mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-13 18:56:36 +03:00
Update tests
This commit is contained in:
parent
325f47500d
commit
bc089b693c
|
@ -6,12 +6,13 @@ from spacy.pipeline.tok2vec import Tok2Vec, Tok2VecListener
|
||||||
from spacy.vocab import Vocab
|
from spacy.vocab import Vocab
|
||||||
from spacy.tokens import Doc
|
from spacy.tokens import Doc
|
||||||
from spacy.training import Example
|
from spacy.training import Example
|
||||||
|
from spacy.training.initialize import init_nlp
|
||||||
from spacy import util
|
from spacy import util
|
||||||
from spacy.lang.en import English
|
from spacy.lang.en import English
|
||||||
from thinc.api import Config
|
from thinc.api import Config
|
||||||
from numpy.testing import assert_equal
|
from numpy.testing import assert_equal
|
||||||
|
|
||||||
from ..util import get_batch
|
from ..util import get_batch, make_tempdir
|
||||||
|
|
||||||
|
|
||||||
def test_empty_doc():
|
def test_empty_doc():
|
||||||
|
@ -55,17 +56,17 @@ def test_tok2vec_batch_sizes(batch_size, width, embed_size):
|
||||||
assert doc_vec.shape == (len(doc), width)
|
assert doc_vec.shape == (len(doc), width)
|
||||||
|
|
||||||
|
|
||||||
# fmt: off
|
|
||||||
@pytest.mark.parametrize(
|
@pytest.mark.parametrize(
|
||||||
"width,embed_arch,embed_config,encode_arch,encode_config",
|
"width,embed_arch,embed_config,encode_arch,encode_config",
|
||||||
|
# fmt: off
|
||||||
[
|
[
|
||||||
(8, MultiHashEmbed, {"rows": [100, 100], "attrs": ["SHAPE", "LOWER"], "include_static_vectors": False}, MaxoutWindowEncoder, {"window_size": 1, "maxout_pieces": 3, "depth": 2}),
|
(8, MultiHashEmbed, {"rows": [100, 100], "attrs": ["SHAPE", "LOWER"], "include_static_vectors": False}, MaxoutWindowEncoder, {"window_size": 1, "maxout_pieces": 3, "depth": 2}),
|
||||||
(8, MultiHashEmbed, {"rows": [100, 20], "attrs": ["ORTH", "PREFIX"], "include_static_vectors": False}, MishWindowEncoder, {"window_size": 1, "depth": 6}),
|
(8, MultiHashEmbed, {"rows": [100, 20], "attrs": ["ORTH", "PREFIX"], "include_static_vectors": False}, MishWindowEncoder, {"window_size": 1, "depth": 6}),
|
||||||
(8, CharacterEmbed, {"rows": 100, "nM": 64, "nC": 8, "include_static_vectors": False}, MaxoutWindowEncoder, {"window_size": 1, "maxout_pieces": 3, "depth": 3}),
|
(8, CharacterEmbed, {"rows": 100, "nM": 64, "nC": 8, "include_static_vectors": False}, MaxoutWindowEncoder, {"window_size": 1, "maxout_pieces": 3, "depth": 3}),
|
||||||
(8, CharacterEmbed, {"rows": 100, "nM": 16, "nC": 2, "include_static_vectors": False}, MishWindowEncoder, {"window_size": 1, "depth": 3}),
|
(8, CharacterEmbed, {"rows": 100, "nM": 16, "nC": 2, "include_static_vectors": False}, MishWindowEncoder, {"window_size": 1, "depth": 3}),
|
||||||
],
|
],
|
||||||
)
|
|
||||||
# fmt: on
|
# fmt: on
|
||||||
|
)
|
||||||
def test_tok2vec_configs(width, embed_arch, embed_config, encode_arch, encode_config):
|
def test_tok2vec_configs(width, embed_arch, embed_config, encode_arch, encode_config):
|
||||||
embed_config["width"] = width
|
embed_config["width"] = width
|
||||||
encode_config["width"] = width
|
encode_config["width"] = width
|
||||||
|
@ -196,8 +197,14 @@ def test_replace_listeners():
|
||||||
tagger = nlp.get_pipe("tagger")
|
tagger = nlp.get_pipe("tagger")
|
||||||
assert isinstance(tagger.model.layers[0], Tok2VecListener)
|
assert isinstance(tagger.model.layers[0], Tok2VecListener)
|
||||||
assert tok2vec.listener_map["tagger"][0] == tagger.model.layers[0]
|
assert tok2vec.listener_map["tagger"][0] == tagger.model.layers[0]
|
||||||
assert nlp.config["components"]["tok2vec"]["model"]["@architectures"] == "spacy.Tok2Vec.v2"
|
assert (
|
||||||
assert nlp.config["components"]["tagger"]["model"]["tok2vec"]["@architectures"] == "spacy.Tok2VecListener.v1"
|
nlp.config["components"]["tok2vec"]["model"]["@architectures"]
|
||||||
|
== "spacy.Tok2Vec.v2"
|
||||||
|
)
|
||||||
|
assert (
|
||||||
|
nlp.config["components"]["tagger"]["model"]["tok2vec"]["@architectures"]
|
||||||
|
== "spacy.Tok2VecListener.v1"
|
||||||
|
)
|
||||||
nlp.replace_listeners("tok2vec", "tagger", ["model.tok2vec"])
|
nlp.replace_listeners("tok2vec", "tagger", ["model.tok2vec"])
|
||||||
assert not isinstance(tagger.model.layers[0], Tok2VecListener)
|
assert not isinstance(tagger.model.layers[0], Tok2VecListener)
|
||||||
t2v_cfg = nlp.config["components"]["tok2vec"]["model"]
|
t2v_cfg = nlp.config["components"]["tok2vec"]["model"]
|
||||||
|
@ -211,3 +218,96 @@ def test_replace_listeners():
|
||||||
nlp.replace_listeners("tok2vec", "tagger", ["model.yolo"])
|
nlp.replace_listeners("tok2vec", "tagger", ["model.yolo"])
|
||||||
with pytest.raises(ValueError):
|
with pytest.raises(ValueError):
|
||||||
nlp.replace_listeners("tok2vec", "tagger", ["model.tok2vec", "model.yolo"])
|
nlp.replace_listeners("tok2vec", "tagger", ["model.tok2vec", "model.yolo"])
|
||||||
|
|
||||||
|
|
||||||
|
cfg_string_multi = """
|
||||||
|
[nlp]
|
||||||
|
lang = "en"
|
||||||
|
pipeline = ["tok2vec","tagger", "ner"]
|
||||||
|
|
||||||
|
[components]
|
||||||
|
|
||||||
|
[components.tagger]
|
||||||
|
factory = "tagger"
|
||||||
|
|
||||||
|
[components.tagger.model]
|
||||||
|
@architectures = "spacy.Tagger.v1"
|
||||||
|
nO = null
|
||||||
|
|
||||||
|
[components.tagger.model.tok2vec]
|
||||||
|
@architectures = "spacy.Tok2VecListener.v1"
|
||||||
|
width = ${components.tok2vec.model.encode.width}
|
||||||
|
|
||||||
|
[components.ner]
|
||||||
|
factory = "ner"
|
||||||
|
|
||||||
|
[components.ner.model]
|
||||||
|
@architectures = "spacy.TransitionBasedParser.v2"
|
||||||
|
|
||||||
|
[components.ner.model.tok2vec]
|
||||||
|
@architectures = "spacy.Tok2VecListener.v1"
|
||||||
|
width = ${components.tok2vec.model.encode.width}
|
||||||
|
|
||||||
|
[components.tok2vec]
|
||||||
|
factory = "tok2vec"
|
||||||
|
|
||||||
|
[components.tok2vec.model]
|
||||||
|
@architectures = "spacy.Tok2Vec.v2"
|
||||||
|
|
||||||
|
[components.tok2vec.model.embed]
|
||||||
|
@architectures = "spacy.MultiHashEmbed.v1"
|
||||||
|
width = ${components.tok2vec.model.encode.width}
|
||||||
|
rows = [2000, 1000, 1000, 1000]
|
||||||
|
attrs = ["NORM", "PREFIX", "SUFFIX", "SHAPE"]
|
||||||
|
include_static_vectors = false
|
||||||
|
|
||||||
|
[components.tok2vec.model.encode]
|
||||||
|
@architectures = "spacy.MaxoutWindowEncoder.v2"
|
||||||
|
width = 96
|
||||||
|
depth = 4
|
||||||
|
window_size = 1
|
||||||
|
maxout_pieces = 3
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
def test_replace_listeners_from_config():
|
||||||
|
orig_config = Config().from_str(cfg_string_multi)
|
||||||
|
nlp = util.load_model_from_config(orig_config, auto_fill=True)
|
||||||
|
annots = {"tags": ["V", "Z"], "entities": [(0, 1, "A"), (1, 2, "B")]}
|
||||||
|
examples = [Example.from_dict(nlp.make_doc("x y"), annots)]
|
||||||
|
nlp.initialize(lambda: examples)
|
||||||
|
tok2vec = nlp.get_pipe("tok2vec")
|
||||||
|
tagger = nlp.get_pipe("tagger")
|
||||||
|
ner = nlp.get_pipe("ner")
|
||||||
|
assert tok2vec.listening_components == ["tagger", "ner"]
|
||||||
|
assert any(isinstance(node, Tok2VecListener) for node in ner.model.walk())
|
||||||
|
assert any(isinstance(node, Tok2VecListener) for node in tagger.model.walk())
|
||||||
|
with make_tempdir() as dir_path:
|
||||||
|
nlp.to_disk(dir_path)
|
||||||
|
base_model = str(dir_path)
|
||||||
|
new_config = {
|
||||||
|
"nlp": {"lang": "en", "pipeline": ["tok2vec", "tagger", "ner"]},
|
||||||
|
"components": {
|
||||||
|
"tok2vec": {"source": base_model},
|
||||||
|
"tagger": {
|
||||||
|
"source": base_model,
|
||||||
|
"replace_listeners": ["model.tok2vec"],
|
||||||
|
},
|
||||||
|
"ner": {"source": base_model},
|
||||||
|
},
|
||||||
|
}
|
||||||
|
new_nlp = util.load_model_from_config(new_config, auto_fill=True)
|
||||||
|
new_nlp.initialize(lambda: examples)
|
||||||
|
tok2vec = new_nlp.get_pipe("tok2vec")
|
||||||
|
tagger = new_nlp.get_pipe("tagger")
|
||||||
|
ner = new_nlp.get_pipe("ner")
|
||||||
|
assert tok2vec.listening_components == ["ner"]
|
||||||
|
assert any(isinstance(node, Tok2VecListener) for node in ner.model.walk())
|
||||||
|
assert not any(isinstance(node, Tok2VecListener) for node in tagger.model.walk())
|
||||||
|
t2v_cfg = new_nlp.config["components"]["tok2vec"]["model"]
|
||||||
|
assert t2v_cfg["@architectures"] == "spacy.Tok2Vec.v2"
|
||||||
|
assert new_nlp.config["components"]["tagger"]["model"]["tok2vec"] == t2v_cfg
|
||||||
|
assert (
|
||||||
|
new_nlp.config["components"]["ner"]["model"]["tok2vec"]["@architectures"]
|
||||||
|
== "spacy.Tok2VecListener.v1"
|
||||||
|
)
|
||||||
|
|
Loading…
Reference in New Issue
Block a user