mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-13 10:46:29 +03:00
Fix embedding in chainer sentiment example
This commit is contained in:
parent
8a2de46fcb
commit
b701a08249
|
@ -64,6 +64,7 @@ class SentimentAnalyser(object):
|
||||||
# For arbitrary data storage, there's:
|
# For arbitrary data storage, there's:
|
||||||
# doc.user_data['my_data'] = y
|
# doc.user_data['my_data'] = y
|
||||||
|
|
||||||
|
|
||||||
class Classifier(Chain):
|
class Classifier(Chain):
|
||||||
def __init__(self, predictor):
|
def __init__(self, predictor):
|
||||||
super(Classifier, self).__init__(predictor=predictor)
|
super(Classifier, self).__init__(predictor=predictor)
|
||||||
|
@ -77,9 +78,10 @@ class Classifier(Chain):
|
||||||
|
|
||||||
|
|
||||||
class SentimentModel(Chain):
|
class SentimentModel(Chain):
|
||||||
def __init__(self, shape, **settings):
|
def __init__(self, nlp, shape, **settings):
|
||||||
Chain.__init__(self,
|
Chain.__init__(self,
|
||||||
embed=_Embed(shape['nr_vector'], shape['nr_dim'], shape['nr_hidden']),
|
embed=_Embed(shape['nr_vector'], shape['nr_dim'], shape['nr_hidden'],
|
||||||
|
initialW=lambda arr: set_vectors(arr, nlp.vocab)),
|
||||||
encode=_Encode(shape['nr_hidden'], shape['nr_hidden']),
|
encode=_Encode(shape['nr_hidden'], shape['nr_hidden']),
|
||||||
attend=_Attend(shape['nr_hidden'], shape['nr_hidden']),
|
attend=_Attend(shape['nr_hidden'], shape['nr_hidden']),
|
||||||
predict=_Predict(shape['nr_hidden'], shape['nr_class']))
|
predict=_Predict(shape['nr_hidden'], shape['nr_class']))
|
||||||
|
@ -205,16 +207,14 @@ def get_features(docs, max_length):
|
||||||
return Xs
|
return Xs
|
||||||
|
|
||||||
|
|
||||||
def get_embeddings(vocab, max_rank=1000):
|
def set_vectors(vectors, vocab):
|
||||||
if max_rank is None:
|
|
||||||
max_rank = max(lex.rank+1 for lex in vocab if lex.has_vector)
|
|
||||||
vectors = xp.ndarray((max_rank+1, vocab.vectors_length), dtype='f')
|
|
||||||
for lex in vocab:
|
for lex in vocab:
|
||||||
if lex.has_vector and lex.rank < max_rank:
|
if lex.has_vector and (lex.rank+1) < vectors.shape[0]:
|
||||||
lex.norm = lex.rank+1
|
lex.norm = lex.rank+1
|
||||||
vectors[lex.rank + 1] = lex.vector
|
vectors[lex.rank + 1] = lex.vector
|
||||||
else:
|
else:
|
||||||
lex.norm = 0
|
lex.norm = 0
|
||||||
|
vectors.unchain_backwards()
|
||||||
return vectors
|
return vectors
|
||||||
|
|
||||||
|
|
||||||
|
@ -222,13 +222,10 @@ def train(train_texts, train_labels, dev_texts, dev_labels,
|
||||||
lstm_shape, lstm_settings, lstm_optimizer, batch_size=100, nb_epoch=5,
|
lstm_shape, lstm_settings, lstm_optimizer, batch_size=100, nb_epoch=5,
|
||||||
by_sentence=True):
|
by_sentence=True):
|
||||||
nlp = spacy.load('en', entity=False)
|
nlp = spacy.load('en', entity=False)
|
||||||
for lex in nlp.vocab:
|
if 'nr_vector' not in lstm_shape:
|
||||||
if lex.rank >= (lstm_shape['nr_vector'] - 1):
|
lstm_shape['nr_vector'] = max(lex.rank+1 for lex in vocab if lex.has_vector)
|
||||||
lex.norm = 0
|
|
||||||
else:
|
|
||||||
lex.norm = lex.rank+1
|
|
||||||
print("Make model")
|
print("Make model")
|
||||||
model = Classifier(SentimentModel(lstm_shape, **lstm_settings))
|
model = Classifier(SentimentModel(nlp, lstm_shape, **lstm_settings))
|
||||||
print("Parsing texts...")
|
print("Parsing texts...")
|
||||||
if by_sentence:
|
if by_sentence:
|
||||||
train_data = SentenceDataset(nlp, train_texts, train_labels, lstm_shape['max_length'])
|
train_data = SentenceDataset(nlp, train_texts, train_labels, lstm_shape['max_length'])
|
||||||
|
|
Loading…
Reference in New Issue
Block a user