The 'direct' option in 'spacy download' is supposed to only download from our model releases repository. However, users were able to pass in a relative path, allowing download from arbitrary repositories. This meant that a service that sourced strings from user input and which used the direct option would allow users to install arbitrary packages.
* Update `TextCatBOW` to use the fixed `SparseLinear` layer
A while ago, we fixed the `SparseLinear` layer to use all available
parameters: https://github.com/explosion/thinc/pull/754
This change updates `TextCatBOW` to `v3` which uses the new
`SparseLinear_v2` layer. This results in a sizeable improvement on a
text categorization task that was tested.
While at it, this `spacy.TextCatBOW.v3` also adds the `length_exponent`
option to make it possible to change the hidden size. Ideally, we'd just
have an option called `length`. But the way that `TextCatBOW` uses
hashes results in a non-uniform distribution of parameters when the
length is not a power of two.
* Replace TexCatBOW `length_exponent` parameter by `length`
We now round up the length to the next power of two if it isn't
a power of two.
* Remove some tests for TextCatBOW.v2
* Fix missing import
* Update the "Missing factory" error message
This accounts for model installations that took place during the current Python session.
* Add a note about Jupyter notebooks
* Move error to `spacy.cli.download`
Add extra message for Jupyter sessions
* Add additional note for interactive sessions
* Remove note about `spacy-transformers` from error message
* `isort`
* Improve checks for colab (also helps displacy)
* Update warning messages
* Improve flow for multiple checks
---------
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* add span key option for CLI evaluation
* Rephrase CLI help to refer to Doc.spans instead of spancat
* Rephrase docs to refer to Doc.spans instead of spancat
---------
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* remove migration support form
* initial test commit
* add fixture
* add combo test
* pull out parameter example data
* fix formatting on examples
* remove unused import
* remove unncessary fmt:off instructions
* only set logger level if verbose flag is explicitly set
---------
Co-authored-by: svlandeg <svlandeg@github.com>
* Add cli for finding locations of registered func
* fixes: naming and typing
* isort
* update naming
* remove to find-function
* remove file:// bit
* use registry name if given and exit gracefully if a registry was not found
* clean up failure msg
* specify registry_name options
* mypy fixes
* return location for internal usage
* add documentation
* more mypy fixes
* clean up example
* add section to menu
* add tests
---------
Co-authored-by: svlandeg <svlandeg@github.com>
* Setting up weasel branch (#12456)
* remove project-specific functionality
* remove project-specific tests
* remove project-specific schemas
* remove project-specific information in about
* remove project-specific functions in util.py
* remove project-specific error strings
* remove project-specific CLI commands
* black formatting
* restore some functions that are used beyond projects
* remove project imports
* remove imports
* remove remote_storage tests
* remove one more project unit test
* update for PR 12394
* remove get_hash and get_checksum
* remove upload_ and download_file methods
* remove ensure_pathy
* revert clumsy fingers
* reinstate E970
* feat: use weasel as spacy project command (#12473)
* feat: use weasel as spacy project command
* build: use constrained requirement for weasel
* feat: add weasel to the library requirements
* build: update weasel to new version
* build: use specific weasel tag
* build: use weasel-0.1.0rc1 from PyPI
* fix: remove weasel from requirements.txt
* fix: requirements.txt and setup.cfg need to reflect each other
* feat: remove legacy spacy project code
* bump version
* further merge fixes
* isort
---------
Co-authored-by: Basile Dura <bdura@users.noreply.github.com>
When the default `max_length` is not set and there are longer training
documents, it can be difficult to train and evaluate the span finder due
to memory limits and the time it takes to evaluate a huge number of
predicted spans.
* Support custom token/lexeme attribute for vectors
* Fix imports
* Back off to ORTH without Vectors.attr
* Fallback if vectors.attr doesn't exist
* Update docs
* Use isort with Black profile
* isort all the things
* Fix import cycles as a result of import sorting
* Add DOCBIN_ALL_ATTRS type definition
* Add isort to requirements
* Remove isort from build dependencies check
* Typo
* span finder integrated into spacy from experimental
* black
* isort
* black
* default spankey constant
* black
* Update spacy/pipeline/spancat.py
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* rename
* rename
* max_length and min_length as Optional[int] and strict checking
* black
* mypy fix for integer type infinity
* revert line order
* implement all comparison operators for inf int
* avoid two for loops over all docs by not precomputing
* interleave thresholding with span creation
* black
* revert to not interleaving (relized its faster)
* black
* Update spacy/errors.py
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* update dosctring
* enforce that the gold and predicted documents have the same text
* new error for ensuring reference and predicted texts are the same
* remove todo
* adjust test
* black
* handle misaligned tokenization
* return correct variable
* failing overfit test
* only use a single spans_key like in spancat
* black
* remove debug lines
* typo
* remove comment
* remove near duplicate reduntant method
* use the 'spans_key' variable name everywhere
* Update spacy/pipeline/span_finder.py
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* flaky test fix suggestion, hand set bias terms
* only test suggester and test result exhaustively
* make it clear that the span_finder_suggester is more general (not specific to span_finder)
* Update spacy/tests/pipeline/test_span_finder.py
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Apply suggestions from code review
* remove question comment
* move preset_spans_suggester test to spancat tests
* Add docs and unify default configs for spancat and span finder
* Add `allow_overlap=True` to span finder scorer
* Fix offset bug in set_annotations
* Ignore labels in span finder scorer
* Format
* Add span_finder to quickstart template
* Move settings to self.cfg, store min/max unset as None
* Remove debugging
* Update docstrings and docs
* Update spacy/pipeline/span_finder.py
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Fix imports
---------
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Add scorer option to return per-component scores
Add `per_component` option to `Language.evaluate` and `Scorer.score` to
return scores keyed by `tokenizer` (hard-coded) or by component name.
Add option to `evaluate` CLI to score by component. Per-component scores
can only be saved to JSON.
* Update help text and messages
* Add spans in spacy benchmark
The current implementation of spaCy benchmark accuracy / spacy evaluate
doesn't include the "spans" type, so calling the command doesn't render
the HTML displaCy file needed.
This PR attempts to fix that by creating a new parameter for "spans"
and calling the appropriate displaCy value.
* Reformat file with black
* Add tests for evaluate
* Fix spans -> span for displacy style
* Update test to check render instead
* Update source so mypy passes
* Add parser information to avoid warnings
* [wip] Update
* [wip] Update
* Add initial port
* [wip] Update
* Fix all imports
* Add spancat_exclusive to pipeline
* [WIP] Update
* [ci skip] Add breakpoint for debugging
* Use spacy.SpanCategorizer.v1 as default archi
* Update spacy/pipeline/spancat_exclusive.py
Co-authored-by: kadarakos <kadar.akos@gmail.com>
* [ci skip] Small updates
* Use Softmax v2 directly from thinc
* Cache the label map
* Fix mypy errors
However, I ignored line 370 because it opened up a bunch of type errors
that might be trickier to solve and might lead to a more complicated
codebase.
* avoid multiplication with 1.0
Co-authored-by: kadarakos <kadar.akos@gmail.com>
* Update spacy/pipeline/spancat_exclusive.py
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Update component versions to v2
* Add scorer to docstring
* Add _n_labels property to SpanCategorizer
Instead of using len(self.labels) in initialize() I am using a private
property self._n_labels. This achieves implementation parity and allows
me to delete the whole initialize() method for spancat_exclusive (since
it's now the same with spancat).
* Inherit from SpanCat instead of TrainablePipe
This commit changes the inheritance structure of Exclusive_Spancat,
now it's inheriting from SpanCategorizer than TrainablePipe. This
allows me to remove duplicate methods that are already present in
the parent function.
* Revert documentation link to spancat
* Fix init call for exclusive spancat
* Update spacy/pipeline/spancat_exclusive.py
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Import Suggester from spancat
* Include zero_init.v1 for spancat
* Implement _allow_extra_label to use _n_labels
To ensure that spancat / spancat_exclusive cannot be resized after
initialization, I inherited the _allow_extra_label() method from
spacy/pipeline/trainable_pipe.pyx and used self._n_labels instead
of len(self.labels) for checking.
I think that changing it locally is a better solution rather than
forcing each class that inherits TrainablePipe to use the self._n_labels
attribute.
Also note that I turned-off black formatting in this block of code
because it reads better without the overhang.
* Extend existing tests to spancat_exclusive
In this commit, I extended the existing tests for spancat to include
spancat_exclusive. I parametrized the test functions with 'name'
(similar var name with textcat and textcat_multilabel) for each
applicable test.
TODO: Add overfitting tests for spancat_exclusive
* Update documentation for spancat
* Turn on formatting for allow_extra_label
* Remove initializers in default config
* Use DEFAULT_EXCL_SPANCAT_MODEL
I also renamed spancat_exclusive_default_config into
spancat_excl_default_config because black does some not pretty
formatting changes.
* Update documentation
Update grammar and usage
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Clarify docstring for Exclusive_SpanCategorizer
* Remove mypy ignore and typecast labels to list
* Fix documentation API
* Use a single variable for tests
* Update defaults for number of rows
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Put back initializers in spancat config
Whenever I remove model.scorer.init_w and model.scorer.init_b,
I encounter an error in the test:
SystemError: <method '__getitem__' of 'dict' objects> returned a result
with an error set.
My Thinc version is 8.1.5, but I can't seem to check what's causing the
error.
* Update spancat_exclusive docstring
* Remove init_W and init_B parameters
This commit is expected to fail until the new Thinc release.
* Require thinc>=8.1.6 for serializable Softmax defaults
* Handle zero suggestions to make tests pass
I'm not sure if this is the most elegant solution. But what should
happen is that the _make_span_group function MUST return an empty
SpanGroup if there are no suggestions.
The error happens when the 'scores' variable is empty. We cannot
get the 'predicted' and other downstream vars.
* Better approach for handling zero suggestions
* Update website/docs/api/spancategorizer.md
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Update spancategorizer headers
* Apply suggestions from code review
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Add default value in negative_weight in docs
* Add default value in allow_overlap in docs
* Update how spancat_exclusive is constructed
In this commit, I added the following:
- Put the default values of negative_weight and allow_overlap
in the default_config dictionary.
- Rename make_spancat -> make_exclusive_spancat
* Run prettier on spancategorizer.mdx
* Change exactly one -> at most one
* Add suggester documentation in Exclusive_SpanCategorizer
* Add suggester to spancat docstrings
* merge multilabel and singlelabel spancat
* rename spancat_exclusive to singlelable
* wire up different make_spangroups for single and multilabel
* black
* black
* add docstrings
* more docstring and fix negative_label
* don't rely on default arguments
* black
* remove spancat exclusive
* replace single_label with add_negative_label and adjust inference
* mypy
* logical bug in configuration check
* add spans.attrs[scores]
* single label make_spangroup test
* bugfix
* black
* tests for make_span_group with negative labels
* refactor make_span_group
* black
* Update spacy/tests/pipeline/test_spancat.py
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* remove duplicate declaration
* Update spacy/pipeline/spancat.py
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* raise error instead of just print
* make label mapper private
* update docs
* run prettier
* Update website/docs/api/spancategorizer.mdx
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Update website/docs/api/spancategorizer.mdx
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Update spacy/pipeline/spancat.py
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Update spacy/pipeline/spancat.py
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Update spacy/pipeline/spancat.py
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Update spacy/pipeline/spancat.py
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* don't keep recomputing self._label_map for each span
* typo in docs
* Intervals to private and document 'name' param
* Update spacy/pipeline/spancat.py
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Update spacy/pipeline/spancat.py
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* add Tag to new features
* replace tags
* revert
* revert
* revert
* revert
* Update website/docs/api/spancategorizer.mdx
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Update website/docs/api/spancategorizer.mdx
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* prettier
* Fix merge
* Update website/docs/api/spancategorizer.mdx
* remove references to 'single_label'
* remove old paragraph
* Add spancat_singlelabel to config template
* Format
* Extend init config tests
---------
Co-authored-by: kadarakos <kadar.akos@gmail.com>
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Change GPU efficient textcat to use CNN, not BOW
If you generate a config with a textcat component using GPU
(transformers), the defaut option (efficiency) uses a BOW architecture,
which does not use tok2vec features. While that can make sense as part
of a larger pipeline, in the case of just a transformer and a textcat,
that means the transformer is doing a lot of work for no purpose.
This changes it so that the CNN architecture is used instead. It could
also be changed to be the same as the accuracy config, which uses the
ensemble architecture.
* Add the transformer when using a textcat with GPU
* Switch ubuntu-latest to ubuntu-20.04 in main tests (#11928)
* Switch ubuntu-latest to ubuntu-20.04 in main tests
* Only use 20.04 for 3.6
* Require thinc v8.1.7
* Require thinc v8.1.8
* Break up longer expression
---------
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Handle deprecation of pkg_resources
* Replace `pkg_resources` with `importlib_metadata` for `spacy info
--url`
* Remove requirements check from `spacy project` given the lack of
alternatives
* Fix installed model URL method and CI test
* Fix types/handling, simplify catch-all return
* Move imports instead of disabling requirements check
* Format
* Reenable test with ignored deprecation warning
* Fix except
* Fix return
* change logging call for spacy.LookupsDataLoader.v1
* substitutions in language and _util
* various more substitutions
* add string formatting guidelines to contribution guidelines
* WIP
* rm ipython embeds
* rm total
* WIP
* cleanup
* cleanup + reword
* rm component function
* remove migration support form
* fix reference dataset for dev data
* additional fixes
- set approach to identifying unique trees
- adjust line length on messages
- add logic for detecting docs without annotations
* use 0 instead of none for no annotation
* partial annotation support
* initial tests for _compile_gold lemma attributes
Using the example data from the edit tree lemmatizer tests for:
- lemmatizer_trees
- partial_lemma_annotations
- n_low_cardinality_lemmas
- no_lemma_annotations
* adds output test for cli app
* switch msg level
* rm unclear uniqueness check
* Revert "rm unclear uniqueness check"
This reverts commit 6ea2b3524b.
* remove good message on uniqueness
* formatting
* use en_vocab fixture
* clarify data set source in messages
* remove unnecessary import
Co-authored-by: svlandeg <svlandeg@github.com>
* Add a `spacy evaluate speed` subcommand
This subcommand reports the mean batch performance of a model on a data set with
a 95% confidence interval. For reliability, it first performs some warmup
rounds. Then it will measure performance on batches with randomly shuffled
documents.
To avoid having too many spaCy commands, `speed` is a subcommand of `evaluate`
and accuracy evaluation is moved to its own `evaluate accuracy` subcommand.
* Fix import cycle
* Restore `spacy evaluate`, make `spacy benchmark speed` an alias
* Add documentation for `spacy benchmark`
* CREATES -> PRINTS
* WPS -> words/s
* Disable formatting of benchmark speed arguments
* Fail with an error message when trying to speed bench empty corpus
* Make it clearer that `benchmark accuracy` is a replacement for `evaluate`
* Fix docstring webpage reference
* tests: check `evaluate` output against `benchmark accuracy`
* fix processing of "auto" in walk_directory
* add check for None
* move AUTO check to convert and fix verification of args
* add specific CLI test with CliRunner
* cleanup
* more cleanup
* update docstring
If you don't have spacy-transformers installed, but try to use `init
config` with the GPU flag, you'll get an error. The issue is that the
`use_transformers` flag in the config is conflated with the GPU flag,
and then there's an attempt to access transformers config info that may
not exist.
There may be a better way to do this, but this stops the error.
* Support local filesystem remotes for projects
* Fix support for local filesystem remotes for projects
* Use `FluidPath` instead of `Pathy` to support both filesystem and
remote paths
* Create missing parent directories if required for local filesystem
* Add a more general `_file_exists` method to support both `Pathy`,
`Path`, and `smart_open`-compatible URLs
* Add explicit `smart_open` dependency starting with support for
`compression` flag
* Update `pathy` dependency to exclude older versions that aren't
compatible with required `smart_open` version
* Update docs to refer to `Pathy` instead of `smart_open` for project
remotes (technically you can still push to any `smart_open`-compatible
path but you can't pull from them)
* Add tests for local filesystem remotes
* Update pathy for general BlobStat sorting
* Add import
* Remove _file_exists since only Pathy remotes are supported
* Format CLI docs
* Clean up merge