* fix(util): fix decaying function output
* fix(util): better test and adhere to code standards
* fix(util): correct variable name, pytestify test, update website text
* Fix code for bag-of-words feature extraction
The _ml.py module had a redundant copy of a function to extract unigram
bag-of-words features, except one had a bug that set values to 0.
Another function allowed extraction of bigram features. Replace all three
with a new function that supports arbitrary ngram sizes and also allows
control of which attribute is used (e.g. ORTH, LOWER, etc).
* Support 'bow' architecture for TextCategorizer
This allows efficient ngram bag-of-words models, which are better when
the classifier needs to run quickly, especially when the texts are long.
Pass architecture="bow" to use it. The extra arguments ngram_size and
attr are also available, e.g. ngram_size=2 means unigram and bigram
features will be extracted.
* Fix size limits in train_textcat example
* Explain architectures better in docs
v2.1 introduced a regression when deserializing the parser after
parser.add_label() had been called. The code around the class mapping is
pretty confusing currently, as it was written to accommodate backwards
model compatibility. It needs to be revised when the models are next
retrained.
Closes#3433
spaCy v2.1 switched to the built-in re module, where v2.0 had been using
the third-party regex library. When the tokenizer was deserialized on
Python2.7, the `re.compile()` function was called with expressions that
featured escaped unicode codepoints that were not in Python2.7's unicode
database.
Problems occurred when we had a range between two of these unknown
codepoints, like this:
```
'[\\uAA77-\\uAA79]'
```
On Python2.7, the unknown codepoints are not unescaped correctly,
resulting in arbitrary out-of-range characters being matched by the
expression.
This problem does not occur if we instead have a range between two
unicode literals, rather than the escape sequences. To fix the bug, we
therefore add a new compat function that unescapes unicode sequences
using the `ast.literal_eval()` function. Care is taken to ensure we
do not also escape non-unicode sequences.
Closes#3356.
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
I wrote a small script to read the UD English training data and check
that our tag map and morph rules were resulting in the best POS map.
This hadn't been done for some time, and there have been various changes
to the UD schema since it has been done. After these changes we should
see much better agreement between our POS assignments and the UD POS
tags.
While developing v2.1, I ran a bunch of hyper-parameter search
experiments to find settings that performed well for spaCy's NER and
parser. I ended up changing the default Adam settings from beta1=0.9,
beta2=0.999, eps=1e-8 to beta1=0.8, beta2=0.8, eps=1e-5. This was giving
a small improvement in accuracy (like, 0.4%).
Months later, I run the models with Prodigy, which uses beam-search
decoding even when the model has been trained with a greedy objective.
The new models performed terribly...So, wtf? After a couple of days
debugging, I figured out that the new optimizer settings was causing the
model to converge to solutions where the top-scoring class often had
a score of like, -80. The variance on the weights had gone up
enormously. I guess I needed to update the L2 regularisation as well?
Anyway. Let's just revert the change --- if the optimizer is finding
such extreme solutions, that seems bad, and not nearly worth the small
improvement in accuracy.
Currently training a slate of models, to verify the accuracy change is minimal.
Once the training is complete, we can merge this.
<!--- Provide a general summary of your changes in the title. -->
## Description
<!--- Use this section to describe your changes. If your changes required
testing, include information about the testing environment and the tests you
ran. If your test fixes a bug reported in an issue, don't forget to include the
issue number. If your PR is still a work in progress, that's totally fine – just
include a note to let us know. -->
### Types of change
<!-- What type of change does your PR cover? Is it a bug fix, an enhancement
or new feature, or a change to the documentation? -->
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
Add and document CLI options for batch size, max doc length, min doc length for `spacy pretrain`.
Also improve CLI output.
Closes#3216
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.