mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 09:14:32 +03:00
working residual net
This commit is contained in:
parent
b439e04f8d
commit
f99f5b75dc
|
@ -36,8 +36,7 @@ def read_conllx(loc, n=0):
|
|||
try:
|
||||
id_ = int(id_) - 1
|
||||
head = (int(head) - 1) if head != '0' else id_
|
||||
dep = 'ROOT' if dep == 'root' else 'unlabelled'
|
||||
# Hack for efficiency
|
||||
dep = 'ROOT' if dep == 'root' else dep #'unlabelled'
|
||||
tokens.append((id_, word, pos+'__'+morph, head, dep, 'O'))
|
||||
except:
|
||||
raise
|
||||
|
@ -82,6 +81,7 @@ def organize_data(vocab, train_sents):
|
|||
def main(lang_name, train_loc, dev_loc, model_dir, clusters_loc=None):
|
||||
LangClass = spacy.util.get_lang_class(lang_name)
|
||||
train_sents = list(read_conllx(train_loc))
|
||||
dev_sents = list(read_conllx(dev_loc))
|
||||
train_sents = PseudoProjectivity.preprocess_training_data(train_sents)
|
||||
|
||||
actions = ArcEager.get_actions(gold_parses=train_sents)
|
||||
|
@ -136,8 +136,11 @@ def main(lang_name, train_loc, dev_loc, model_dir, clusters_loc=None):
|
|||
parser = DependencyParser(vocab, actions=actions, features=features, L1=0.0)
|
||||
|
||||
Xs, ys = organize_data(vocab, train_sents)
|
||||
Xs = Xs[:100]
|
||||
ys = ys[:100]
|
||||
dev_Xs, dev_ys = organize_data(vocab, dev_sents)
|
||||
Xs = Xs[:500]
|
||||
ys = ys[:500]
|
||||
dev_Xs = dev_Xs[:100]
|
||||
dev_ys = dev_ys[:100]
|
||||
with encoder.model.begin_training(Xs[:100], ys[:100]) as (trainer, optimizer):
|
||||
docs = list(Xs)
|
||||
for doc in docs:
|
||||
|
@ -145,7 +148,8 @@ def main(lang_name, train_loc, dev_loc, model_dir, clusters_loc=None):
|
|||
parser.begin_training(docs, ys)
|
||||
nn_loss = [0.]
|
||||
def track_progress():
|
||||
scorer = score_model(vocab, encoder, tagger, parser, Xs, ys)
|
||||
with encoder.tagger.use_params(optimizer.averages):
|
||||
scorer = score_model(vocab, encoder, tagger, parser, dev_Xs, dev_ys)
|
||||
itn = len(nn_loss)
|
||||
print('%d:\t%.3f\t%.3f\t%.3f' % (itn, nn_loss[-1], scorer.uas, scorer.tags_acc))
|
||||
nn_loss.append(0.)
|
||||
|
@ -161,6 +165,7 @@ def main(lang_name, train_loc, dev_loc, model_dir, clusters_loc=None):
|
|||
tagger.update(doc, gold)
|
||||
d_tokvecs, loss = parser.update(docs, golds, sgd=optimizer)
|
||||
upd_tokvecs(d_tokvecs, sgd=optimizer)
|
||||
encoder.update(docs, golds, optimizer)
|
||||
nn_loss[-1] += loss
|
||||
nlp = LangClass(vocab=vocab, tagger=tagger, parser=parser)
|
||||
nlp.end_training(model_dir)
|
||||
|
|
23
spacy/_ml.py
23
spacy/_ml.py
|
@ -5,6 +5,7 @@ from thinc.neural._classes.hash_embed import HashEmbed
|
|||
from thinc.neural._classes.convolution import ExtractWindow
|
||||
from thinc.neural._classes.static_vectors import StaticVectors
|
||||
from thinc.neural._classes.batchnorm import BatchNorm
|
||||
from thinc.neural._classes.resnet import Residual
|
||||
|
||||
from .attrs import ID, LOWER, PREFIX, SUFFIX, SHAPE, TAG, DEP
|
||||
|
||||
|
@ -36,8 +37,7 @@ def build_debug_model(state2vec, width, depth, nr_class):
|
|||
with Model.define_operators({'>>': chain, '**': clone}):
|
||||
model = (
|
||||
state2vec
|
||||
>> Maxout(width)
|
||||
>> Affine(nr_class)
|
||||
>> Maxout(nr_class)
|
||||
)
|
||||
return model
|
||||
|
||||
|
@ -64,13 +64,8 @@ def build_debug_state2vec(width, nr_vector=1000, nF=1, nB=0, nS=1, nL=2, nR=2):
|
|||
def build_state2vec(nr_context_tokens, width, nr_vector=1000):
|
||||
ops = Model.ops
|
||||
with Model.define_operators({'|': concatenate, '+': add, '>>': chain}):
|
||||
|
||||
hiddens = [get_col(i) >> Affine(width) for i in range(nr_context_tokens)]
|
||||
model = (
|
||||
get_token_vectors
|
||||
>> add(*hiddens)
|
||||
>> Maxout(width)
|
||||
)
|
||||
hiddens = [get_col(i) >> Maxout(width) for i in range(nr_context_tokens)]
|
||||
model = get_token_vectors >> add(*hiddens)
|
||||
return model
|
||||
|
||||
|
||||
|
@ -173,9 +168,10 @@ def _reshape(layer):
|
|||
@layerize
|
||||
def flatten(seqs, drop=0.):
|
||||
ops = Model.ops
|
||||
lengths = [len(seq) for seq in seqs]
|
||||
def finish_update(d_X, sgd=None):
|
||||
return d_X
|
||||
X = ops.xp.concatenate([ops.asarray(seq) for seq in seqs])
|
||||
return ops.unflatten(d_X, lengths)
|
||||
X = ops.xp.vstack(seqs)
|
||||
return X, finish_update
|
||||
|
||||
|
||||
|
@ -194,8 +190,9 @@ def build_tok2vec(lang, width, depth=2, embed_size=1000):
|
|||
#(static | prefix | suffix | shape)
|
||||
(lower | prefix | suffix | shape | tag)
|
||||
>> Maxout(width, width*5)
|
||||
#>> (ExtractWindow(nW=1) >> Maxout(width, width*3))
|
||||
#>> (ExtractWindow(nW=1) >> Maxout(width, width*3))
|
||||
>> Residual((ExtractWindow(nW=1) >> Maxout(width, width*3)))
|
||||
>> Residual((ExtractWindow(nW=1) >> Maxout(width, width*3)))
|
||||
>> Residual((ExtractWindow(nW=1) >> Maxout(width, width*3)))
|
||||
)
|
||||
)
|
||||
return tok2vec
|
||||
|
|
|
@ -9,7 +9,7 @@ from .syntax.parser cimport Parser
|
|||
from .syntax.ner cimport BiluoPushDown
|
||||
from .syntax.arc_eager cimport ArcEager
|
||||
from .tagger import Tagger
|
||||
from ._ml import build_tok2vec
|
||||
from ._ml import build_tok2vec, flatten
|
||||
|
||||
# TODO: The disorganization here is pretty embarrassing. At least it's only
|
||||
# internals.
|
||||
|
@ -24,7 +24,8 @@ class TokenVectorEncoder(object):
|
|||
self.model = build_tok2vec(vocab.lang, 64, **cfg)
|
||||
self.tagger = chain(
|
||||
self.model,
|
||||
Softmax(self.vocab.morphology.n_tags))
|
||||
flatten,
|
||||
Softmax(self.vocab.morphology.n_tags, 64))
|
||||
|
||||
def __call__(self, doc):
|
||||
doc.tensor = self.model([doc])[0]
|
||||
|
|
|
@ -48,7 +48,7 @@ cdef class StateClass:
|
|||
|
||||
@classmethod
|
||||
def nr_context_tokens(cls, int nF, int nB, int nS, int nL, int nR):
|
||||
return 4
|
||||
return 11
|
||||
|
||||
def set_context_tokens(self, int[:] output, nF=1, nB=0, nS=2,
|
||||
nL=2, nR=2):
|
||||
|
@ -56,14 +56,14 @@ cdef class StateClass:
|
|||
output[1] = self.B(1)
|
||||
output[2] = self.S(0)
|
||||
output[3] = self.S(1)
|
||||
#output[4] = self.L(self.S(0), 1)
|
||||
#output[5] = self.L(self.S(0), 2)
|
||||
#output[6] = self.R(self.S(0), 1)
|
||||
#output[7] = self.R(self.S(0), 2)
|
||||
#output[7] = self.L(self.S(1), 1)
|
||||
#output[8] = self.L(self.S(1), 2)
|
||||
#output[9] = self.R(self.S(1), 1)
|
||||
#output[10] = self.R(self.S(1), 2)
|
||||
output[4] = self.L(self.S(0), 1)
|
||||
output[5] = self.L(self.S(0), 2)
|
||||
output[6] = self.R(self.S(0), 1)
|
||||
output[7] = self.R(self.S(0), 2)
|
||||
output[7] = self.L(self.S(1), 1)
|
||||
output[8] = self.L(self.S(1), 2)
|
||||
output[9] = self.R(self.S(1), 1)
|
||||
output[10] = self.R(self.S(1), 2)
|
||||
|
||||
def set_attributes(self, uint64_t[:, :] vals, int[:] tokens, int[:] names):
|
||||
cdef int i, j, tok_i
|
||||
|
|
Loading…
Reference in New Issue
Block a user