* signing contributor agreement
* adding new content to the spaCy universe
* updating outdated example codes
* resolving issues for the PR
* resolve review for klayers
* remove contributor-agreement file from the PR
* Update code example of spaCySentiWS
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Update spacy-sentiws code example
Co-authored-by: schaeran <schaeran1994@gmail.com>
Co-authored-by: schaeran <schaeran@explosion.ai>
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* added crosslingual coreference to spacy universe
* Updated example to introduce batching example.
Co-authored-by: David Berenstein <david.berenstein@pandoraintelligence.com>
* Update universe.json
added classy-classification to Spacy universe
* Update universe.json
added classy-classification to the spacy universe resources
* Update universe.json
corrected a small typo in json
* Update website/meta/universe.json
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Update website/meta/universe.json
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Update website/meta/universe.json
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Update universe.json
processed merge feedback
* Update universe.json
* updated information for Classy Classificaiton
Made a more comprehensible and easy description for Classy Classification based on feedback of Philip Vollet to prepare for sharing.
* added note about examples
* corrected for wrong formatting changes
* Update website/meta/universe.json with small typo correction
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* resolved another typo
* Update website/meta/universe.json
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* added Concise Concepts package to spaCy universe.
* updated example code Concise Concepts
* updated description for Concise Concepts
* updated PR with more visually appealing examples
SO to koaning for the suggestions.
* corrected for small json typo's in concise concepts
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Update universe.json
added classy-classification to Spacy universe
* Update universe.json
added classy-classification to the spacy universe resources
* Update universe.json
corrected a small typo in json
* Update website/meta/universe.json
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Update website/meta/universe.json
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Update website/meta/universe.json
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Update universe.json
processed merge feedback
* Update universe.json
* updated information for Classy Classificaiton
Made a more comprehensible and easy description for Classy Classification based on feedback of Philip Vollet to prepare for sharing.
* added note about examples
* corrected for wrong formatting changes
* Update website/meta/universe.json with small typo correction
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* resolved another typo
* Update website/meta/universe.json
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* remove duplicate line
* add sent start/end token attributes to the docs
* let has_annotation work with IS_SENT_END
* elif instead of if
* add has_annotation test for sent attributes
* fix typo
* remove duplicate is_sent_start entry in docs
* Added spacy-wrap to universe
Added spacy-wrap to universe a small package for wrapping fine-tuned huggingface transformers to a spacy pipeline following the same API as spacy-transformers. (Currently limited to classification models)
* Update website/meta/universe.json
* Update website/meta/universe.json
* Update website/meta/universe.json
* Update website/meta/universe.json
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Clarify Span.ents documentation
Ref: #10135
Retain current behaviour. Span.ents will only include entities within
said span. You can't get tokens outside of the original span.
* Reword docstrings
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Update API docs in the website
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Fix infix as prefix in Tokenizer.explain
Update `Tokenizer.explain` to align with the `Tokenizer` algorithm:
* skip infix matches that are prefixes in the current substring
* Update tokenizer pseudocode in docs
* Support version tags in universe and add note about reporting
* Apply suggestions from code review
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* added new field
* added exception for IOb strings
* minor refinement to schema
* removed field
* fixed typo
* imported numeriacla val
* changed the code bit
* cosmetics
* added test for matcher
* set ents of moc docs
* added invalid pattern
* minor update to documentation
* blacked matcher
* added pattern validation
* add IOB vals to schema
* changed into test
* mypy compat
* cleaned left over
* added compat import
* changed type
* added compat import
* changed literal a bit
* went back to old
* made explicit type
* Update spacy/schemas.py
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Update spacy/schemas.py
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Update spacy/schemas.py
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Add link to pattern file info in EntityRuler.initialize docs
* Update website/docs/api/entityruler.md
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Use Vectors.shape rather than Vectors.data.shape
* Use Vectors.size rather than Vectors.data.size
* Add Vectors.to_ops to move data between different ops
* Add documentation for Vector.to_ops
* add entry for Applied Language Technology under "Courses"
Added the following entry into `universe.json`:
```
{
"type": "education",
"id": "applt-course",
"title": "Applied Language Technology",
"slogan": "NLP for newcomers using spaCy and Stanza",
"description": "These learning materials provide an introduction to applied language technology for audiences who are unfamiliar with language technology and programming. The learning materials assume no previous knowledge of the Python programming language.",
"url": "https://applied-language-technology.readthedocs.io/",
"image": "https://www.mv.helsinki.fi/home/thiippal/images/applt-preview.jpg",
"thumb": "https://applied-language-technology.readthedocs.io/en/latest/_static/logo.png",
"author": "Tuomo Hiippala",
"author_links": {
"twitter": "tuomo_h",
"github": "thiippal",
"website": "https://www.mv.helsinki.fi/home/thiippal/"
},
"category": ["courses"]
},
```
* Update the entry for "Applied Language Technology"