Commit Graph

8 Commits

Author SHA1 Message Date
maurice
c608baeecc
Fix typo in method name 2024-01-16 21:54:54 +01:00
Adriane Boyd
55614d6799 Add profile=False to currently unprofiled cython 2023-09-28 17:09:41 +02:00
Basile Dura
b0228d8ea6
ci: add cython linter (#12694)
* chore: add cython-linter dev dependency

* fix: lexeme.pyx

* fix: morphology.pxd

* fix: tokenizer.pxd

* fix: vocab.pxd

* fix: morphology.pxd (line length)

* ci: add cython-lint

* ci: fix cython-lint call

* Fix kb/candidate.pyx.

* Fix kb/kb.pyx.

* Fix kb/kb_in_memory.pyx.

* Fix kb.

* Fix training/ partially.

* Fix training/. Ignore trailing whitespaces and too long lines.

* Fix ml/.

* Fix matcher/.

* Fix pipeline/.

* Fix tokens/.

* Fix build errors. Fix vocab.pyx.

* Fix cython-lint install and run.

* Fix lexeme.pyx, parts_of_speech.pxd, vectors.pyx. Temporarily disable cython-lint execution.

* Fix attrs.pyx, lexeme.pyx, symbols.pxd, isort issues.

* Make cython-lint install conditional. Fix tokenizer.pyx.

* Fix remaining files. Reenable cython-lint check.

* Readded parentheses.

* Fix test_build_dependencies().

* Add explanatory comment to cython-lint execution.

---------

Co-authored-by: Raphael Mitsch <r.mitsch@outlook.com>
2023-07-19 12:03:31 +02:00
Daniël de Kok
e2b70df012
Configure isort to use the Black profile, recursively isort the spacy module (#12721)
* Use isort with Black profile

* isort all the things

* Fix import cycles as a result of import sorting

* Add DOCBIN_ALL_ATTRS type definition

* Add isort to requirements

* Remove isort from build dependencies check

* Typo
2023-06-14 17:48:41 +02:00
Matthew Honnibal
8656a08777
Add beam_parser and beam_ner components for v3 (#6369)
* Get basic beam tests working

* Get basic beam tests working

* Compile _beam_utils

* Remove prints

* Test beam density

* Beam parser seems to train

* Draft beam NER

* Upd beam

* Add hypothesis as dev dependency

* Implement missing is-gold-parse method

* Implement early update

* Fix state hashing

* Fix test

* Fix test

* Default to non-beam in parser constructor

* Improve oracle for beam

* Start refactoring beam

* Update test

* Refactor beam

* Update nn

* Refactor beam and weight by cost

* Update ner beam settings

* Update test

* Add __init__.pxd

* Upd test

* Fix test

* Upd test

* Fix test

* Remove ring buffer history from StateC

* WIP change arc-eager transitions

* Add state tests

* Support ternary sent start values

* Fix arc eager

* Fix NER

* Pass oracle cut size for beam

* Fix ner test

* Fix beam

* Improve StateC.clone

* Improve StateClass.borrow

* Work directly with StateC, not StateClass

* Remove print statements

* Fix state copy

* Improve state class

* Refactor parser oracles

* Fix arc eager oracle

* Fix arc eager oracle

* Use a vector to implement the stack

* Refactor state data structure

* Fix alignment of sent start

* Add get_aligned_sent_starts method

* Add test for ae oracle when bad sentence starts

* Fix sentence segment handling

* Avoid Reduce that inserts illegal sentence

* Update preset SBD test

* Fix test

* Remove prints

* Fix sent starts in Example

* Improve python API of StateClass

* Tweak comments and debug output of arc eager

* Upd test

* Fix state test

* Fix state test
2020-12-13 09:08:32 +08:00
Matthew Honnibal
737a1408d9 Improve implementation of fix #6010
Follow-ups to the parser efficiency fix.

* Avoid introducing new counter for number of pushes
* Base cut on number of transitions, keeping it more even
* Reintroduce the randomization we had in v2.
2020-09-02 14:42:32 +02:00
Matthew Honnibal
c1bf3a5602
Fix significant performance bug in parser training (#6010)
The parser training makes use of a trick for long documents, where we
use the oracle to cut up the document into sections, so that we can have
batch items in the middle of a document. For instance, if we have one
document of 600 words, we might make 6 states, starting at words 0, 100,
200, 300, 400 and 500.

The problem is for v3, I screwed this up and didn't stop parsing! So
instead of a batch of [100, 100, 100, 100, 100, 100], we'd have a batch
of [600, 500, 400, 300, 200, 100]. Oops.

The implementation here could probably be improved, it's annoying to
have this extra variable in the state. But this'll do.

This makes the v3 parser training 5-10 times faster, depending on document
lengths. This problem wasn't in v2.
2020-09-02 12:57:13 +02:00
Sofie Van Landeghem
ca491722ad
The Parser is now a Pipe (2) (#5844)
* moving syntax folder to _parser_internals

* moving nn_parser and transition_system

* move nn_parser and transition_system out of internals folder

* moving nn_parser code into transition_system file

* rename transition_system to transition_parser

* moving parser_model and _state to ml

* move _state back to internals

* The Parser now inherits from Pipe!

* small code fixes

* removing unnecessary imports

* remove link_vectors_to_models

* transition_system to internals folder

* little bit more cleanup

* newlines
2020-07-30 23:30:54 +02:00