Merge pull request #12015 from danieldk/chore/v4-merge-master-20221222

Merge master into v4
This commit is contained in:
Daniël de Kok 2022-12-22 11:22:33 +01:00 committed by GitHub
commit d30ba9b7b8
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
32 changed files with 443 additions and 96 deletions

View File

@ -107,7 +107,7 @@ steps:
displayName: "Run CPU tests"
- script: |
python -m pip install --pre thinc-apple-ops
python -m pip install 'spacy[apple]'
python -m pytest --pyargs spacy
displayName: "Run CPU tests with thinc-apple-ops"
condition: and(startsWith(variables['imageName'], 'macos'), eq(variables['python.version'], '3.11'))

View File

@ -15,7 +15,7 @@ jobs:
action:
runs-on: ubuntu-latest
steps:
- uses: dessant/lock-threads@v3
- uses: dessant/lock-threads@v4
with:
process-only: 'issues'
issue-inactive-days: '30'

View File

@ -14,7 +14,7 @@ parsing, **named entity recognition**, **text classification** and more,
multi-task learning with pretrained **transformers** like BERT, as well as a
production-ready [**training system**](https://spacy.io/usage/training) and easy
model packaging, deployment and workflow management. spaCy is commercial
open-source software, released under the MIT license.
open-source software, released under the [MIT license](https://github.com/explosion/spaCy/blob/master/LICENSE).
💫 **Version 3.4 out now!**
[Check out the release notes here.](https://github.com/explosion/spaCy/releases)
@ -46,6 +46,7 @@ open-source software, released under the MIT license.
| 🛠 **[Changelog]** | Changes and version history. |
| 💝 **[Contribute]** | How to contribute to the spaCy project and code base. |
| <a href="https://explosion.ai/spacy-tailored-pipelines"><img src="https://user-images.githubusercontent.com/13643239/152853098-1c761611-ccb0-4ec6-9066-b234552831fe.png" width="125" alt="spaCy Tailored Pipelines"/></a> | Get a custom spaCy pipeline, tailor-made for your NLP problem by spaCy's core developers. Streamlined, production-ready, predictable and maintainable. Start by completing our 5-minute questionnaire to tell us what you need and we'll be in touch! **[Learn more &rarr;](https://explosion.ai/spacy-tailored-pipelines)** |
| <a href="https://explosion.ai/spacy-tailored-analysis"><img src="https://user-images.githubusercontent.com/1019791/206151300-b00cd189-e503-4797-aa1e-1bb6344062c5.png" width="125" alt="spaCy Tailored Pipelines"/></a> | Bespoke advice for problem solving, strategy and analysis for applied NLP projects. Services include data strategy, code reviews, pipeline design and annotation coaching. Curious? Fill in our 5-minute questionnaire to tell us what you need and we'll be in touch! **[Learn more &rarr;](https://explosion.ai/spacy-tailored-analysis)** |
[spacy 101]: https://spacy.io/usage/spacy-101
[new in v3.0]: https://spacy.io/usage/v3
@ -59,6 +60,7 @@ open-source software, released under the MIT license.
[changelog]: https://spacy.io/usage#changelog
[contribute]: https://github.com/explosion/spaCy/blob/master/CONTRIBUTING.md
## 💬 Where to ask questions
The spaCy project is maintained by the [spaCy team](https://explosion.ai/about).

View File

@ -5,4 +5,5 @@ numpy==1.17.3; python_version=='3.8' and platform_machine!='aarch64'
numpy==1.19.2; python_version=='3.8' and platform_machine=='aarch64'
numpy==1.19.3; python_version=='3.9'
numpy==1.21.3; python_version=='3.10'
numpy; python_version>='3.11'
numpy==1.23.2; python_version=='3.11'
numpy; python_version>='3.12'

View File

@ -6,7 +6,7 @@ preshed>=3.0.2,<3.1.0
thinc>=9.0.0.dev0,<9.1.0
ml_datasets>=0.2.0,<0.3.0
murmurhash>=0.28.0,<1.1.0
wasabi>=0.9.1,<1.1.0
wasabi>=0.9.1,<1.2.0
srsly>=2.4.3,<3.0.0
catalogue>=2.0.6,<2.1.0
typer>=0.3.0,<0.8.0

View File

@ -39,7 +39,7 @@ install_requires =
cymem>=2.0.2,<2.1.0
preshed>=3.0.2,<3.1.0
thinc>=9.0.0.dev0,<9.1.0
wasabi>=0.9.1,<1.1.0
wasabi>=0.9.1,<1.2.0
srsly>=2.4.3,<3.0.0
catalogue>=2.0.6,<2.1.0
# Third-party dependencies

View File

@ -16,6 +16,7 @@ from .debug_config import debug_config # noqa: F401
from .debug_model import debug_model # noqa: F401
from .debug_diff import debug_diff # noqa: F401
from .evaluate import evaluate # noqa: F401
from .apply import apply # noqa: F401
from .convert import convert # noqa: F401
from .init_pipeline import init_pipeline_cli # noqa: F401
from .init_config import init_config, fill_config # noqa: F401

View File

@ -158,15 +158,15 @@ def load_project_config(
sys.exit(1)
validate_project_version(config)
validate_project_commands(config)
if interpolate:
err = f"{PROJECT_FILE} validation error"
with show_validation_error(title=err, hint_fill=False):
config = substitute_project_variables(config, overrides)
# Make sure directories defined in config exist
for subdir in config.get("directories", []):
dir_path = path / subdir
if not dir_path.exists():
dir_path.mkdir(parents=True)
if interpolate:
err = f"{PROJECT_FILE} validation error"
with show_validation_error(title=err, hint_fill=False):
config = substitute_project_variables(config, overrides)
return config
@ -582,6 +582,29 @@ def setup_gpu(use_gpu: int, silent=None) -> None:
local_msg.info("To switch to GPU 0, use the option: --gpu-id 0")
def walk_directory(path: Path, suffix: Optional[str] = None) -> List[Path]:
if not path.is_dir():
return [path]
paths = [path]
locs = []
seen = set()
for path in paths:
if str(path) in seen:
continue
seen.add(str(path))
if path.parts[-1].startswith("."):
continue
elif path.is_dir():
paths.extend(path.iterdir())
elif suffix is not None and not path.parts[-1].endswith(suffix):
continue
else:
locs.append(path)
# It's good to sort these, in case the ordering messes up cache.
locs.sort()
return locs
def _format_number(number: Union[int, float], ndigits: int = 2) -> str:
"""Formats a number (float or int) rounding to `ndigits`, without truncating trailing 0s,
as happens with `round(number, ndigits)`"""

143
spacy/cli/apply.py Normal file
View File

@ -0,0 +1,143 @@
import tqdm
import srsly
from itertools import chain
from pathlib import Path
from typing import Optional, List, Iterable, cast, Union
from wasabi import msg
from ._util import app, Arg, Opt, setup_gpu, import_code, walk_directory
from ..tokens import Doc, DocBin
from ..vocab import Vocab
from ..util import ensure_path, load_model
path_help = """Location of the documents to predict on.
Can be a single file in .spacy format or a .jsonl file.
Files with other extensions are treated as single plain text documents.
If a directory is provided it is traversed recursively to grab
all files to be processed.
The files can be a mixture of .spacy, .jsonl and text files.
If .jsonl is provided the specified field is going
to be grabbed ("text" by default)."""
out_help = "Path to save the resulting .spacy file"
code_help = (
"Path to Python file with additional " "code (registered functions) to be imported"
)
gold_help = "Use gold preprocessing provided in the .spacy files"
force_msg = (
"The provided output file already exists. "
"To force overwriting the output file, set the --force or -F flag."
)
DocOrStrStream = Union[Iterable[str], Iterable[Doc]]
def _stream_docbin(path: Path, vocab: Vocab) -> Iterable[Doc]:
"""
Stream Doc objects from DocBin.
"""
docbin = DocBin().from_disk(path)
for doc in docbin.get_docs(vocab):
yield doc
def _stream_jsonl(path: Path, field: str) -> Iterable[str]:
"""
Stream "text" field from JSONL. If the field "text" is
not found it raises error.
"""
for entry in srsly.read_jsonl(path):
if field not in entry:
msg.fail(
f"{path} does not contain the required '{field}' field.", exits=1
)
else:
yield entry[field]
def _stream_texts(paths: Iterable[Path]) -> Iterable[str]:
"""
Yields strings from text files in paths.
"""
for path in paths:
with open(path, "r") as fin:
text = fin.read()
yield text
@app.command("apply")
def apply_cli(
# fmt: off
model: str = Arg(..., help="Model name or path"),
data_path: Path = Arg(..., help=path_help, exists=True),
output_file: Path = Arg(..., help=out_help, dir_okay=False),
code_path: Optional[Path] = Opt(None, "--code", "-c", help=code_help),
text_key: str = Opt("text", "--text-key", "-tk", help="Key containing text string for JSONL"),
force_overwrite: bool = Opt(False, "--force", "-F", help="Force overwriting the output file"),
use_gpu: int = Opt(-1, "--gpu-id", "-g", help="GPU ID or -1 for CPU."),
batch_size: int = Opt(1, "--batch-size", "-b", help="Batch size."),
n_process: int = Opt(1, "--n-process", "-n", help="number of processors to use.")
):
"""
Apply a trained pipeline to documents to get predictions.
Expects a loadable spaCy pipeline and path to the data, which
can be a directory or a file.
The data files can be provided in multiple formats:
1. .spacy files
2. .jsonl files with a specified "field" to read the text from.
3. Files with any other extension are assumed to be containing
a single document.
DOCS: https://spacy.io/api/cli#apply
"""
data_path = ensure_path(data_path)
output_file = ensure_path(output_file)
code_path = ensure_path(code_path)
if output_file.exists() and not force_overwrite:
msg.fail(force_msg, exits=1)
if not data_path.exists():
msg.fail(f"Couldn't find data path: {data_path}", exits=1)
import_code(code_path)
setup_gpu(use_gpu)
apply(data_path, output_file, model, text_key, batch_size, n_process)
def apply(
data_path: Path,
output_file: Path,
model: str,
json_field: str,
batch_size: int,
n_process: int,
):
docbin = DocBin(store_user_data=True)
paths = walk_directory(data_path)
if len(paths) == 0:
docbin.to_disk(output_file)
msg.warn("Did not find data to process,"
f" {data_path} seems to be an empty directory.")
return
nlp = load_model(model)
msg.good(f"Loaded model {model}")
vocab = nlp.vocab
streams: List[DocOrStrStream] = []
text_files = []
for path in paths:
if path.suffix == ".spacy":
streams.append(_stream_docbin(path, vocab))
elif path.suffix == ".jsonl":
streams.append(_stream_jsonl(path, json_field))
else:
text_files.append(path)
if len(text_files) > 0:
streams.append(_stream_texts(text_files))
datagen = cast(DocOrStrStream, chain(*streams))
for doc in tqdm.tqdm(nlp.pipe(datagen, batch_size=batch_size, n_process=n_process)):
docbin.add(doc)
if output_file.suffix == "":
output_file = output_file.with_suffix(".spacy")
docbin.to_disk(output_file)

View File

@ -1,4 +1,4 @@
from typing import Callable, Iterable, Mapping, Optional, Any, List, Union
from typing import Callable, Iterable, Mapping, Optional, Any, Union
from enum import Enum
from pathlib import Path
from wasabi import Printer
@ -7,7 +7,7 @@ import re
import sys
import itertools
from ._util import app, Arg, Opt
from ._util import app, Arg, Opt, walk_directory
from ..training import docs_to_json
from ..tokens import Doc, DocBin
from ..training.converters import iob_to_docs, conll_ner_to_docs, json_to_docs
@ -189,33 +189,6 @@ def autodetect_ner_format(input_data: str) -> Optional[str]:
return None
def walk_directory(path: Path, converter: str) -> List[Path]:
if not path.is_dir():
return [path]
paths = [path]
locs = []
seen = set()
for path in paths:
if str(path) in seen:
continue
seen.add(str(path))
if path.parts[-1].startswith("."):
continue
elif path.is_dir():
paths.extend(path.iterdir())
elif converter == "json" and not path.parts[-1].endswith("json"):
continue
elif converter == "conll" and not path.parts[-1].endswith("conll"):
continue
elif converter == "iob" and not path.parts[-1].endswith("iob"):
continue
else:
locs.append(path)
# It's good to sort these, in case the ordering messes up cache.
locs.sort()
return locs
def verify_cli_args(
msg: Printer,
input_path: Path,

View File

@ -101,8 +101,8 @@ def project_run(
if not (project_dir / dep).exists():
err = f"Missing dependency specified by command '{subcommand}': {dep}"
err_help = "Maybe you forgot to run the 'project assets' command or a previous step?"
err_kwargs = {"exits": 1} if not dry else {}
msg.fail(err, err_help, **err_kwargs)
err_exits = 1 if not dry else None
msg.fail(err, err_help, exits=err_exits)
check_spacy_commit = check_bool_env_var(ENV_VARS.PROJECT_USE_GIT_VERSION)
with working_dir(project_dir) as current_dir:
msg.divider(subcommand)

View File

@ -336,6 +336,11 @@ class Errors(metaclass=ErrorsWithCodes):
"clear the existing vectors and resize the table.")
E074 = ("Error interpreting compiled match pattern: patterns are expected "
"to end with the attribute {attr}. Got: {bad_attr}.")
E079 = ("Error computing states in beam: number of predicted beams "
"({pbeams}) does not equal number of gold beams ({gbeams}).")
E080 = ("Duplicate state found in beam: {key}.")
E081 = ("Error getting gradient in beam: number of histories ({n_hist}) "
"does not equal number of losses ({losses}).")
E082 = ("Error deprojectivizing parse: number of heads ({n_heads}), "
"projective heads ({n_proj_heads}) and labels ({n_labels}) do not "
"match.")

View File

@ -15,7 +15,7 @@
STOP_WORDS = set(
"""
aan af al alle alles allebei alleen allen als altijd ander anders andere anderen aangaangde aangezien achter achterna
aan af al alle alles allebei alleen allen als altijd ander anders andere anderen aangaande aangezien achter achterna
afgelopen aldus alhoewel anderzijds
ben bij bijna bijvoorbeeld behalve beide beiden beneden bent bepaald beter betere betreffende binnen binnenin boven

View File

@ -350,9 +350,9 @@ class EditTreeLemmatizer(TrainablePipe):
tree = dict(tree)
if "orig" in tree:
tree["orig"] = self.vocab.strings[tree["orig"]]
tree["orig"] = self.vocab.strings.add(tree["orig"])
if "orig" in tree:
tree["subst"] = self.vocab.strings[tree["subst"]]
tree["subst"] = self.vocab.strings.add(tree["subst"])
trees.append(tree)

View File

@ -155,11 +155,8 @@ class MultiLabel_TextCategorizer(TextCategorizer):
name (str): The component instance name, used to add entries to the
losses during training.
threshold (float): Cutoff to consider a prediction "positive".
<<<<<<< HEAD
save_activations (bool): save model activations in Doc when annotating.
=======
scorer (Optional[Callable]): The scoring method.
>>>>>>> upstream/master
save_activations (bool): save model activations in Doc when annotating.
DOCS: https://spacy.io/api/textcategorizer#init
"""

View File

@ -123,14 +123,14 @@ def test_doc_from_array_heads_in_bounds(en_vocab):
# head before start
arr = doc.to_array(["HEAD"])
arr[0] = -1
arr[0] = numpy.int32(-1).astype(numpy.uint64)
doc_from_array = Doc(en_vocab, words=words)
with pytest.raises(ValueError):
doc_from_array.from_array(["HEAD"], arr)
# head after end
arr = doc.to_array(["HEAD"])
arr[0] = 5
arr[0] = numpy.int32(5).astype(numpy.uint64)
doc_from_array = Doc(en_vocab, words=words)
with pytest.raises(ValueError):
doc_from_array.from_array(["HEAD"], arr)

View File

@ -1,7 +1,10 @@
from typing import List
import pytest
from random import Random
from spacy.matcher import Matcher
from spacy.tokens import Span, SpanGroup
from spacy.tokens import Span, SpanGroup, Doc
from spacy.util import filter_spans
@pytest.fixture
@ -242,3 +245,13 @@ def test_span_group_extend(doc):
def test_span_group_dealloc(span_group):
with pytest.raises(AttributeError):
print(span_group.doc)
@pytest.mark.issue(11975)
def test_span_group_typing(doc: Doc):
"""Tests whether typing of `SpanGroup` as `Iterable[Span]`-like object is accepted by mypy."""
span_group: SpanGroup = doc.spans["SPANS"]
spans: List[Span] = list(span_group)
for i, span in enumerate(span_group):
assert span == span_group[i] == spans[i]
filter_spans(span_group)

View File

@ -62,10 +62,45 @@ def test_initialize_from_labels():
nlp2 = Language()
lemmatizer2 = nlp2.add_pipe("trainable_lemmatizer")
lemmatizer2.initialize(
get_examples=lambda: train_examples,
# We want to check that the strings in replacement nodes are
# added to the string store. Avoid that they get added through
# the examples.
get_examples=lambda: train_examples[:1],
labels=lemmatizer.label_data,
)
assert lemmatizer2.tree2label == {1: 0, 3: 1, 4: 2, 6: 3}
assert lemmatizer2.label_data == {
"trees": [
{"orig": "S", "subst": "s"},
{
"prefix_len": 1,
"suffix_len": 0,
"prefix_tree": 0,
"suffix_tree": 4294967295,
},
{"orig": "s", "subst": ""},
{
"prefix_len": 0,
"suffix_len": 1,
"prefix_tree": 4294967295,
"suffix_tree": 2,
},
{
"prefix_len": 0,
"suffix_len": 0,
"prefix_tree": 4294967295,
"suffix_tree": 4294967295,
},
{"orig": "E", "subst": "e"},
{
"prefix_len": 1,
"suffix_len": 0,
"prefix_tree": 5,
"suffix_tree": 4294967295,
},
],
"labels": (1, 3, 4, 6),
}
def test_no_data():

View File

@ -5,6 +5,7 @@ from typing import Tuple, List, Dict, Any
import pkg_resources
import time
import spacy
import numpy
import pytest
import srsly
@ -32,6 +33,7 @@ from spacy.cli.package import _is_permitted_package_name
from spacy.cli.project.remote_storage import RemoteStorage
from spacy.cli.project.run import _check_requirements
from spacy.cli.validate import get_model_pkgs
from spacy.cli.apply import apply
from spacy.cli.find_threshold import find_threshold
from spacy.lang.en import English
from spacy.lang.nl import Dutch
@ -123,6 +125,25 @@ def test_issue7055():
assert "model" in filled_cfg["components"]["ner"]
@pytest.mark.issue(11235)
def test_issue11235():
"""
Test that the cli handles interpolation in the directory names correctly when loading project config.
"""
lang_var = "en"
variables = {"lang": lang_var}
commands = [{"name": "x", "script": ["hello ${vars.lang}"]}]
directories = ["cfg", "${vars.lang}_model"]
project = {"commands": commands, "vars": variables, "directories": directories}
with make_tempdir() as d:
srsly.write_yaml(d / "project.yml", project)
cfg = load_project_config(d)
# Check that the directories are interpolated and created correctly
assert os.path.exists(d / "cfg")
assert os.path.exists(d / f"{lang_var}_model")
assert cfg["commands"][0]["script"][0] == f"hello {lang_var}"
def test_cli_info():
nlp = Dutch()
nlp.add_pipe("textcat")
@ -866,6 +887,82 @@ def test_span_length_freq_dist_output_must_be_correct():
assert list(span_freqs.keys()) == [3, 1, 4, 5, 2]
def test_applycli_empty_dir():
with make_tempdir() as data_path:
output = data_path / "test.spacy"
apply(data_path, output, "blank:en", "text", 1, 1)
def test_applycli_docbin():
with make_tempdir() as data_path:
output = data_path / "testout.spacy"
nlp = spacy.blank("en")
doc = nlp("testing apply cli.")
# test empty DocBin case
docbin = DocBin()
docbin.to_disk(data_path / "testin.spacy")
apply(data_path, output, "blank:en", "text", 1, 1)
docbin.add(doc)
docbin.to_disk(data_path / "testin.spacy")
apply(data_path, output, "blank:en", "text", 1, 1)
def test_applycli_jsonl():
with make_tempdir() as data_path:
output = data_path / "testout.spacy"
data = [{"field": "Testing apply cli.", "key": 234}]
data2 = [{"field": "234"}]
srsly.write_jsonl(data_path / "test.jsonl", data)
apply(data_path, output, "blank:en", "field", 1, 1)
srsly.write_jsonl(data_path / "test2.jsonl", data2)
apply(data_path, output, "blank:en", "field", 1, 1)
def test_applycli_txt():
with make_tempdir() as data_path:
output = data_path / "testout.spacy"
with open(data_path / "test.foo", "w") as ftest:
ftest.write("Testing apply cli.")
apply(data_path, output, "blank:en", "text", 1, 1)
def test_applycli_mixed():
with make_tempdir() as data_path:
output = data_path / "testout.spacy"
text = "Testing apply cli"
nlp = spacy.blank("en")
doc = nlp(text)
jsonl_data = [{"text": text}]
srsly.write_jsonl(data_path / "test.jsonl", jsonl_data)
docbin = DocBin()
docbin.add(doc)
docbin.to_disk(data_path / "testin.spacy")
with open(data_path / "test.txt", "w") as ftest:
ftest.write(text)
apply(data_path, output, "blank:en", "text", 1, 1)
# Check whether it worked
result = list(DocBin().from_disk(output).get_docs(nlp.vocab))
assert len(result) == 3
for doc in result:
assert doc.text == text
def test_applycli_user_data():
Doc.set_extension("ext", default=0)
val = ("ext", 0)
with make_tempdir() as data_path:
output = data_path / "testout.spacy"
nlp = spacy.blank("en")
doc = nlp("testing apply cli.")
doc._.ext = val
docbin = DocBin(store_user_data=True)
docbin.add(doc)
docbin.to_disk(data_path / "testin.spacy")
apply(data_path, output, "blank:en", "", 1, 1)
result = list(DocBin().from_disk(output).get_docs(nlp.vocab))
assert result[0]._.ext == val
def test_local_remote_storage():
with make_tempdir() as d:
filename = "a.txt"

View File

@ -359,6 +359,7 @@ cdef class Doc:
for annot in annotations:
if annot:
if annot is heads or annot is sent_starts or annot is ent_iobs:
annot = numpy.array(annot, dtype=numpy.int32).astype(numpy.uint64)
for i in range(len(words)):
if attrs.ndim == 1:
attrs[i] = annot[i]
@ -1573,6 +1574,7 @@ cdef class Doc:
for j, (attr, annot) in enumerate(token_annotations.items()):
if attr is HEAD:
annot = numpy.array(annot, dtype=numpy.int32).astype(numpy.uint64)
for i in range(len(words)):
array[i, j] = annot[i]
elif attr is MORPH:

View File

@ -93,8 +93,8 @@ class Span:
self,
start_idx: int,
end_idx: int,
label: int = ...,
kb_id: int = ...,
label: Union[int, str] = ...,
kb_id: Union[int, str] = ...,
vector: Optional[Floats1d] = ...,
) -> Span: ...
@property

View File

@ -318,7 +318,7 @@ cdef class Span:
for ancestor in ancestors:
ancestor_i = ancestor.i - span_c.start
if ancestor_i in range(length):
array[i, head_col] = ancestor_i - i
array[i, head_col] = numpy.int32(ancestor_i - i).astype(numpy.uint64)
# if there is no appropriate ancestor, define a new artificial root
value = array[i, head_col]
@ -326,7 +326,7 @@ cdef class Span:
new_root = old_to_new_root.get(ancestor_i, None)
if new_root is not None:
# take the same artificial root as a previous token from the same sentence
array[i, head_col] = new_root - i
array[i, head_col] = numpy.int32(new_root - i).astype(numpy.uint64)
else:
# set this token as the new artificial root
array[i, head_col] = 0

View File

@ -18,6 +18,7 @@ class SpanGroup:
def doc(self) -> Doc: ...
@property
def has_overlap(self) -> bool: ...
def __iter__(self): ...
def __len__(self) -> int: ...
def append(self, span: Span) -> None: ...
def extend(self, spans: Iterable[Span]) -> None: ...

View File

@ -159,6 +159,16 @@ cdef class SpanGroup:
return self._concat(other)
return NotImplemented
def __iter__(self):
"""
Iterate over the spans in this SpanGroup.
YIELDS (Span): A span in this SpanGroup.
DOCS: https://spacy.io/api/spangroup#iter
"""
for i in range(self.c.size()):
yield self[i]
def append(self, Span span):
"""Add a span to the group. The span must refer to the same Doc
object as the span group.

View File

@ -443,26 +443,27 @@ def _annot2array(vocab, tok_annot, doc_annot):
if key not in IDS:
raise ValueError(Errors.E974.format(obj="token", key=key))
elif key in ["ORTH", "SPACY"]:
pass
continue
elif key == "HEAD":
attrs.append(key)
values.append([h-i if h is not None else 0 for i, h in enumerate(value)])
row = [h-i if h is not None else 0 for i, h in enumerate(value)]
elif key == "DEP":
attrs.append(key)
values.append([vocab.strings.add(h) if h is not None else MISSING_DEP for h in value])
row = [vocab.strings.add(h) if h is not None else MISSING_DEP for h in value]
elif key == "SENT_START":
attrs.append(key)
values.append([to_ternary_int(v) for v in value])
row = [to_ternary_int(v) for v in value]
elif key == "MORPH":
attrs.append(key)
values.append([vocab.morphology.add(v) for v in value])
row = [vocab.morphology.add(v) for v in value]
else:
attrs.append(key)
if not all(isinstance(v, str) for v in value):
types = set([type(v) for v in value])
raise TypeError(Errors.E969.format(field=key, types=types)) from None
values.append([vocab.strings.add(v) for v in value])
array = numpy.asarray(values, dtype="uint64")
row = [vocab.strings.add(v) for v in value]
values.append([numpy.array(v, dtype=numpy.int32).astype(numpy.uint64) if v < 0 else v for v in row])
array = numpy.array(values, dtype=numpy.uint64)
return attrs, array.T

View File

@ -12,6 +12,7 @@ menu:
- ['train', 'train']
- ['pretrain', 'pretrain']
- ['evaluate', 'evaluate']
- ['apply', 'apply']
- ['find-threshold', 'find-threshold']
- ['assemble', 'assemble']
- ['package', 'package']
@ -1162,6 +1163,37 @@ $ python -m spacy evaluate [model] [data_path] [--output] [--code] [--gold-prepr
| `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ |
| **CREATES** | Training results and optional metrics and visualizations. |
## apply {#apply new="3.5" tag="command"}
Applies a trained pipeline to data and stores the resulting annotated documents
in a `DocBin`. The input can be a single file or a directory. The recognized
input formats are:
1. `.spacy`
2. `.jsonl` containing a user specified `text_key`
3. Files with any other extension are assumed to be plain text files containing
a single document.
When a directory is provided it is traversed recursively to collect all files.
```cli
$ python -m spacy apply [model] [data-path] [output-file] [--code] [--text-key] [--force-overwrite] [--gpu-id] [--batch-size] [--n-process]
```
| Name | Description |
| ----------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| `model` | Pipeline to apply to the data. Can be a package or a path to a data directory. ~~str (positional)~~ |
| `data_path` | Location of data to be evaluated in spaCy's [binary format](/api/data-formats#training), jsonl, or plain text. ~~Path (positional)~~ |
| `output-file`, `-o` | Output `DocBin` path. ~~str (positional)~~ |
| `--code`, `-c` <Tag variant="new">3</Tag> | Path to Python file with additional code to be imported. Allows [registering custom functions](/usage/training#custom-functions) for new architectures. ~~Optional[Path] \(option)~~ |
| `--text-key`, `-tk` | The key for `.jsonl` files to use to grab the texts from. Defaults to `text`. ~~Optional[str] \(option)~~ |
| `--force-overwrite`, `-F` | If the provided `output-file` already exists, then force `apply` to overwrite it. If this is `False` (default) then quits with a warning instead. ~~bool (flag)~~ |
| `--gpu-id`, `-g` | GPU to use, if any. Defaults to `-1` for CPU. ~~int (option)~~ |
| `--batch-size`, `-b` | Batch size to use for prediction. Defaults to `1`. ~~int (option)~~ |
| `--n-process`, `-n` | Number of processes to use for prediction. Defaults to `1`. ~~int (option)~~ |
| `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ |
| **CREATES** | A `DocBin` with the annotations from the `model` for all the files found in `data-path`. |
## find-threshold {#find-threshold new="3.5" tag="command"}
Runs prediction trials for a trained model with varying tresholds to maximize

View File

@ -138,7 +138,7 @@ The L2 norm of the lexeme's vector representation.
| `prefix` | Length-N substring from the start of the word. Defaults to `N=1`. ~~int~~ |
| `prefix_` | Length-N substring from the start of the word. Defaults to `N=1`. ~~str~~ |
| `suffix` | Length-N substring from the end of the word. Defaults to `N=3`. ~~int~~ |
| `suffix_` | Length-N substring from the start of the word. Defaults to `N=3`. ~~str~~ |
| `suffix_` | Length-N substring from the end of the word. Defaults to `N=3`. ~~str~~ |
| `is_alpha` | Does the lexeme consist of alphabetic characters? Equivalent to `lexeme.text.isalpha()`. ~~bool~~ |
| `is_ascii` | Does the lexeme consist of ASCII characters? Equivalent to `[any(ord(c) >= 128 for c in lexeme.text)]`. ~~bool~~ |
| `is_digit` | Does the lexeme consist of digits? Equivalent to `lexeme.text.isdigit()`. ~~bool~~ |

View File

@ -202,6 +202,23 @@ already present in the current span group.
| `other` | The span group or spans to append. ~~Union[SpanGroup, Iterable[Span]]~~ |
| **RETURNS** | The span group. ~~SpanGroup~~ |
## SpanGroup.\_\_iter\_\_ {#iter tag="method" new="3.5"}
Iterate over the spans in this span group.
> #### Example
>
> ```python
> doc = nlp("Their goi ng home")
> doc.spans["errors"] = [doc[0:1], doc[1:3]]
> for error_span in doc.spans["errors"]:
> print(error_span)
> ```
| Name | Description |
| ---------- | ----------------------------------- |
| **YIELDS** | A span in this span group. ~~Span~~ |
## SpanGroup.append {#append tag="method"}
Add a [`Span`](/api/span) object to the group. The span must refer to the same

View File

@ -45,7 +45,7 @@
{ "text": "v2.x Documentation", "url": "https://v2.spacy.io" },
{
"text": "Custom Solutions",
"url": "https://explosion.ai/spacy-tailored-pipelines"
"url": "https://explosion.ai/custom-solutions"
}
]
}

View File

@ -51,7 +51,7 @@
{ "text": "Online Course", "url": "https://course.spacy.io" },
{
"text": "Custom Solutions",
"url": "https://explosion.ai/spacy-tailored-pipelines"
"url": "https://explosion.ai/custom-solutions"
}
]
},

View File

@ -1024,25 +1024,6 @@
"category": ["pipeline"],
"spacy_version": 2
},
{
"id": "spacy-sentence-segmenter",
"title": "Sentence Segmenter",
"slogan": "Custom sentence segmentation for spaCy",
"code_example": [
"from seg.newline.segmenter import NewLineSegmenter",
"import spacy",
"",
"nlseg = NewLineSegmenter()",
"nlp = spacy.load('en')",
"nlp.add_pipe(nlseg.set_sent_starts, name='sentence_segmenter', before='parser')",
"doc = nlp(my_doc_text)"
],
"author": "tc64",
"author_links": {
"github": "tc64"
},
"category": ["pipeline"]
},
{
"id": "spacy_cld",
"title": "spaCy-CLD",
@ -1472,13 +1453,26 @@
"image": "https://jasonkessler.github.io/2012conventions0.0.2.2.png",
"code_example": [
"import spacy",
"import scattertext as st",
"",
"nlp = spacy.load('en')",
"corpus = st.CorpusFromPandas(convention_df,",
" category_col='party',",
" text_col='text',",
" nlp=nlp).build()"
"from scattertext import SampleCorpora, produce_scattertext_explorer",
"from scattertext import produce_scattertext_html",
"from scattertext.CorpusFromPandas import CorpusFromPandas",
"",
"nlp = spacy.load('en_core_web_sm')",
"convention_df = SampleCorpora.ConventionData2012.get_data()",
"corpus = CorpusFromPandas(convention_df,",
" category_col='party',",
" text_col='text',",
" nlp=nlp).build()",
"",
"html = produce_scattertext_html(corpus,",
" category='democrat',",
" category_name='Democratic',",
" not_category_name='Republican',",
" minimum_term_frequency=5,",
" width_in_pixels=1000)",
"open('./simple.html', 'wb').write(html.encode('utf-8'))",
"print('Open ./simple.html in Chrome or Firefox.')"
],
"author": "Jason Kessler",
"author_links": {

View File

@ -105,13 +105,13 @@ const Landing = ({ data }) => {
<LandingBannerGrid>
<LandingBanner
to="https://explosion.ai/spacy-tailored-pipelines"
to="https://explosion.ai/custom-solutions"
button="Learn more"
background="#E4F4F9"
color="#1e1935"
small
>
<Link to="https://explosion.ai/spacy-tailored-pipelines" hidden>
<Link to="https://explosion.ai/custom-solutions" hidden>
<img src={tailoredPipelinesImage} alt="spaCy Tailored Pipelines" />
</Link>
<strong>