Add tensorizer training example

This commit is contained in:
Matthew Honnibal 2018-11-02 23:52:12 +01:00
parent 2527ba68e5
commit baf7feae68

View File

@ -0,0 +1,45 @@
'''Not sure if this is useful -- try training the Tensorizer component.'''
import plac
import spacy
import thinc.extra.datasets
from spacy.util import minibatch
import tqdm
def load_imdb():
nlp = spacy.blank('en')
train, dev = thinc.extra.datasets.imdb()
train_texts, _ = zip(*train)
dev_texts, _ = zip(*dev)
nlp.add_pipe(nlp.create_pipe('sentencizer'))
return list(get_sentences(nlp, train_texts)), list(get_sentences(nlp, dev_texts))
def get_sentences(nlp, texts):
for doc in nlp.pipe(texts):
for sent in doc.sents:
yield sent.text
def main():
print("Load data")
train_texts, dev_texts = load_imdb()
train_texts = train_texts[:1000]
print("Load vectors")
nlp = spacy.load('en_vectors_web_lg')
print("Start training")
nlp.add_pipe(nlp.create_pipe('tagger'))
tensorizer = nlp.create_pipe('tensorizer')
nlp.add_pipe(tensorizer)
optimizer = nlp.begin_training()
for i in range(10):
losses = {}
for i, batch in enumerate(minibatch(tqdm.tqdm(train_texts))):
docs = [nlp.make_doc(text) for text in batch]
tensorizer.update(docs, None, losses=losses, sgd=optimizer, drop=0.5)
if i % 10 == 0:
print(losses)
if __name__ == '__main__':
plac.call(main)