mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-12 18:26:30 +03:00
Add example for visualizing word vectors with TensorBoard Projector
Use: ```bash python vectors_tensorboard.py en_core_web_lg ./output_folder spaCy_large ```
This commit is contained in:
parent
782ec6f4f2
commit
eef9430f07
82
examples/vectors_tensorboard.py
Normal file
82
examples/vectors_tensorboard.py
Normal file
|
@ -0,0 +1,82 @@
|
|||
#!/usr/bin/env python
|
||||
# coding: utf8
|
||||
"""Visualize spaCy word vectors in Tensorboard.
|
||||
|
||||
Adapted from: https://gist.github.com/BrikerMan/7bd4e4bd0a00ac9076986148afc06507
|
||||
"""
|
||||
from __future__ import unicode_literals
|
||||
|
||||
from os import path
|
||||
|
||||
import math
|
||||
import numpy
|
||||
import plac
|
||||
import spacy
|
||||
import tensorflow as tf
|
||||
import tqdm
|
||||
from tensorflow.contrib.tensorboard.plugins.projector import visualize_embeddings, ProjectorConfig
|
||||
|
||||
|
||||
@plac.annotations(
|
||||
vectors_loc=("Path to spaCy model that contains vectors", "positional", None, str),
|
||||
out_loc=("Path to output folder for tensorboard session data", "positional", None, str),
|
||||
name=("Human readable name for tsv file and vectors tensor", "positional", None, str),
|
||||
)
|
||||
def main(vectors_loc, out_loc, name="spaCy_vectors"):
|
||||
meta_file = "{}.tsv".format(name)
|
||||
out_meta_file = path.join(out_loc, meta_file)
|
||||
|
||||
print('Loading spaCy vectors model: {}'.format(vectors_loc))
|
||||
model = spacy.load(vectors_loc)
|
||||
print('Finding lexemes with vectors attached: {}'.format(vectors_loc))
|
||||
strings_stream = tqdm.tqdm(model.vocab.strings, total=len(model.vocab.strings), leave=False)
|
||||
queries = [w for w in strings_stream if model.vocab.has_vector(w)]
|
||||
vector_count = len(queries)
|
||||
|
||||
print('Building Tensorboard Projector metadata for ({}) vectors: {}'.format(vector_count, out_meta_file))
|
||||
|
||||
# Store vector data in a tensorflow variable
|
||||
tf_vectors_variable = numpy.zeros((vector_count, model.vocab.vectors.shape[1]))
|
||||
|
||||
# Write a tab-separated file that contains information about the vectors for visualization
|
||||
#
|
||||
# Reference: https://www.tensorflow.org/programmers_guide/embedding#metadata
|
||||
with open(out_meta_file, 'wb') as file_metadata:
|
||||
# Define columns in the first row
|
||||
file_metadata.write("Text\tFrequency\n".encode('utf-8'))
|
||||
# Write out a row for each vector that we add to the tensorflow variable we created
|
||||
vec_index = 0
|
||||
for text in tqdm.tqdm(queries, total=len(queries), leave=False):
|
||||
# https://github.com/tensorflow/tensorflow/issues/9094
|
||||
text = '<Space>' if text.lstrip() == '' else text
|
||||
lex = model.vocab[text]
|
||||
|
||||
# Store vector data and metadata
|
||||
tf_vectors_variable[vec_index] = model.vocab.get_vector(text)
|
||||
file_metadata.write("{}\t{}\n".format(text, math.exp(lex.prob) * vector_count).encode('utf-8'))
|
||||
vec_index += 1
|
||||
|
||||
print('Running Tensorflow Session...')
|
||||
sess = tf.InteractiveSession()
|
||||
tf.Variable(tf_vectors_variable, trainable=False, name=name)
|
||||
tf.global_variables_initializer().run()
|
||||
saver = tf.train.Saver()
|
||||
writer = tf.summary.FileWriter(out_loc, sess.graph)
|
||||
|
||||
# Link the embeddings into the config
|
||||
config = ProjectorConfig()
|
||||
embed = config.embeddings.add()
|
||||
embed.tensor_name = name
|
||||
embed.metadata_path = meta_file
|
||||
|
||||
# Tell the projector about the configured embeddings and metadata file
|
||||
visualize_embeddings(writer, config)
|
||||
|
||||
# Save session and print run command to the output
|
||||
print('Saving Tensorboard Session...')
|
||||
saver.save(sess, path.join(out_loc, '{}.ckpt'.format(name)))
|
||||
print('Done. Run `tensorboard --logdir={0}` to view in Tensorboard'.format(out_loc))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
plac.call(main)
|
Loading…
Reference in New Issue
Block a user