* Added new convenience cython functions to SpanGroup to avoid unnecessary allocation/deallocation of objects
* Replaced sorting in has_overlap with C++ for efficiency. Also, added a test for has_overlap
* Added a method to efficiently merge SpanGroups
* Added __delitem__, __add__ and __iadd__. Also, allowed to pass span lists to merge function. Replaced extend() body with call to merge
* Renamed merge to concat and added missing things to documentation
* Added operator+ and operator += in the documentation
* Added a test for Doc deallocation
* Update spacy/tokens/span_group.pyx
* Updated SpanGroup tests to use new span list comparison function rather than assert_span_list_equal, eliminating the need to have a separate assert_not_equal fnction
* Fixed typos in SpanGroup documentation
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Minor changes requested by Sofie: rearranged import statements. Added new=3.2.1 tag to SpanGroup.__setitem__ documentation
* SpanGroup: moved repetitive list index check/adjustment in a separate function
* Turn off formatting that hurts readability spacy/tests/doc/test_span_group.py
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Remove formatting that hurts readability spacy/tests/doc/test_span_group.py
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Turn off formatting that hurts readability in spacy/tests/doc/test_span_group.py
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Support more internal methods for SpanGroup
Add support for:
* `__setitem__`
* `__delitem__`
* `__iadd__`: for `SpanGroup` or `Iterable[Span]`
* `__add__`: for `SpanGroup` only
Adapted from #9698 with the scope limited to the magic methods.
* Use v3.3 as new version in docs
* Add new tag to SpanGroup.copy in API docs
* Remove duplicate import
* Apply suggestions from code review
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Remaining suggestions and formatting
Co-authored-by: nrodnova <nrodnova@hotmail.com>
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
Co-authored-by: Natalia Rodnova <4512370+nrodnova@users.noreply.github.com>
* Alignment: use a simplified ragged type for performance
This introduces the AlignmentArray type, which is a simplified version
of Ragged that performs better on the simple(r) indexing performed for
alignment.
* AlignmentArray: raise an error when using unsupported index
* AlignmentArray: move error messages to Errors
* AlignmentArray: remove simlified ... with simplifications
* AlignmentArray: fix typo that broke a[n:n] indexing
* added failing test case for the issue.
* Fixed typo.
* fixed typo in test.
* added corrected typo word into test_tr_lex_attrs_capitals as param. Test passes. Also tried and confirmed that test is failing after fixing the typo in the test case I wrote. Deleted the test case for typo.
Co-authored-by: Yunus Atahan <yunus.atahan@trmotor.local>
* Add vector deduplication
* Add `Vocab.deduplicate_vectors()`
* Always run deduplication in `spacy init vectors`
* Clean up a few vector-related error messages and docs examples
* Always unique with numpy
* Fix types
* Add edit tree lemmatizer
Co-authored-by: Daniël de Kok <me@danieldk.eu>
* Hide edit tree lemmatizer labels
* Use relative imports
* Switch to single quotes in error message
* Type annotation fixes
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Reformat edit_tree_lemmatizer with black
* EditTreeLemmatizer.predict: take Iterable
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Validate edit trees during deserialization
This change also changes the serialized representation. Rather than
mirroring the deep C structure, we use a simple flat union of the match
and substitution node types.
* Move edit_trees to _edit_tree_internals
* Fix invalid edit tree format error message
* edit_tree_lemmatizer: remove outdated TODO comment
* Rename factory name to trainable_lemmatizer
* Ignore type instead of casting truths to List[Union[Ints1d, Floats2d, List[int], List[str]]] for thinc v8.0.14
* Switch to Tagger.v2
* Add documentation for EditTreeLemmatizer
* docs: Fix 3.2 -> 3.3 somewhere
* trainable_lemmatizer documentation fixes
* docs: EditTreeLemmatizer is in edit_tree_lemmatizer.py
Co-authored-by: Daniël de Kok <me@danieldk.eu>
Co-authored-by: Daniël de Kok <me@github.danieldk.eu>
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Added examples for Slovene
* Update spacy/lang/sl/examples.py
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Corrected a typo in one of the sentences
Co-authored-by: Luka Dragar <D20124481@mytudublin.ie>
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Add tokenizer option to allow Matcher handling for all rules
Add tokenizer option `with_faster_rules_heuristics` that determines
whether the special cases applied by the internal `Matcher` are filtered
by whether they contain affixes or space. If `True` (default), the rules
are filtered to prioritize speed over rare edge cases. If `False`, all
rules are included in the final `Matcher`-based pass over the doc.
* Reset all caches when reloading special cases
* Revert "Reset all caches when reloading special cases"
This reverts commit 4ef6bd171d.
* Initialize max_length properly
* Add new tag to API docs
* Rename to faster heuristics
* Save vectors as little endian, load with Ops.asarray
* Always save vector data as little endian
* Always run `Vectors.to_ops` when vector data is loaded so that
`Ops.asarray` can be used to load the data correctly for the current
ops.
* Update spacy/vectors.pyx
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Update spacy/vectors.pyx
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Fix docstring for EntityRenderer
* Add warning in displacy if doc.spans are empty
* Implement parse_spans converter
One notable change here is that the default spans_key is sc, and
it's set by the user through the options.
* Implement SpanRenderer
Here, I implemented a SpanRenderer that looks similar to the
EntityRenderer except for some templates. The spans_key, by default, is
set to sc, but can be configured in the options (see parse_spans). The
way I rendered these spans is per-token, i.e., I first check if each
token (1) belongs to a given span type and (2) a starting token of a
given span type. Once I have this information, I render them into the
markup.
* Fix mypy issues on typing
* Add tests for displacy spans support
* Update colors from RGB to hex
Co-authored-by: Ines Montani <ines@ines.io>
* Remove unnecessary CSS properties
* Add documentation for website
* Remove unnecesasry scripts
* Update wording on the documentation
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Put typing dependency on top of file
* Put back z-index so that spans overlap properly
* Make warning more explicit for spans_key
Co-authored-by: Ines Montani <ines@ines.io>
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Tagger: use unnormalized probabilities for inference
Using unnormalized softmax avoids use of the relatively expensive exp function,
which can significantly speed up non-transformer models (e.g. I got a speedup
of 27% on a German tagging + parsing pipeline).
* Add spacy.Tagger.v2 with configurable normalization
Normalization of probabilities is disabled by default to improve
performance.
* Update documentation, models, and tests to spacy.Tagger.v2
* Move Tagger.v1 to spacy-legacy
* docs/architectures: run prettier
* Unnormalized softmax is now a Softmax_v2 option
* Require thinc 8.0.14 and spacy-legacy 3.0.9
* Add save_candidates attribute
* Change spancat api
* Add unit test
* reimplement method to produce a list of doc
* Add method to docs
* Add new version tag
* Add intended use to docstring
* prettier formatting
* Add support basic support for lower sorbian.
* Add some test for dsb.
* Update spacy/lang/dsb/examples.py
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Fix get_matching_ents
Not sure what happened here - the code prior to this commit simply does
not work. It's already covered by entity linker tests, which were
succeeding in the NEL PR, but couldn't possibly succeed on master.
* Fix test
Test was indented inside another test and so doesn't seem to have been
running properly.
* Add support basic support for upper sorbian.
* Add tokenizer exceptions and tests.
* Update spacy/lang/hsb/examples.py
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Partial fix of entity linker batching
* Add import
* Better name
* Add `use_gold_ents` option, docs
* Change to v2, create stub v1, update docs etc.
* Fix error type
Honestly no idea what the right type to use here is.
ConfigValidationError seems wrong. Maybe a NotImplementedError?
* Make mypy happy
* Add hacky fix for init issue
* Add legacy pipeline entity linker
* Fix references to class name
* Add __init__.py for legacy
* Attempted fix for loss issue
* Remove placeholder V1
* formatting
* slightly more interesting train data
* Handle batches with no usable examples
This adds a test for batches that have docs but not entities, and a
check in the component that detects such cases and skips the update step
as thought the batch were empty.
* Remove todo about data verification
Check for empty data was moved further up so this should be OK now - the
case in question shouldn't be possible.
* Fix gradient calculation
The model doesn't know which entities are not in the kb, so it generates
embeddings for the context of all of them.
However, the loss does know which entities aren't in the kb, and it
ignores them, as there's no sensible gradient.
This has the issue that the gradient will not be calculated for some of
the input embeddings, which causes a dimension mismatch in backprop.
That should have caused a clear error, but with numpyops it was causing
nans to happen, which is another problem that should be addressed
separately.
This commit changes the loss to give a zero gradient for entities not in
the kb.
* add failing test for v1 EL legacy architecture
* Add nasty but simple working check for legacy arch
* Clarify why init hack works the way it does
* Clarify use_gold_ents use case
* Fix use gold ents related handling
* Add tests for no gold ents and fix other tests
* Use aligned ents function (not working)
This doesn't actually work because the "aligned" ents are gold-only. But
if I have a different function that returns the intersection, *then*
this will work as desired.
* Use proper matching ent check
This changes the process when gold ents are not used so that the
intersection of ents in the pred and gold is used.
* Move get_matching_ents to Example
* Use model attribute to check for legacy arch
* Rename flag
* bump spacy-legacy to lower 3.0.9
Co-authored-by: svlandeg <svlandeg@github.com>
* fixing argument order for rehearse
* rehearse test for ner and tagger
* rehearse bugfix
* added test for parser
* test for multilabel textcat
* rehearse fix
* remove debug line
* Update spacy/tests/training/test_rehearse.py
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Update spacy/tests/training/test_rehearse.py
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
Co-authored-by: Kádár Ákos <akos@onyx.uvt.nl>
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Make core projectivization methods cdef nogil
While profiling the parser, I noticed that relatively a lot of time is
spent in projectivization. This change rewrites the functions in the
core loops as cdef nogil for efficiency.
In C++-land, we use vector in place of Python lists and absent heads
are represented as -1 in place of None.
* _heads_to_c: add assertion
Validation should be performed by the caller, but this assertion ensures that
we are not reading/writing out of bounds with incorrect input.
* Fix NER check in CoNLL-U converter
Leave ents unset if no NER annotation is found in the MISC column.
* Revert to global rather than per-sentence NER check
* Update spacy/training/converters/conllu_to_docs.py
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
Add whitespace augmenter that inserts a single whitespace token into a
doc containing annotation used in core trained pipelines.
Add a combined augmenter that handles lowercasing, orth variants and
whitespace augmentation.
* Extended list of numbers for ru language
Extended list of numbers with all forms and cases including short forms, slang variants and roman numerals.
* Update lex_attrs.py
* Update 'like_num' function with percentages
Added support for numbers with percentages like 12%, 1.2% and etc. to the 'like_num' function.
* black formatting
Co-authored-by: thomashacker <EdwardSchmuhl@web.de>
* Extend list of abbreviations for ru language
Extended list of abbreviations for ru language those may have influence on tokenization.
* black formatting
Co-authored-by: thomashacker <EdwardSchmuhl@web.de>
* Delay loading of mecab in Korean tokenizer
Delay loading of mecab until the tokenizer is called the first time so
that it's possible to initialize a blank `ko` pipeline without having
mecab installed, e.g. for use with `spacy init vectors`.
* Move mecab import back to __init__
Move mecab import back to __init__ to warn users at the same point as
before for missing python dependencies.