working residual net

This commit is contained in:
Matthew Honnibal 2017-05-07 03:57:26 +02:00
parent b439e04f8d
commit f99f5b75dc
4 changed files with 33 additions and 30 deletions

View File

@ -36,8 +36,7 @@ def read_conllx(loc, n=0):
try: try:
id_ = int(id_) - 1 id_ = int(id_) - 1
head = (int(head) - 1) if head != '0' else id_ head = (int(head) - 1) if head != '0' else id_
dep = 'ROOT' if dep == 'root' else 'unlabelled' dep = 'ROOT' if dep == 'root' else dep #'unlabelled'
# Hack for efficiency
tokens.append((id_, word, pos+'__'+morph, head, dep, 'O')) tokens.append((id_, word, pos+'__'+morph, head, dep, 'O'))
except: except:
raise raise
@ -82,6 +81,7 @@ def organize_data(vocab, train_sents):
def main(lang_name, train_loc, dev_loc, model_dir, clusters_loc=None): def main(lang_name, train_loc, dev_loc, model_dir, clusters_loc=None):
LangClass = spacy.util.get_lang_class(lang_name) LangClass = spacy.util.get_lang_class(lang_name)
train_sents = list(read_conllx(train_loc)) train_sents = list(read_conllx(train_loc))
dev_sents = list(read_conllx(dev_loc))
train_sents = PseudoProjectivity.preprocess_training_data(train_sents) train_sents = PseudoProjectivity.preprocess_training_data(train_sents)
actions = ArcEager.get_actions(gold_parses=train_sents) actions = ArcEager.get_actions(gold_parses=train_sents)
@ -136,8 +136,11 @@ def main(lang_name, train_loc, dev_loc, model_dir, clusters_loc=None):
parser = DependencyParser(vocab, actions=actions, features=features, L1=0.0) parser = DependencyParser(vocab, actions=actions, features=features, L1=0.0)
Xs, ys = organize_data(vocab, train_sents) Xs, ys = organize_data(vocab, train_sents)
Xs = Xs[:100] dev_Xs, dev_ys = organize_data(vocab, dev_sents)
ys = ys[:100] Xs = Xs[:500]
ys = ys[:500]
dev_Xs = dev_Xs[:100]
dev_ys = dev_ys[:100]
with encoder.model.begin_training(Xs[:100], ys[:100]) as (trainer, optimizer): with encoder.model.begin_training(Xs[:100], ys[:100]) as (trainer, optimizer):
docs = list(Xs) docs = list(Xs)
for doc in docs: for doc in docs:
@ -145,7 +148,8 @@ def main(lang_name, train_loc, dev_loc, model_dir, clusters_loc=None):
parser.begin_training(docs, ys) parser.begin_training(docs, ys)
nn_loss = [0.] nn_loss = [0.]
def track_progress(): def track_progress():
scorer = score_model(vocab, encoder, tagger, parser, Xs, ys) with encoder.tagger.use_params(optimizer.averages):
scorer = score_model(vocab, encoder, tagger, parser, dev_Xs, dev_ys)
itn = len(nn_loss) itn = len(nn_loss)
print('%d:\t%.3f\t%.3f\t%.3f' % (itn, nn_loss[-1], scorer.uas, scorer.tags_acc)) print('%d:\t%.3f\t%.3f\t%.3f' % (itn, nn_loss[-1], scorer.uas, scorer.tags_acc))
nn_loss.append(0.) nn_loss.append(0.)
@ -161,6 +165,7 @@ def main(lang_name, train_loc, dev_loc, model_dir, clusters_loc=None):
tagger.update(doc, gold) tagger.update(doc, gold)
d_tokvecs, loss = parser.update(docs, golds, sgd=optimizer) d_tokvecs, loss = parser.update(docs, golds, sgd=optimizer)
upd_tokvecs(d_tokvecs, sgd=optimizer) upd_tokvecs(d_tokvecs, sgd=optimizer)
encoder.update(docs, golds, optimizer)
nn_loss[-1] += loss nn_loss[-1] += loss
nlp = LangClass(vocab=vocab, tagger=tagger, parser=parser) nlp = LangClass(vocab=vocab, tagger=tagger, parser=parser)
nlp.end_training(model_dir) nlp.end_training(model_dir)

View File

@ -5,6 +5,7 @@ from thinc.neural._classes.hash_embed import HashEmbed
from thinc.neural._classes.convolution import ExtractWindow from thinc.neural._classes.convolution import ExtractWindow
from thinc.neural._classes.static_vectors import StaticVectors from thinc.neural._classes.static_vectors import StaticVectors
from thinc.neural._classes.batchnorm import BatchNorm from thinc.neural._classes.batchnorm import BatchNorm
from thinc.neural._classes.resnet import Residual
from .attrs import ID, LOWER, PREFIX, SUFFIX, SHAPE, TAG, DEP from .attrs import ID, LOWER, PREFIX, SUFFIX, SHAPE, TAG, DEP
@ -36,8 +37,7 @@ def build_debug_model(state2vec, width, depth, nr_class):
with Model.define_operators({'>>': chain, '**': clone}): with Model.define_operators({'>>': chain, '**': clone}):
model = ( model = (
state2vec state2vec
>> Maxout(width) >> Maxout(nr_class)
>> Affine(nr_class)
) )
return model return model
@ -64,13 +64,8 @@ def build_debug_state2vec(width, nr_vector=1000, nF=1, nB=0, nS=1, nL=2, nR=2):
def build_state2vec(nr_context_tokens, width, nr_vector=1000): def build_state2vec(nr_context_tokens, width, nr_vector=1000):
ops = Model.ops ops = Model.ops
with Model.define_operators({'|': concatenate, '+': add, '>>': chain}): with Model.define_operators({'|': concatenate, '+': add, '>>': chain}):
hiddens = [get_col(i) >> Maxout(width) for i in range(nr_context_tokens)]
hiddens = [get_col(i) >> Affine(width) for i in range(nr_context_tokens)] model = get_token_vectors >> add(*hiddens)
model = (
get_token_vectors
>> add(*hiddens)
>> Maxout(width)
)
return model return model
@ -173,9 +168,10 @@ def _reshape(layer):
@layerize @layerize
def flatten(seqs, drop=0.): def flatten(seqs, drop=0.):
ops = Model.ops ops = Model.ops
lengths = [len(seq) for seq in seqs]
def finish_update(d_X, sgd=None): def finish_update(d_X, sgd=None):
return d_X return ops.unflatten(d_X, lengths)
X = ops.xp.concatenate([ops.asarray(seq) for seq in seqs]) X = ops.xp.vstack(seqs)
return X, finish_update return X, finish_update
@ -194,8 +190,9 @@ def build_tok2vec(lang, width, depth=2, embed_size=1000):
#(static | prefix | suffix | shape) #(static | prefix | suffix | shape)
(lower | prefix | suffix | shape | tag) (lower | prefix | suffix | shape | tag)
>> Maxout(width, width*5) >> Maxout(width, width*5)
#>> (ExtractWindow(nW=1) >> Maxout(width, width*3)) >> Residual((ExtractWindow(nW=1) >> Maxout(width, width*3)))
#>> (ExtractWindow(nW=1) >> Maxout(width, width*3)) >> Residual((ExtractWindow(nW=1) >> Maxout(width, width*3)))
>> Residual((ExtractWindow(nW=1) >> Maxout(width, width*3)))
) )
) )
return tok2vec return tok2vec

View File

@ -9,7 +9,7 @@ from .syntax.parser cimport Parser
from .syntax.ner cimport BiluoPushDown from .syntax.ner cimport BiluoPushDown
from .syntax.arc_eager cimport ArcEager from .syntax.arc_eager cimport ArcEager
from .tagger import Tagger from .tagger import Tagger
from ._ml import build_tok2vec from ._ml import build_tok2vec, flatten
# TODO: The disorganization here is pretty embarrassing. At least it's only # TODO: The disorganization here is pretty embarrassing. At least it's only
# internals. # internals.
@ -24,7 +24,8 @@ class TokenVectorEncoder(object):
self.model = build_tok2vec(vocab.lang, 64, **cfg) self.model = build_tok2vec(vocab.lang, 64, **cfg)
self.tagger = chain( self.tagger = chain(
self.model, self.model,
Softmax(self.vocab.morphology.n_tags)) flatten,
Softmax(self.vocab.morphology.n_tags, 64))
def __call__(self, doc): def __call__(self, doc):
doc.tensor = self.model([doc])[0] doc.tensor = self.model([doc])[0]

View File

@ -48,7 +48,7 @@ cdef class StateClass:
@classmethod @classmethod
def nr_context_tokens(cls, int nF, int nB, int nS, int nL, int nR): def nr_context_tokens(cls, int nF, int nB, int nS, int nL, int nR):
return 4 return 11
def set_context_tokens(self, int[:] output, nF=1, nB=0, nS=2, def set_context_tokens(self, int[:] output, nF=1, nB=0, nS=2,
nL=2, nR=2): nL=2, nR=2):
@ -56,14 +56,14 @@ cdef class StateClass:
output[1] = self.B(1) output[1] = self.B(1)
output[2] = self.S(0) output[2] = self.S(0)
output[3] = self.S(1) output[3] = self.S(1)
#output[4] = self.L(self.S(0), 1) output[4] = self.L(self.S(0), 1)
#output[5] = self.L(self.S(0), 2) output[5] = self.L(self.S(0), 2)
#output[6] = self.R(self.S(0), 1) output[6] = self.R(self.S(0), 1)
#output[7] = self.R(self.S(0), 2) output[7] = self.R(self.S(0), 2)
#output[7] = self.L(self.S(1), 1) output[7] = self.L(self.S(1), 1)
#output[8] = self.L(self.S(1), 2) output[8] = self.L(self.S(1), 2)
#output[9] = self.R(self.S(1), 1) output[9] = self.R(self.S(1), 1)
#output[10] = self.R(self.S(1), 2) output[10] = self.R(self.S(1), 2)
def set_attributes(self, uint64_t[:, :] vals, int[:] tokens, int[:] names): def set_attributes(self, uint64_t[:, :] vals, int[:] tokens, int[:] names):
cdef int i, j, tok_i cdef int i, j, tok_i