []
for doc in docs:
spans.append([])
for sent in doc.sents:
start = 0
end = max_length
while end <= len(sent):
spans[-1].append(sent[start:end])
start += max_length
end += max_length
if start < len(sent):
spans[-1].append(sent[start:len(sent)])
return spans
return get_sent_spans
return get_custom_sent_spans
```
To resolve the config during training, spaCy needs to know about your custom
function. You can make it available via the `--code` argument that can point to
a Python file. For more details on training with custom code, see the
[training documentation](/usage/training#custom-code).
[training documentation](/usage/training#custom-functions).
```cli
python -m spacy train ./config.cfg --code ./code.py
@ -412,8 +431,8 @@ The same idea applies to task models that power the **downstream components**.
Most of spaCy's built-in model creation functions support a `tok2vec` argument,
which should be a Thinc layer of type ~~Model[List[Doc], List[Floats2d]]~~. This
is where we'll plug in our transformer model, using the
[Tok2VecListener](/api/architectures#Tok2VecListener) layer, which sneakily
delegates to the `Transformer` pipeline component.
[TransformerListener](/api/architectures#TransformerListener) layer, which
sneakily delegates to the `Transformer` pipeline component.
```ini
### config.cfg (excerpt) {highlight="12"}
@ -428,18 +447,18 @@ maxout_pieces = 3
use_upper = false
[nlp.pipeline.ner.model.tok2vec]
@architectures = "spacy-transformers.Tok2VecListener.v1"
@architectures = "spacy-transformers.TransformerListener.v1"
grad_factor = 1.0
[nlp.pipeline.ner.model.tok2vec.pooling]
@layers = "reduce_mean.v1"
```
The [Tok2VecListener](/api/architectures#Tok2VecListener) layer expects a
[pooling layer](https://thinc.ai/docs/api-layers#reduction-ops) as the argument
`pooling`, which needs to be of type ~~Model[Ragged, Floats2d]~~. This layer
determines how the vector for each spaCy token will be computed from the zero or
more source rows the token is aligned against. Here we use the
The [TransformerListener](/api/architectures#TransformerListener) layer expects
a [pooling layer](https://thinc.ai/docs/api-layers#reduction-ops) as the
argument `pooling`, which needs to be of type ~~Model[Ragged, Floats2d]~~. This
layer determines how the vector for each spaCy token will be computed from the
zero or more source rows the token is aligned against. Here we use the
[`reduce_mean`](https://thinc.ai/docs/api-layers#reduce_mean) layer, which
averages the wordpiece rows. We could instead use
[`reduce_max`](https://thinc.ai/docs/api-layers#reduce_max), or a custom
@ -535,8 +554,9 @@ vectors, but combines them via summation with a smaller table of learned
embeddings.
```python
from thinc.api import add, chain, remap_ids, Embed
from thinc.api import add, chain, remap_ids, Embed, FeatureExtractor
from spacy.ml.staticvectors import StaticVectors
from spacy.util import registry
@registry.architectures("my_example.MyEmbedding.v1")
def MyCustomVectors(

View File

@ -52,9 +52,9 @@ $ pip install -U spacy
To install additional data tables for lemmatization you can run
`pip install spacy[lookups]` or install
[`spacy-lookups-data`](https://github.com/explosion/spacy-lookups-data)
separately. The lookups package is needed to create blank models with
lemmatization data, and to lemmatize in languages that don't yet come with
pretrained models and aren't powered by third-party libraries.
separately. The lookups package is needed to provide normalization and
lemmatization data for new models and to lemmatize in languages that don't yet
come with pretrained models and aren't powered by third-party libraries.
</Infobox>

View File

@ -3,6 +3,8 @@ title: Linguistic Features
next: /usage/rule-based-matching
menu:
- ['POS Tagging', 'pos-tagging']
- ['Morphology', 'morphology']
- ['Lemmatization', 'lemmatization']
- ['Dependency Parse', 'dependency-parse']
- ['Named Entities', 'named-entities']
- ['Entity Linking', 'entity-linking']
@ -10,7 +12,8 @@ menu:
- ['Merging & Splitting', 'retokenization']
- ['Sentence Segmentation', 'sbd']
- ['Vectors & Similarity', 'vectors-similarity']
- ['Language data', 'language-data']
- ['Mappings & Exceptions', 'mappings-exceptions']
- ['Language Data', 'language-data']
---
Processing raw text intelligently is difficult: most words are rare, and it's
@ -37,7 +40,7 @@ in the [models directory](/models).
</Infobox>
### Rule-based morphology {#rule-based-morphology}
## Morphology {#morphology}
Inflectional morphology is the process by which a root form of a word is
modified by adding prefixes or suffixes that specify its grammatical function
@ -45,33 +48,157 @@ but do not changes its part-of-speech. We say that a **lemma** (root form) is
**inflected** (modified/combined) with one or more **morphological features** to
create a surface form. Here are some examples:
| Context | Surface | Lemma | POS |  Morphological Features |
| ---------------------------------------- | ------- | ----- | ---- | ---------------------------------------- |
| I was reading the paper | reading | read | verb | `VerbForm=Ger` |
| I don't watch the news, I read the paper | read | read | verb | `VerbForm=Fin`, `Mood=Ind`, `Tense=Pres` |
| I read the paper yesterday | read | read | verb | `VerbForm=Fin`, `Mood=Ind`, `Tense=Past` |
| Context | Surface | Lemma | POS |  Morphological Features |
| ---------------------------------------- | ------- | ----- | ------ | ---------------------------------------- |
| I was reading the paper | reading | read | `VERB` | `VerbForm=Ger` |
| I don't watch the news, I read the paper | read | read | `VERB` | `VerbForm=Fin`, `Mood=Ind`, `Tense=Pres` |
| I read the paper yesterday | read | read | `VERB` | `VerbForm=Fin`, `Mood=Ind`, `Tense=Past` |
English has a relatively simple morphological system, which spaCy handles using
rules that can be keyed by the token, the part-of-speech tag, or the combination
of the two. The system works as follows:
Morphological features are stored in the [`MorphAnalysis`](/api/morphanalysis)
under `Token.morph`, which allows you to access individual morphological
features. The attribute `Token.morph_` provides the morphological analysis in
the Universal Dependencies
[FEATS](https://universaldependencies.org/format.html#morphological-annotation)
format.
1. The tokenizer consults a
[mapping table](/usage/adding-languages#tokenizer-exceptions)
`TOKENIZER_EXCEPTIONS`, which allows sequences of characters to be mapped to
multiple tokens. Each token may be assigned a part of speech and one or more
morphological features.
2. The part-of-speech tagger then assigns each token an **extended POS tag**. In
the API, these tags are known as `Token.tag`. They express the part-of-speech
(e.g. `VERB`) and some amount of morphological information, e.g. that the
verb is past tense.
3. For words whose POS is not set by a prior process, a
[mapping table](/usage/adding-languages#tag-map) `TAG_MAP` maps the tags to a
part-of-speech and a set of morphological features.
4. Finally, a **rule-based deterministic lemmatizer** maps the surface form, to
a lemma in light of the previously assigned extended part-of-speech and
morphological information, without consulting the context of the token. The
lemmatizer also accepts list-based exception files, acquired from
[WordNet](https://wordnet.princeton.edu/).
> #### 📝 Things to try
>
> 1. Change "I" to "She". You should see that the morphological features change
> and express that it's a pronoun in the third person.
> 2. Inspect `token.morph_` for the other tokens.
```python
### {executable="true"}
import spacy
nlp = spacy.load("en_core_web_sm")
print("Pipeline:", nlp.pipe_names)
doc = nlp("I was reading the paper.")
token = doc[0] # 'I'
print(token.morph_) # 'Case=Nom|Number=Sing|Person=1|PronType=Prs'
print(token.morph.get("PronType")) # ['Prs']
```
### Statistical morphology {#morphologizer new="3" model="morphologizer"}
spaCy's statistical [`Morphologizer`](/api/morphologizer) component assigns the
morphological features and coarse-grained part-of-speech tags as `Token.morph`
and `Token.pos`.
```python
### {executable="true"}
import spacy
nlp = spacy.load("de_core_news_sm")
doc = nlp("Wo bist du?") # English: 'Where are you?'
print(doc[2].morph_) # 'Case=Nom|Number=Sing|Person=2|PronType=Prs'
print(doc[2].pos_) # 'PRON'
```
### Rule-based morphology {#rule-based-morphology}
For languages with relatively simple morphological systems like English, spaCy
can assign morphological features through a rule-based approach, which uses the
**token text** and **fine-grained part-of-speech tags** to produce
coarse-grained part-of-speech tags and morphological features.
1. The part-of-speech tagger assigns each token a **fine-grained part-of-speech
tag**. In the API, these tags are known as `Token.tag`. They express the
part-of-speech (e.g. verb) and some amount of morphological information, e.g.
that the verb is past tense (e.g. `VBD` for a past tense verb in the Penn
Treebank) .
2. For words whose coarse-grained POS is not set by a prior process, a
[mapping table](#mapping-exceptions) maps the fine-grained tags to a
coarse-grained POS tags and morphological features.
```python
### {executable="true"}
import spacy
nlp = spacy.load("en_core_web_sm")
doc = nlp("Where are you?")
print(doc[2].morph_) # 'Case=Nom|Person=2|PronType=Prs'
print(doc[2].pos_) # 'PRON'
```
## Lemmatization {#lemmatization model="lemmatizer" new="3"}
The [`Lemmatizer`](/api/lemmatizer) is a pipeline component that provides lookup
and rule-based lemmatization methods in a configurable component. An individual
language can extend the `Lemmatizer` as part of its
[language data](#language-data).
```python
### {executable="true"}
import spacy
# English models include a rule-based lemmatizer
nlp = spacy.load("en_core_web_sm")
lemmatizer = nlp.get_pipe("lemmatizer")
print(lemmatizer.mode) # 'rule'
doc = nlp("I was reading the paper.")
print([token.lemma_ for token in doc])
# ['I', 'be', 'read', 'the', 'paper', '.']
```
<Infobox title="Changed in v3.0" variant="warning">
Unlike spaCy v2, spaCy v3 models do _not_ provide lemmas by default or switch
automatically between lookup and rule-based lemmas depending on whether a tagger
is in the pipeline. To have lemmas in a `Doc`, the pipeline needs to include a
[`Lemmatizer`](/api/lemmatizer) component. The lemmatizer component is
configured to use a single mode such as `"lookup"` or `"rule"` on
initialization. The `"rule"` mode requires `Token.pos` to be set by a previous
component.
</Infobox>
The data for spaCy's lemmatizers is distributed in the package
[`spacy-lookups-data`](https://github.com/explosion/spacy-lookups-data). The
provided models already include all the required tables, but if you are creating
new models, you'll probably want to install `spacy-lookups-data` to provide the
data when the lemmatizer is initialized.
### Lookup lemmatizer {#lemmatizer-lookup}
For models without a tagger or morphologizer, a lookup lemmatizer can be added
to the pipeline as long as a lookup table is provided, typically through
[`spacy-lookups-data`](https://github.com/explosion/spacy-lookups-data). The
lookup lemmatizer looks up the token surface form in the lookup table without
reference to the token's part-of-speech or context.
```python
# pip install spacy-lookups-data
import spacy
nlp = spacy.blank("sv")
nlp.add_pipe("lemmatizer", config={"mode": "lookup"})
```
### Rule-based lemmatizer {#lemmatizer-rule}
When training models that include a component that assigns POS (a morphologizer
or a tagger with a [POS mapping](#mappings-exceptions)), a rule-based lemmatizer
can be added using rule tables from
[`spacy-lookups-data`](https://github.com/explosion/spacy-lookups-data):
```python
# pip install spacy-lookups-data
import spacy
nlp = spacy.blank("de")
# Morphologizer (note: model is not yet trained!)
nlp.add_pipe("morphologizer")
# Rule-based lemmatizer
nlp.add_pipe("lemmatizer", config={"mode": "rule"})
```
The rule-based deterministic lemmatizer maps the surface form to a lemma in
light of the previously assigned coarse-grained part-of-speech and morphological
information, without consulting the context of the token. The rule-based
lemmatizer also accepts list-based exception files. For English, these are
acquired from [WordNet](https://wordnet.princeton.edu/).
## Dependency Parsing {#dependency-parse model="parser"}
@ -420,7 +547,7 @@ on a token, it will return an empty string.
>
> #### BILUO Scheme
>
> - `B` Token is the **beginning** of an entity.
> - `B` Token is the **beginning** of a multi-token entity.
> - `I` Token is **inside** a multi-token entity.
> - `L` Token is the **last** token of a multi-token entity.
> - `U` Token is a single-token **unit** entity.
@ -750,14 +877,6 @@ subclass.
---
<!--
### Customizing the tokenizer {#tokenizer-custom}
TODO: rewrite the docs on custom tokenization in a more user-friendly order, including details on how to integrate a fully custom tokenizer, representing a tokenizer in the config etc.
-->
### Adding special case tokenization rules {#special-cases}
Most domains have at least some idiosyncrasies that require custom tokenization
@ -1472,28 +1591,46 @@ print("After:", [(token.text, token._.is_musician) for token in doc])
## Sentence Segmentation {#sbd}
<!-- TODO: include senter -->
A [`Doc`](/api/doc) object's sentences are available via the `Doc.sents`
property. Unlike other libraries, spaCy uses the dependency parse to determine
sentence boundaries. This is usually more accurate than a rule-based approach,
but it also means you'll need a **statistical model** and accurate predictions.
If your texts are closer to general-purpose news or web text, this should work
well out-of-the-box. For social media or conversational text that doesn't follow
the same rules, your application may benefit from a custom rule-based
implementation. You can either use the built-in
[`Sentencizer`](/api/sentencizer) or plug an entirely custom rule-based function
into your [processing pipeline](/usage/processing-pipelines).
property. To view a `Doc`'s sentences, you can iterate over the `Doc.sents`, a
generator that yields [`Span`](/api/span) objects. You can check whether a `Doc`
has sentence boundaries with the `doc.is_sentenced` attribute.
spaCy's dependency parser respects already set boundaries, so you can preprocess
your `Doc` using custom rules _before_ it's parsed. Depending on your text, this
may also improve accuracy, since the parser is constrained to predict parses
consistent with the sentence boundaries.
```python
### {executable="true"}
import spacy
nlp = spacy.load("en_core_web_sm")
doc = nlp("This is a sentence. This is another sentence.")
assert doc.is_sentenced
for sent in doc.sents:
print(sent.text)
```
spaCy provides four alternatives for sentence segmentation:
1. [Dependency parser](#sbd-parser): the statistical
[`DependencyParser`](/api/dependencyparser) provides the most accurate
sentence boundaries based on full dependency parses.
2. [Statistical sentence segmenter](#sbd-senter): the statistical
[`SentenceRecognizer`](/api/sentencerecognizer) is a simpler and faster
alternative to the parser that only sets sentence boundaries.
3. [Rule-based pipeline component](#sbd-component): the rule-based
[`Sentencizer`](/api/sentencizer) sets sentence boundaries using a
customizable list of sentence-final punctuation.
4. [Custom function](#sbd-custom): your own custom function added to the
processing pipeline can set sentence boundaries by writing to
`Token.is_sent_start`.
### Default: Using the dependency parse {#sbd-parser model="parser"}
To view a `Doc`'s sentences, you can iterate over the `Doc.sents`, a generator
that yields [`Span`](/api/span) objects.
Unlike other libraries, spaCy uses the dependency parse to determine sentence
boundaries. This is usually the most accurate approach, but it requires a
**statistical model** that provides accurate predictions. If your texts are
closer to general-purpose news or web text, this should work well out-of-the-box
with spaCy's provided models. For social media or conversational text that
doesn't follow the same rules, your application may benefit from a custom model
or rule-based component.
```python
### {executable="true"}
@ -1505,12 +1642,43 @@ for sent in doc.sents:
print(sent.text)
```
spaCy's dependency parser respects already set boundaries, so you can preprocess
your `Doc` using custom components _before_ it's parsed. Depending on your text,
this may also improve parse accuracy, since the parser is constrained to predict
parses consistent with the sentence boundaries.
### Statistical sentence segmenter {#sbd-senter model="senter" new="3"}
The [`SentenceRecognizer`](/api/sentencerecognizer) is a simple statistical
component that only provides sentence boundaries. Along with being faster and
smaller than the parser, its primary advantage is that it's easier to train
custom models because it only requires annotated sentence boundaries rather than
full dependency parses.
<!-- TODO: update/confirm usage once we have final models trained -->
> #### senter vs. parser
>
> The recall for the `senter` is typically slightly lower than for the parser,
> which is better at predicting sentence boundaries when punctuation is not
> present.
```python
### {executable="true"}
import spacy
nlp = spacy.load("en_core_web_sm", enable=["senter"], disable=["parser"])
doc = nlp("This is a sentence. This is another sentence.")
for sent in doc.sents:
print(sent.text)
```
### Rule-based pipeline component {#sbd-component}
The [`Sentencizer`](/api/sentencizer) component is a
[pipeline component](/usage/processing-pipelines) that splits sentences on
punctuation like `.`, `!` or `?`. You can plug it into your pipeline if you only
need sentence boundaries without the dependency parse.
need sentence boundaries without dependency parses.
```python
### {executable="true"}
@ -1537,7 +1705,7 @@ and can still be overwritten by the parser.
<Infobox title="Important note" variant="warning">
To prevent inconsistent state, you can only set boundaries **before** a document
is parsed (and `Doc.is_parsed` is `False`). To ensure that your component is
is parsed (and `doc.is_parsed` is `False`). To ensure that your component is
added in the right place, you can set `before='parser'` or `first=True` when
adding it to the pipeline using [`nlp.add_pipe`](/api/language#add_pipe).
@ -1574,6 +1742,77 @@ doc = nlp(text)
print("After:", [sent.text for sent in doc.sents])
```
## Mappings & Exceptions {#mappings-exceptions new="3"}
The [`AttributeRuler`](/api/attributeruler) manages **rule-based mappings and
exceptions** for all token-level attributes. As the number of
[pipeline components](/api/#architecture-pipeline) has grown from spaCy v2 to
v3, handling rules and exceptions in each component individually has become
impractical, so the `AttributeRuler` provides a single component with a unified
pattern format for all token attribute mappings and exceptions.
The `AttributeRuler` uses
[`Matcher` patterns](/usage/rule-based-matching#adding-patterns) to identify
tokens and then assigns them the provided attributes. If needed, the
[`Matcher`](/api/matcher) patterns can include context around the target token.
For example, the attribute ruler can:
- provide exceptions for any **token attributes**
- map **fine-grained tags** to **coarse-grained tags** for languages without
statistical morphologizers (replacing the v2.x `tag_map` in the
[language data](#language-data))
- map token **surface form + fine-grained tags** to **morphological features**
(replacing the v2.x `morph_rules` in the [language data](#language-data))
- specify the **tags for space tokens** (replacing hard-coded behavior in the
tagger)
The following example shows how the tag and POS `NNP`/`PROPN` can be specified
for the phrase `"The Who"`, overriding the tags provided by the statistical
tagger and the POS tag map.
```python
### {executable="true"}
import spacy
nlp = spacy.load("en_core_web_sm")
text = "I saw The Who perform. Who did you see?"
doc1 = nlp(text)
print(doc1[2].tag_, doc1[2].pos_) # DT DET
print(doc1[3].tag_, doc1[3].pos_) # WP PRON
# Add attribute ruler with exception for "The Who" as NNP/PROPN NNP/PROPN
ruler = nlp.get_pipe("attribute_ruler")
# Pattern to match "The Who"
patterns = [[{"LOWER": "the"}, {"TEXT": "Who"}]]
# The attributes to assign to the matched token
attrs = {"TAG": "NNP", "POS": "PROPN"}
# Add rules to the attribute ruler
ruler.add(patterns=patterns, attrs=attrs, index=0) # "The" in "The Who"
ruler.add(patterns=patterns, attrs=attrs, index=1) # "Who" in "The Who"
doc2 = nlp(text)
print(doc2[2].tag_, doc2[2].pos_) # NNP PROPN
print(doc2[3].tag_, doc2[3].pos_) # NNP PROPN
# The second "Who" remains unmodified
print(doc2[5].tag_, doc2[5].pos_) # WP PRON
```
<Infobox variant="warning" title="Migrating from spaCy v2.x">
For easy migration from from spaCy v2 to v3, the
[`AttributeRuler`](/api/attributeruler) can import a **tag map and morph rules**
in the v2 format with the methods
[`load_from_tag_map`](/api/attributeruler#load_from_tag_map) and
[`load_from_morph_rules`](/api/attributeruler#load_from_morph_rules).
```diff
nlp = spacy.blank("en")
+ ruler = nlp.add_pipe("attribute_ruler")
+ ruler.load_from_tag_map(YOUR_TAG_MAP)
```
</Infobox>
## Word vectors and semantic similarity {#vectors-similarity}
import Vectors101 from 'usage/101/\_vectors-similarity.md'
@ -1703,7 +1942,7 @@ for word, vector in vector_data.items():
vocab.set_vector(word, vector)
```
## Language data {#language-data}
## Language Data {#language-data}
import LanguageData101 from 'usage/101/\_language-data.md'

View File

@ -220,53 +220,70 @@ available pipeline components and component functions.
> ruler = nlp.add_pipe("entity_ruler")
> ```
| String name | Component | Description |
| --------------- | ----------------------------------------------- | ----------------------------------------------------------------------------------------- |
| `tagger` | [`Tagger`](/api/tagger) | Assign part-of-speech-tags. |
| `parser` | [`DependencyParser`](/api/dependencyparser) | Assign dependency labels. |
| `ner` | [`EntityRecognizer`](/api/entityrecognizer) | Assign named entities. |
| `entity_linker` | [`EntityLinker`](/api/entitylinker) | Assign knowledge base IDs to named entities. Should be added after the entity recognizer. |
| `entity_ruler` | [`EntityRuler`](/api/entityruler) | Assign named entities based on pattern rules and dictionaries. |
| `textcat` | [`TextCategorizer`](/api/textcategorizer) | Assign text categories. |
| `lemmatizer` | [`Lemmatizer`](/api/lemmatizer) | Assign base forms to words. |
| `morphologizer` | [`Morphologizer`](/api/morphologizer) | Assign morphological features and coarse-grained POS tags. |
| `senter` | [`SentenceRecognizer`](/api/sentencerecognizer) | Assign sentence boundaries. |
| `sentencizer` | [`Sentencizer`](/api/sentencizer) | Add rule-based sentence segmentation without the dependency parse. |
| `tok2vec` | [`Tok2Vec`](/api/tok2vec) | Assign token-to-vector embeddings. |
| `transformer` | [`Transformer`](/api/transformer) | Assign the tokens and outputs of a transformer model. |
| String name | Component | Description |
| ----------------- | ----------------------------------------------- | ----------------------------------------------------------------------------------------- |
| `tagger` | [`Tagger`](/api/tagger) | Assign part-of-speech-tags. |
| `parser` | [`DependencyParser`](/api/dependencyparser) | Assign dependency labels. |
| `ner` | [`EntityRecognizer`](/api/entityrecognizer) | Assign named entities. |
| `entity_linker` | [`EntityLinker`](/api/entitylinker) | Assign knowledge base IDs to named entities. Should be added after the entity recognizer. |
| `entity_ruler` | [`EntityRuler`](/api/entityruler) | Assign named entities based on pattern rules and dictionaries. |
| `textcat` | [`TextCategorizer`](/api/textcategorizer) | Assign text categories. |
| `lemmatizer` | [`Lemmatizer`](/api/lemmatizer) | Assign base forms to words. |
| `morphologizer` | [`Morphologizer`](/api/morphologizer) | Assign morphological features and coarse-grained POS tags. |
| `attribute_ruler` | [`AttributeRuler`](/api/attributeruler) | Assign token attribute mappings and rule-based exceptions. |
| `senter` | [`SentenceRecognizer`](/api/sentencerecognizer) | Assign sentence boundaries. |
| `sentencizer` | [`Sentencizer`](/api/sentencizer) | Add rule-based sentence segmentation without the dependency parse. |
| `tok2vec` | [`Tok2Vec`](/api/tok2vec) | Assign token-to-vector embeddings. |
| `transformer` | [`Transformer`](/api/transformer) | Assign the tokens and outputs of a transformer model. |
### Disabling and modifying pipeline components {#disabling}
### Disabling, excluding and modifying components {#disabling}
If you don't need a particular component of the pipeline for example, the
tagger or the parser, you can **disable loading** it. This can sometimes make a
big difference and improve loading speed. Disabled component names can be
provided to [`spacy.load`](/api/top-level#spacy.load),
[`Language.from_disk`](/api/language#from_disk) or the `nlp` object itself as a
list:
tagger or the parser, you can **disable or exclude** it. This can sometimes make
a big difference and improve loading and inference speed. There are two
different mechanisms you can use:
1. **Disable:** The component and its data will be loaded with the model, but it
will be disabled by default and not run as part of the processing pipeline.
To run it, you can explicitly enable it by calling
[`nlp.enable_pipe`](/api/language#enable_pipe). When you save out the `nlp`
object, the disabled component will be included but disabled by default.
2. **Exclude:** Don't load the component and its data with the model. Once the
model is loaded, there will be no reference to the excluded component.
Disabled and excluded component names can be provided to
[`spacy.load`](/api/top-level#spacy.load) as a list.
<!-- TODO: update with info on our models shipped with optional components -->
> #### 💡 Models with optional components
>
> The `disable` mechanism makes it easy to distribute models with optional
> components that you can enable or disable at runtime. For instance, your model
> may include a statistical _and_ a rule-based component for sentence
> segmentation, and you can choose which one to run depending on your use case.
```python
### Disable loading
# Load the model without the entity recognizer
nlp = spacy.load("en_core_web_sm", exclude=["ner"])
# Load the tagger and parser but don't enable them
nlp = spacy.load("en_core_web_sm", disable=["tagger", "parser"])
# Explicitly enable the tagger later on
nlp.enable_pipe("tagger")
```
In some cases, you do want to load all pipeline components and their weights,
because you need them at different points in your application. However, if you
only need a `Doc` object with named entities, there's no need to run all
pipeline components on it that can potentially make processing much slower.
Instead, you can use the `disable` keyword argument on
[`nlp.pipe`](/api/language#pipe) to temporarily disable the components **during
processing**:
<Infobox variant="warning" title="Changed in v3.0">
```python
### Disable for processing
for doc in nlp.pipe(texts, disable=["tagger", "parser"]):
# Do something with the doc here
```
As of v3.0, the `disable` keyword argument specifies components to load but
disable, instead of components to not load at all. Those components can now be
specified separately using the new `exclude` keyword argument.
If you need to **execute more code** with components disabled e.g. to reset
the weights or update only some components during training you can use the
[`nlp.select_pipes`](/api/language#select_pipes) context manager. At the end of
the `with` block, the disabled pipeline components will be restored
</Infobox>
As a shortcut, you can use the [`nlp.select_pipes`](/api/language#select_pipes)
context manager to temporarily disable certain components for a given block. At
the end of the `with` block, the disabled pipeline components will be restored
automatically. Alternatively, `select_pipes` returns an object that lets you
call its `restore()` method to restore the disabled components when needed. This
can be useful if you want to prevent unnecessary code indentation of large
@ -295,6 +312,14 @@ with nlp.select_pipes(enable="parser"):
doc = nlp("I will only be parsed")
```
The [`nlp.pipe`](/api/language#pipe) method also supports a `disable` keyword
argument if you only want to disable components during processing:
```python
for doc in nlp.pipe(texts, disable=["tagger", "parser"]):
# Do something with the doc here
```
Finally, you can also use the [`remove_pipe`](/api/language#remove_pipe) method
to remove pipeline components from an existing pipeline, the
[`rename_pipe`](/api/language#rename_pipe) method to rename them, or the
@ -308,6 +333,31 @@ nlp.rename_pipe("ner", "entityrecognizer")
nlp.replace_pipe("tagger", my_custom_tagger)
```
The `Language` object exposes different [attributes](/api/language#attributes)
that let you inspect all available components and the components that currently
run as part of the pipeline.
> #### Example
>
> ```python
> nlp = spacy.blank("en")
> nlp.add_pipe("ner")
> nlp.add_pipe("textcat")
> assert nlp.pipe_names == ["ner", "textcat"]
> nlp.disable_pipe("ner")
> assert nlp.pipe_names == ["textcat"]
> assert nlp.component_names == ["ner", "textcat"]
> assert nlp.disabled == ["ner"]
> ```
| Name | Description |
| --------------------- | ---------------------------------------------------------------- |
| `nlp.pipeline` | `(name, component)` tuples of the processing pipeline, in order. |
| `nlp.pipe_names` | Pipeline component names, in order. |
| `nlp.components` | All `(name, component)` tuples, including disabled components. |
| `nlp.component_names` | All component names, including disabled components. |
| `nlp.disabled` | Names of components that are currently disabled. |
### Sourcing pipeline components from existing models {#sourced-components new="3"}
Pipeline components that are independent can also be reused across models.

View File

@ -142,6 +142,7 @@ add to your pipeline and customize for your use case:
> #### Example
>
> ```python
> # pip install spacy-lookups-data
> nlp = spacy.blank("en")
> nlp.add_pipe("lemmatizer")
> ```
@ -249,23 +250,26 @@ in your config and see validation errors if the argument values don't match.
The following methods, attributes and commands are new in spaCy v3.0.
| Name | Description |
| ----------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| [`Token.lex`](/api/token#attributes) | Access a token's [`Lexeme`](/api/lexeme). |
| [`Token.morph`](/api/token#attributes) [`Token.morph_`](/api/token#attributes) | Access a token's morphological analysis. |
| [`Language.select_pipes`](/api/language#select_pipes) | Context manager for enabling or disabling specific pipeline components for a block. |
| [`Language.analyze_pipes`](/api/language#analyze_pipes) | [Analyze](/usage/processing-pipelines#analysis) components and their interdependencies. |
| [`Language.resume_training`](/api/language#resume_training) | Experimental: continue training a pretrained model and initialize "rehearsal" for components that implement a `rehearse` method to prevent catastrophic forgetting. |
| [`@Language.factory`](/api/language#factory) [`@Language.component`](/api/language#component) | Decorators for [registering](/usage/processing-pipelines#custom-components) pipeline component factories and simple stateless component functions. |
| [`Language.has_factory`](/api/language#has_factory) | Check whether a component factory is registered on a language class.s |
| [`Language.get_factory_meta`](/api/language#get_factory_meta) [`Language.get_pipe_meta`](/api/language#get_factory_meta) | Get the [`FactoryMeta`](/api/language#factorymeta) with component metadata for a factory or instance name. |
| [`Language.config`](/api/language#config) | The [config](/usage/training#config) used to create the current `nlp` object. An instance of [`Config`](https://thinc.ai/docs/api-config#config) and can be saved to disk and used for training. |
| [`Pipe.score`](/api/pipe#score) | Method on trainable pipeline components that returns a dictionary of evaluation scores. |
| [`registry`](/api/top-level#registry) | Function registry to map functions to string names that can be referenced in [configs](/usage/training#config). |
| [`util.load_meta`](/api/top-level#util.load_meta) [`util.load_config`](/api/top-level#util.load_config) | Updated helpers for loading a model's [`meta.json`](/api/data-formats#meta) and [`config.cfg`](/api/data-formats#config). |
| [`util.get_installed_models`](/api/top-level#util.get_installed_models) | Names of all models installed in the environment. |
| [`init config`](/api/cli#init-config) [`init fill-config`](/api/cli#init-fill-config) [`debug config`](/api/cli#debug-config) | CLI commands for initializing, auto-filling and debugging [training configs](/usage/training). |
| [`project`](/api/cli#project) | Suite of CLI commands for cloning, running and managing [spaCy projects](/usage/projects). |
| Name | Description |
| ------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| [`Token.lex`](/api/token#attributes) | Access a token's [`Lexeme`](/api/lexeme). |
| [`Token.morph`](/api/token#attributes), [`Token.morph_`](/api/token#attributes) | Access a token's morphological analysis. |
| [`Language.select_pipes`](/api/language#select_pipes) | Context manager for enabling or disabling specific pipeline components for a block. |
| [`Language.disable_pipe`](/api/language#disable_pipe), [`Language.enable_pipe`](/api/language#enable_pipe) | Disable or enable a loaded pipeline component (but don't remove it). |
| [`Language.analyze_pipes`](/api/language#analyze_pipes) | [Analyze](/usage/processing-pipelines#analysis) components and their interdependencies. |
| [`Language.resume_training`](/api/language#resume_training) | Experimental: continue training a pretrained model and initialize "rehearsal" for components that implement a `rehearse` method to prevent catastrophic forgetting. |
| [`@Language.factory`](/api/language#factory), [`@Language.component`](/api/language#component) | Decorators for [registering](/usage/processing-pipelines#custom-components) pipeline component factories and simple stateless component functions. |
| [`Language.has_factory`](/api/language#has_factory) | Check whether a component factory is registered on a language class.s |
| [`Language.get_factory_meta`](/api/language#get_factory_meta), [`Language.get_pipe_meta`](/api/language#get_factory_meta) | Get the [`FactoryMeta`](/api/language#factorymeta) with component metadata for a factory or instance name. |
| [`Language.config`](/api/language#config) | The [config](/usage/training#config) used to create the current `nlp` object. An instance of [`Config`](https://thinc.ai/docs/api-config#config) and can be saved to disk and used for training. |
| [`Language.components`](/api/language#attributes), [`Language.component_names`](/api/language#attributes) | All available components and component names, including disabled components that are not run as part of the pipeline. |
| [`Language.disabled`](/api/language#attributes) | Names of disabled components that are not run as part of the pipeline. |
| [`Pipe.score`](/api/pipe#score) | Method on pipeline components that returns a dictionary of evaluation scores. |
| [`registry`](/api/top-level#registry) | Function registry to map functions to string names that can be referenced in [configs](/usage/training#config). |
| [`util.load_meta`](/api/top-level#util.load_meta), [`util.load_config`](/api/top-level#util.load_config) | Updated helpers for loading a model's [`meta.json`](/api/data-formats#meta) and [`config.cfg`](/api/data-formats#config). |
| [`util.get_installed_models`](/api/top-level#util.get_installed_models) | Names of all models installed in the environment. |
| [`init config`](/api/cli#init-config), [`init fill-config`](/api/cli#init-fill-config), [`debug config`](/api/cli#debug-config) | CLI commands for initializing, auto-filling and debugging [training configs](/usage/training). |
| [`project`](/api/cli#project) | Suite of CLI commands for cloning, running and managing [spaCy projects](/usage/projects). |
### New and updated documentation {#new-docs}
@ -300,7 +304,10 @@ format for documenting argument and return types.
[Layers & Architectures](/usage/layers-architectures),
[Projects](/usage/projects),
[Custom pipeline components](/usage/processing-pipelines#custom-components),
[Custom tokenizers](/usage/linguistic-features#custom-tokenizer)
[Custom tokenizers](/usage/linguistic-features#custom-tokenizer),
[Morphology](/usage/linguistic-features#morphology),
[Lemmatization](/usage/linguistic-features#lemmatization),
[Mapping & Exceptions](/usage/linguistic-features#mappings-exceptions)
- **API Reference: ** [Library architecture](/api),
[Model architectures](/api/architectures), [Data formats](/api/data-formats)
- **New Classes: ** [`Example`](/api/example), [`Tok2Vec`](/api/tok2vec),
@ -367,19 +374,25 @@ Note that spaCy v3.0 now requires **Python 3.6+**.
arguments). The `on_match` callback becomes an optional keyword argument.
- The `PRON_LEMMA` symbol and `-PRON-` as an indicator for pronoun lemmas has
been removed.
- The `TAG_MAP` and `MORPH_RULES` in the language data have been replaced by the
more flexible [`AttributeRuler`](/api/attributeruler).
- The [`Lemmatizer`](/api/lemmatizer) is now a standalone pipeline component and
doesn't provide lemmas by default or switch automatically between lookup and
rule-based lemmas. You can now add it to your pipeline explicitly and set its
mode on initialization.
### Removed or renamed API {#incompat-removed}
| Removed | Replacement |
| -------------------------------------------------------- | ------------------------------------------------------------------------------------------ |
| `Language.disable_pipes` | [`Language.select_pipes`](/api/language#select_pipes) |
| `GoldParse` | [`Example`](/api/example) |
| `GoldCorpus` | [`Corpus`](/api/corpus) |
| `KnowledgeBase.load_bulk`, `KnowledgeBase.dump` | [`KnowledgeBase.from_disk`](/api/kb#from_disk), [`KnowledgeBase.to_disk`](/api/kb#to_disk) |
| `spacy init-model` | [`spacy init model`](/api/cli#init-model) |
| `spacy debug-data` | [`spacy debug data`](/api/cli#debug-data) |
| `spacy profile` | [`spacy debug profile`](/api/cli#debug-profile) |
| `spacy link`, `util.set_data_path`, `util.get_data_path` | not needed, model symlinks are deprecated |
| Removed | Replacement |
| -------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------ |
| `Language.disable_pipes` | [`Language.select_pipes`](/api/language#select_pipes), [`Language.disable_pipe`](/api/language#disable_pipe) |
| `GoldParse` | [`Example`](/api/example) |
| `GoldCorpus` | [`Corpus`](/api/corpus) |
| `KnowledgeBase.load_bulk`, `KnowledgeBase.dump` | [`KnowledgeBase.from_disk`](/api/kb#from_disk), [`KnowledgeBase.to_disk`](/api/kb#to_disk) |
| `spacy init-model` | [`spacy init model`](/api/cli#init-model) |
| `spacy debug-data` | [`spacy debug data`](/api/cli#debug-data) |
| `spacy profile` | [`spacy debug profile`](/api/cli#debug-profile) |
| `spacy link`, `util.set_data_path`, `util.get_data_path` | not needed, model symlinks are deprecated |
The following deprecated methods, attributes and arguments were removed in v3.0.
Most of them have been **deprecated for a while** and many would previously
@ -396,7 +409,7 @@ on them.
| keyword-arguments like `vocab=False` on `to_disk`, `from_disk`, `to_bytes`, `from_bytes` | `exclude=["vocab"]` |
| `n_threads` argument on [`Tokenizer`](/api/tokenizer), [`Matcher`](/api/matcher), [`PhraseMatcher`](/api/phrasematcher) | `n_process` |
| `verbose` argument on [`Language.evaluate`](/api/language#evaluate) | logging (`DEBUG`) |
| `SentenceSegmenter` hook, `SimilarityHook` | [user hooks](/usage/processing-pipelines#custom-components-user-hooks), [`Sentencizer`](/api/sentencizer), [`SentenceRecognizer`](/api/sentenceregognizer) |
| `SentenceSegmenter` hook, `SimilarityHook` | [user hooks](/usage/processing-pipelines#custom-components-user-hooks), [`Sentencizer`](/api/sentencizer), [`SentenceRecognizer`](/api/sentencerecognizer) |
## Migrating from v2.x {#migrating}
@ -553,6 +566,24 @@ patterns = [nlp("health care reform"), nlp("healthcare reform")]
+ matcher.add("HEALTH", patterns, on_match=on_match)
```
### Migrating tag maps and morph rules {#migrating-training-mappings-exceptions}
Instead of defining a `tag_map` and `morph_rules` in the language data, spaCy
v3.0 now manages mappings and exceptions with a separate and more flexible
pipeline component, the [`AttributeRuler`](/api/attributeruler). See the
[usage guide](/usage/linguistic-features#mappings-exceptions) for examples. The
`AttributeRuler` provides two handy helper methods
[`load_from_tag_map`](/api/attributeruler#load_from_tag_map) and
[`load_from_morph_rules`](/api/attributeruler#load_from_morph_rules) that let
you load in your existing tag map or morph rules:
```diff
nlp = spacy.blank("en")
- nlp.vocab.morphology.load_tag_map(YOUR_TAG_MAP)
+ ruler = nlp.add_pipe("attribute_ruler")
+ ruler.load_from_tag_map(YOUR_TAG_MAP)
```
### Training models {#migrating-training}
To train your models, you should now pretty much always use the
@ -598,8 +629,8 @@ If you've exported a starter config from our
values. You can then use the auto-generated `config.cfg` for training:
```diff
### {wrap="true"}
- python -m spacy train en ./output ./train.json ./dev.json --pipeline tagger,parser --cnn-window 1 --bilstm-depth 0
- python -m spacy train en ./output ./train.json ./dev.json
--pipeline tagger,parser --cnn-window 1 --bilstm-depth 0
+ python -m spacy train ./config.cfg --output ./output
```

View File

@ -169,7 +169,13 @@ function formatCode(html, lang, prompt) {
}
const result = html
.split('\n')
.map((line, i) => (prompt ? replacePrompt(line, prompt, i === 0) : line))
.map((line, i) => {
let newLine = prompt ? replacePrompt(line, prompt, i === 0) : line
if (lang === 'diff' && !line.startsWith('<')) {
newLine = highlightCode('python', line)
}
return newLine
})
.join('\n')
return htmlToReact(result)
}

View File

@ -28,7 +28,6 @@ export default class Juniper extends React.Component {
mode: this.props.lang,
theme: this.props.theme,
})
const runCode = () => this.execute(outputArea, cm.getValue())
cm.setOption('extraKeys', { 'Shift-Enter': runCode })
Widget.attach(outputArea, this.outputRef)

View File

@ -65,12 +65,12 @@
--color-subtle-dark: hsl(162, 5%, 60%)
--color-green-medium: hsl(108, 66%, 63%)
--color-green-transparent: hsla(108, 66%, 63%, 0.11)
--color-green-transparent: hsla(108, 66%, 63%, 0.12)
--color-red-light: hsl(355, 100%, 96%)
--color-red-medium: hsl(346, 84%, 61%)
--color-red-dark: hsl(332, 64%, 34%)
--color-red-opaque: hsl(346, 96%, 89%)
--color-red-transparent: hsla(346, 84%, 61%, 0.11)
--color-red-transparent: hsla(346, 84%, 61%, 0.12)
--color-yellow-light: hsl(46, 100%, 95%)
--color-yellow-medium: hsl(45, 90%, 55%)
--color-yellow-dark: hsl(44, 94%, 27%)
@ -79,11 +79,11 @@
// Syntax Highlighting
--syntax-comment: hsl(162, 5%, 60%)
--syntax-tag: hsl(266, 72%, 72%)
--syntax-number: hsl(266, 72%, 72%)
--syntax-number: var(--syntax-tag)
--syntax-selector: hsl(31, 100%, 71%)
--syntax-operator: hsl(342, 100%, 59%)
--syntax-function: hsl(195, 70%, 54%)
--syntax-keyword: hsl(342, 100%, 59%)
--syntax-keyword: hsl(343, 100%, 68%)
--syntax-operator: var(--syntax-keyword)
--syntax-regex: hsl(45, 90%, 55%)
// Other
@ -354,6 +354,7 @@ body [id]:target
&.inserted, &.deleted
padding: 2px 0
border-radius: 2px
opacity: 0.9
&.inserted
color: var(--color-green-medium)
@ -388,7 +389,6 @@ body [id]:target
.token
color: var(--color-subtle)
.gatsby-highlight-code-line
background-color: var(--color-dark-secondary)
border-left: 0.35em solid var(--color-theme)
@ -409,6 +409,7 @@ body [id]:target
color: var(--color-subtle)
.CodeMirror-line
color: var(--syntax-comment)
padding: 0
.CodeMirror-selected
@ -418,26 +419,25 @@ body [id]:target
.CodeMirror-cursor
border-left-color: currentColor
.cm-variable-2
color: inherit
font-style: italic
.cm-property, .cm-variable, .cm-variable-2, .cm-meta // decorators
color: var(--color-subtle)
.cm-comment
color: var(--syntax-comment)
.cm-keyword
.cm-keyword, .cm-builtin
color: var(--syntax-keyword)
.cm-operator
color: var(--syntax-operator)
.cm-string, .cm-builtin
.cm-string
color: var(--syntax-selector)
.cm-number
color: var(--syntax-number)
.cm-def, .cm-meta
.cm-def
color: var(--syntax-function)
// Jupyter