mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 17:24:41 +03:00
Learns things
This commit is contained in:
parent
8e48b58cd6
commit
bcf4cd0a5f
|
@ -137,8 +137,8 @@ def main(lang_name, train_loc, dev_loc, model_dir, clusters_loc=None):
|
|||
|
||||
|
||||
Xs, ys = organize_data(vocab, train_sents)
|
||||
Xs = Xs[:1]
|
||||
ys = ys[:1]
|
||||
Xs = Xs[:10]
|
||||
ys = ys[:10]
|
||||
with encoder.model.begin_training(Xs[:100], ys[:100]) as (trainer, optimizer):
|
||||
docs = list(Xs)
|
||||
for doc in docs:
|
||||
|
@ -151,8 +151,8 @@ def main(lang_name, train_loc, dev_loc, model_dir, clusters_loc=None):
|
|||
print('%d:\t%.3f\t%.3f\t%.3f' % (itn, nn_loss[-1], scorer.uas, scorer.tags_acc))
|
||||
nn_loss.append(0.)
|
||||
trainer.each_epoch.append(track_progress)
|
||||
trainer.batch_size = 1
|
||||
trainer.nb_epoch = 100
|
||||
trainer.batch_size = 2
|
||||
trainer.nb_epoch = 10000
|
||||
for docs, golds in trainer.iterate(Xs, ys, progress_bar=False):
|
||||
docs = [Doc(vocab, words=[w.text for w in doc]) for doc in docs]
|
||||
tokvecs, upd_tokvecs = encoder.begin_update(docs)
|
||||
|
|
11
spacy/_ml.py
11
spacy/_ml.py
|
@ -5,7 +5,7 @@ from thinc.neural._classes.hash_embed import HashEmbed
|
|||
from thinc.neural._classes.convolution import ExtractWindow
|
||||
from thinc.neural._classes.static_vectors import StaticVectors
|
||||
|
||||
from .attrs import ID, PREFIX, SUFFIX, SHAPE, TAG, DEP
|
||||
from .attrs import ID, LOWER, PREFIX, SUFFIX, SHAPE, TAG, DEP
|
||||
|
||||
|
||||
def get_col(idx):
|
||||
|
@ -147,19 +147,20 @@ def flatten(seqs, drop=0.):
|
|||
|
||||
|
||||
def build_tok2vec(lang, width, depth=2, embed_size=1000):
|
||||
cols = [ID, PREFIX, SUFFIX, SHAPE]
|
||||
cols = [ID, LOWER, PREFIX, SUFFIX, SHAPE, TAG]
|
||||
with Model.define_operators({'>>': chain, '|': concatenate, '**': clone}):
|
||||
#static = get_col(cols.index(ID)) >> StaticVectors(lang, width)
|
||||
lower = get_col(cols.index(ID)) >> HashEmbed(width, embed_size)
|
||||
lower = get_col(cols.index(LOWER)) >> HashEmbed(width, embed_size)
|
||||
prefix = get_col(cols.index(PREFIX)) >> HashEmbed(width, embed_size)
|
||||
suffix = get_col(cols.index(SUFFIX)) >> HashEmbed(width, embed_size)
|
||||
shape = get_col(cols.index(SHAPE)) >> HashEmbed(width, embed_size)
|
||||
tag = get_col(cols.index(TAG)) >> HashEmbed(width, embed_size)
|
||||
tok2vec = (
|
||||
doc2feats(cols)
|
||||
>> with_flatten(
|
||||
#(static | prefix | suffix | shape)
|
||||
(lower | prefix | suffix | shape)
|
||||
>> Maxout(width, width*4)
|
||||
(lower | prefix | suffix | shape | tag)
|
||||
>> Maxout(width, width*5)
|
||||
>> (ExtractWindow(nW=1) >> Maxout(width, width*3))
|
||||
>> (ExtractWindow(nW=1) >> Maxout(width, width*3))
|
||||
)
|
||||
|
|
|
@ -113,7 +113,7 @@ cdef class Parser:
|
|||
def __reduce__(self):
|
||||
return (Parser, (self.vocab, self.moves, self.model), None, None)
|
||||
|
||||
def build_model(self, width=8, nr_vector=1000, nF=1, nB=1, nS=1, nL=1, nR=1, **_):
|
||||
def build_model(self, width=32, nr_vector=1000, nF=1, nB=1, nS=1, nL=1, nR=1, **_):
|
||||
state2vec = build_debug_state2vec(width, nr_vector, nF, nB, nL, nR)
|
||||
model = build_debug_model(state2vec, width, 2, self.moves.n_moves)
|
||||
return model
|
||||
|
@ -197,7 +197,7 @@ cdef class Parser:
|
|||
attr_names = self.model.ops.allocate((2,), dtype='i')
|
||||
attr_names[0] = TAG
|
||||
attr_names[1] = DEP
|
||||
|
||||
|
||||
features = self._get_features(states, tokvecs, attr_names)
|
||||
self.model.begin_training(features)
|
||||
|
||||
|
@ -214,11 +214,12 @@ cdef class Parser:
|
|||
output = list(d_tokens)
|
||||
todo = zip(states, tokvecs, golds, d_tokens)
|
||||
assert len(states) == len(todo)
|
||||
loss = 0.
|
||||
losses = []
|
||||
while todo:
|
||||
states, tokvecs, golds, d_tokens = zip(*todo)
|
||||
scores, finish_update = self._begin_update(states, tokvecs)
|
||||
token_ids, batch_token_grads = finish_update(golds, sgd=sgd)
|
||||
token_ids, batch_token_grads = finish_update(golds, sgd=sgd, losses=losses,
|
||||
force_gold=False)
|
||||
for i, tok_i in enumerate(token_ids):
|
||||
d_tokens[i][tok_i] += batch_token_grads[i]
|
||||
|
||||
|
@ -226,7 +227,7 @@ cdef class Parser:
|
|||
|
||||
# Get unfinished states (and their matching gold and token gradients)
|
||||
todo = filter(lambda sp: not sp[0].py_is_final(), todo)
|
||||
return output, loss
|
||||
return output, sum(losses)
|
||||
|
||||
def _begin_update(self, states, tokvecs, drop=0.):
|
||||
nr_class = self.moves.n_moves
|
||||
|
@ -240,14 +241,17 @@ cdef class Parser:
|
|||
self._validate_batch(is_valid, states)
|
||||
softmaxed = self.model.ops.softmax(scores)
|
||||
softmaxed *= is_valid
|
||||
softmaxed /= softmaxed.sum(axis=1)
|
||||
print('Scores', softmaxed[0])
|
||||
def backward(golds, sgd=None):
|
||||
softmaxed /= softmaxed.sum(axis=1).reshape((softmaxed.shape[0], 1))
|
||||
def backward(golds, sgd=None, losses=[], force_gold=False):
|
||||
nonlocal softmaxed
|
||||
costs = self.model.ops.allocate((len(states), nr_class), dtype='f')
|
||||
d_scores = self.model.ops.allocate((len(states), nr_class), dtype='f')
|
||||
|
||||
self._cost_batch(costs, is_valid, states, golds)
|
||||
self._set_gradient(d_scores, scores, is_valid, costs)
|
||||
losses.append(numpy.abs(d_scores).sum())
|
||||
if force_gold:
|
||||
softmaxed *= costs <= 0
|
||||
return finish_update(d_scores, sgd=sgd)
|
||||
return softmaxed, backward
|
||||
|
||||
|
@ -298,17 +302,16 @@ cdef class Parser:
|
|||
def _set_gradient(self, gradients, scores, is_valid, costs):
|
||||
"""Do multi-label log loss"""
|
||||
cdef double Z, gZ, max_, g_max
|
||||
n = gradients.shape[0]
|
||||
scores = scores * is_valid
|
||||
g_scores = scores * is_valid * (costs <= 0.)
|
||||
exps = numpy.exp(scores - scores.max(axis=1))
|
||||
exps = numpy.exp(scores - scores.max(axis=1).reshape((n, 1)))
|
||||
exps *= is_valid
|
||||
g_exps = numpy.exp(g_scores - g_scores.max(axis=1))
|
||||
g_exps = numpy.exp(g_scores - g_scores.max(axis=1).reshape((n, 1)))
|
||||
g_exps *= costs <= 0.
|
||||
g_exps *= is_valid
|
||||
gradients[:] = exps / exps.sum(axis=1)
|
||||
gradients -= g_exps / g_exps.sum(axis=1)
|
||||
print('Gradient', gradients[0])
|
||||
print('Costs', costs[0])
|
||||
gradients[:] = exps / exps.sum(axis=1).reshape((n, 1))
|
||||
gradients -= g_exps / g_exps.sum(axis=1).reshape((n, 1))
|
||||
|
||||
def step_through(self, Doc doc, GoldParse gold=None):
|
||||
"""
|
||||
|
|
|
@ -47,18 +47,18 @@ cdef class StateClass:
|
|||
return ' '.join((third, second, top, '|', n0, n1))
|
||||
|
||||
def nr_context_tokens(self, int nF, int nB, int nS, int nL, int nR):
|
||||
return 3
|
||||
#return 1+nF+nB+nS + nL + (nS * nL) + (nS * nR)
|
||||
return 8
|
||||
|
||||
def set_context_tokens(self, int[:] output, nF=1, nB=0, nS=2,
|
||||
nL=2, nR=2):
|
||||
output[0] = self.B(0)
|
||||
output[1] = self.S(0)
|
||||
output[2] = self.S(1)
|
||||
#output[3] = self.L(self.S(0), 1)
|
||||
#output[4] = self.L(self.S(0), 2)
|
||||
#output[5] = self.R(self.S(0), 1)
|
||||
#output[6] = self.R(self.S(0), 2)
|
||||
output[1] = self.B(1)
|
||||
output[2] = self.S(0)
|
||||
output[3] = self.S(1)
|
||||
output[4] = self.L(self.S(0), 1)
|
||||
output[5] = self.L(self.S(0), 2)
|
||||
output[6] = self.R(self.S(0), 1)
|
||||
output[7] = self.R(self.S(0), 2)
|
||||
#output[7] = self.L(self.S(1), 1)
|
||||
#output[8] = self.L(self.S(1), 2)
|
||||
#output[9] = self.R(self.S(1), 1)
|
||||
|
|
Loading…
Reference in New Issue
Block a user