* Literal True for first/last options
* add test case
* update docs
* remove old redundant test case
* black formatting
* use Optional typing in docstrings
Co-authored-by: Raphael Mitsch <r.mitsch@outlook.com>
---------
Co-authored-by: Raphael Mitsch <r.mitsch@outlook.com>
* Support custom token/lexeme attribute for vectors
* Fix imports
* Back off to ORTH without Vectors.attr
* Fallback if vectors.attr doesn't exist
* Update docs
* Use isort with Black profile
* isort all the things
* Fix import cycles as a result of import sorting
* Add DOCBIN_ALL_ATTRS type definition
* Add isort to requirements
* Remove isort from build dependencies check
* Typo
* span finder integrated into spacy from experimental
* black
* isort
* black
* default spankey constant
* black
* Update spacy/pipeline/spancat.py
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* rename
* rename
* max_length and min_length as Optional[int] and strict checking
* black
* mypy fix for integer type infinity
* revert line order
* implement all comparison operators for inf int
* avoid two for loops over all docs by not precomputing
* interleave thresholding with span creation
* black
* revert to not interleaving (relized its faster)
* black
* Update spacy/errors.py
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* update dosctring
* enforce that the gold and predicted documents have the same text
* new error for ensuring reference and predicted texts are the same
* remove todo
* adjust test
* black
* handle misaligned tokenization
* return correct variable
* failing overfit test
* only use a single spans_key like in spancat
* black
* remove debug lines
* typo
* remove comment
* remove near duplicate reduntant method
* use the 'spans_key' variable name everywhere
* Update spacy/pipeline/span_finder.py
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* flaky test fix suggestion, hand set bias terms
* only test suggester and test result exhaustively
* make it clear that the span_finder_suggester is more general (not specific to span_finder)
* Update spacy/tests/pipeline/test_span_finder.py
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Apply suggestions from code review
* remove question comment
* move preset_spans_suggester test to spancat tests
* Add docs and unify default configs for spancat and span finder
* Add `allow_overlap=True` to span finder scorer
* Fix offset bug in set_annotations
* Ignore labels in span finder scorer
* Format
* Add span_finder to quickstart template
* Move settings to self.cfg, store min/max unset as None
* Remove debugging
* Update docstrings and docs
* Update spacy/pipeline/span_finder.py
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Fix imports
---------
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Require that all SpanGroup spans are from the current doc
The restriction on only adding spans from the current doc were already
implemented for all operations except for `SpanGroup.__init__`.
Initialize copied spans for `SpanGroup.copy` with `Doc.char_span` in
order to validate the character offsets and to make it possible to copy
spans between documents with differing tokenization. Currently there is
no validation that the document texts are identical, but the span char
offsets must be valid spans in the target doc, which prevents you from
ending up with completely invalid spans.
* Undo change in test_beam_overfitting_IO
* Enforce that Span.start/end(_char) remain valid and in sync
Allowing span attributes to be writable starting in v3 has made it
possible for the internal `Span.start/end/start_char/end_char` to get
out-of-sync or have invalid values.
This checks that the values are valid and syncs the token and char
offsets if any attributes are modified directly. It does not yet handle
the case where the underlying doc is modified.
* Format
* [wip] Update
* [wip] Update
* Add initial port
* [wip] Update
* Fix all imports
* Add spancat_exclusive to pipeline
* [WIP] Update
* [ci skip] Add breakpoint for debugging
* Use spacy.SpanCategorizer.v1 as default archi
* Update spacy/pipeline/spancat_exclusive.py
Co-authored-by: kadarakos <kadar.akos@gmail.com>
* [ci skip] Small updates
* Use Softmax v2 directly from thinc
* Cache the label map
* Fix mypy errors
However, I ignored line 370 because it opened up a bunch of type errors
that might be trickier to solve and might lead to a more complicated
codebase.
* avoid multiplication with 1.0
Co-authored-by: kadarakos <kadar.akos@gmail.com>
* Update spacy/pipeline/spancat_exclusive.py
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Update component versions to v2
* Add scorer to docstring
* Add _n_labels property to SpanCategorizer
Instead of using len(self.labels) in initialize() I am using a private
property self._n_labels. This achieves implementation parity and allows
me to delete the whole initialize() method for spancat_exclusive (since
it's now the same with spancat).
* Inherit from SpanCat instead of TrainablePipe
This commit changes the inheritance structure of Exclusive_Spancat,
now it's inheriting from SpanCategorizer than TrainablePipe. This
allows me to remove duplicate methods that are already present in
the parent function.
* Revert documentation link to spancat
* Fix init call for exclusive spancat
* Update spacy/pipeline/spancat_exclusive.py
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Import Suggester from spancat
* Include zero_init.v1 for spancat
* Implement _allow_extra_label to use _n_labels
To ensure that spancat / spancat_exclusive cannot be resized after
initialization, I inherited the _allow_extra_label() method from
spacy/pipeline/trainable_pipe.pyx and used self._n_labels instead
of len(self.labels) for checking.
I think that changing it locally is a better solution rather than
forcing each class that inherits TrainablePipe to use the self._n_labels
attribute.
Also note that I turned-off black formatting in this block of code
because it reads better without the overhang.
* Extend existing tests to spancat_exclusive
In this commit, I extended the existing tests for spancat to include
spancat_exclusive. I parametrized the test functions with 'name'
(similar var name with textcat and textcat_multilabel) for each
applicable test.
TODO: Add overfitting tests for spancat_exclusive
* Update documentation for spancat
* Turn on formatting for allow_extra_label
* Remove initializers in default config
* Use DEFAULT_EXCL_SPANCAT_MODEL
I also renamed spancat_exclusive_default_config into
spancat_excl_default_config because black does some not pretty
formatting changes.
* Update documentation
Update grammar and usage
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Clarify docstring for Exclusive_SpanCategorizer
* Remove mypy ignore and typecast labels to list
* Fix documentation API
* Use a single variable for tests
* Update defaults for number of rows
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Put back initializers in spancat config
Whenever I remove model.scorer.init_w and model.scorer.init_b,
I encounter an error in the test:
SystemError: <method '__getitem__' of 'dict' objects> returned a result
with an error set.
My Thinc version is 8.1.5, but I can't seem to check what's causing the
error.
* Update spancat_exclusive docstring
* Remove init_W and init_B parameters
This commit is expected to fail until the new Thinc release.
* Require thinc>=8.1.6 for serializable Softmax defaults
* Handle zero suggestions to make tests pass
I'm not sure if this is the most elegant solution. But what should
happen is that the _make_span_group function MUST return an empty
SpanGroup if there are no suggestions.
The error happens when the 'scores' variable is empty. We cannot
get the 'predicted' and other downstream vars.
* Better approach for handling zero suggestions
* Update website/docs/api/spancategorizer.md
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Update spancategorizer headers
* Apply suggestions from code review
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Add default value in negative_weight in docs
* Add default value in allow_overlap in docs
* Update how spancat_exclusive is constructed
In this commit, I added the following:
- Put the default values of negative_weight and allow_overlap
in the default_config dictionary.
- Rename make_spancat -> make_exclusive_spancat
* Run prettier on spancategorizer.mdx
* Change exactly one -> at most one
* Add suggester documentation in Exclusive_SpanCategorizer
* Add suggester to spancat docstrings
* merge multilabel and singlelabel spancat
* rename spancat_exclusive to singlelable
* wire up different make_spangroups for single and multilabel
* black
* black
* add docstrings
* more docstring and fix negative_label
* don't rely on default arguments
* black
* remove spancat exclusive
* replace single_label with add_negative_label and adjust inference
* mypy
* logical bug in configuration check
* add spans.attrs[scores]
* single label make_spangroup test
* bugfix
* black
* tests for make_span_group with negative labels
* refactor make_span_group
* black
* Update spacy/tests/pipeline/test_spancat.py
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* remove duplicate declaration
* Update spacy/pipeline/spancat.py
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* raise error instead of just print
* make label mapper private
* update docs
* run prettier
* Update website/docs/api/spancategorizer.mdx
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Update website/docs/api/spancategorizer.mdx
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Update spacy/pipeline/spancat.py
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Update spacy/pipeline/spancat.py
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Update spacy/pipeline/spancat.py
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Update spacy/pipeline/spancat.py
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* don't keep recomputing self._label_map for each span
* typo in docs
* Intervals to private and document 'name' param
* Update spacy/pipeline/spancat.py
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Update spacy/pipeline/spancat.py
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* add Tag to new features
* replace tags
* revert
* revert
* revert
* revert
* Update website/docs/api/spancategorizer.mdx
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Update website/docs/api/spancategorizer.mdx
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* prettier
* Fix merge
* Update website/docs/api/spancategorizer.mdx
* remove references to 'single_label'
* remove old paragraph
* Add spancat_singlelabel to config template
* Format
* Extend init config tests
---------
Co-authored-by: kadarakos <kadar.akos@gmail.com>
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Init
* fix tests
* Update spacy/errors.py
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Fix test_blank_languages
* Rename xx to mul in docs
* Format _util with black
* prettier formatting
---------
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Try to fix doc.copy
* Set dev version
* Make vocab always own lexemes
* Change version
* Add SpanGroups.copy method
* Fix set_annotations during Parser.update
* Fix dict proxy copy
* Upd version
* Fix copying SpanGroups
* Fix set_annotations in parser.update
* Fix parser set_annotations during update
* Revert "Fix parser set_annotations during update"
This reverts commit eb138c89ed.
* Revert "Fix set_annotations in parser.update"
This reverts commit c6df0eafd0.
* Fix set_annotations during parser update
* Inc version
* Handle final states in get_oracle_sequence
* Inc version
* Try to fix parser training
* Inc version
* Fix
* Inc version
* Fix parser oracle
* Inc version
* Inc version
* Fix transition has_gold
* Inc version
* Try to use real histories, not oracle
* Inc version
* Upd parser
* Inc version
* WIP on rewrite parser
* WIP refactor parser
* New progress on parser model refactor
* Prepare to remove parser_model.pyx
* Convert parser from cdef class
* Delete spacy.ml.parser_model
* Delete _precomputable_affine module
* Wire up tb_framework to new parser model
* Wire up parser model
* Uncython ner.pyx and dep_parser.pyx
* Uncython
* Work on parser model
* Support unseen_classes in parser model
* Support unseen classes in parser
* Cleaner handling of unseen classes
* Work through tests
* Keep working through errors
* Keep working through errors
* Work on parser. 15 tests failing
* Xfail beam stuff. 9 failures
* More xfail. 7 failures
* Xfail. 6 failures
* cleanup
* formatting
* fixes
* pass nO through
* Fix empty doc in update
* Hackishly fix resizing. 3 failures
* Fix redundant test. 2 failures
* Add reference version
* black formatting
* Get tests passing with reference implementation
* Fix missing prints
* Add missing file
* Improve indexing on reference implementation
* Get non-reference forward func working
* Start rigging beam back up
* removing redundant tests, cf #8106
* black formatting
* temporarily xfailing issue 4314
* make flake8 happy again
* mypy fixes
* ensure labels are added upon predict
* cleanup remnants from merge conflicts
* Improve unseen label masking
Two changes to speed up masking by ~10%:
- Use a bool array rather than an array of float32.
- Let the mask indicate whether a label was seen, rather than
unseen. The mask is most frequently used to index scores for
seen labels. However, since the mask marked unseen labels,
this required computing an intermittent flipped mask.
* Write moves costs directly into numpy array (#10163)
This avoids elementwise indexing and the allocation of an additional
array.
Gives a ~15% speed improvement when using batch_by_sequence with size
32.
* Temporarily disable ner and rehearse tests
Until rehearse is implemented again in the refactored parser.
* Fix loss serialization issue (#10600)
* Fix loss serialization issue
Serialization of a model fails with:
TypeError: array(738.3855, dtype=float32) is not JSON serializable
Fix this using float conversion.
* Disable CI steps that require spacy.TransitionBasedParser.v2
After finishing the refactor, TransitionBasedParser.v2 should be
provided for backwards compat.
* Add back support for beam parsing to the refactored parser (#10633)
* Add back support for beam parsing
Beam parsing was already implemented as part of the `BeamBatch` class.
This change makes its counterpart `GreedyBatch`. Both classes are hooked
up in `TransitionModel`, selecting `GreedyBatch` when the beam size is
one, or `BeamBatch` otherwise.
* Use kwarg for beam width
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Avoid implicit default for beam_width and beam_density
* Parser.{beam,greedy}_parse: ensure labels are added
* Remove 'deprecated' comments
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Parser `StateC` optimizations (#10746)
* `StateC`: Optimizations
Avoid GIL acquisition in `__init__`
Increase default buffer capacities on init
Reduce C++ exception overhead
* Fix typo
* Replace `set::count` with `set::find`
* Add exception attribute to c'tor
* Remove unused import
* Use a power-of-two value for initial capacity
Use default-insert to init `_heads` and `_unshiftable`
* Merge `cdef` variable declarations and assignments
* Vectorize `example.get_aligned_parses` (#10789)
* `example`: Vectorize `get_aligned_parse`
Rename `numpy` import
* Convert aligned array to lists before returning
* Revert import renaming
* Elide slice arguments when selecting the entire range
* Tagger/morphologizer alignment performance optimizations (#10798)
* `example`: Unwrap `numpy` scalar arrays before passing them to `StringStore.__getitem__`
* `AlignmentArray`: Use native list as staging buffer for offset calculation
* `example`: Vectorize `get_aligned`
* Hoist inner functions out of `get_aligned`
* Replace inline `if..else` clause in assignment statement
* `AlignmentArray`: Use raw indexing into offset and data `numpy` arrays
* `example`: Replace array unique value check with `groupby`
* `example`: Correctly exclude tokens with no alignment in `_get_aligned_vectorized`
Simplify `_get_aligned_non_vectorized`
* `util`: Update `all_equal` docstring
* Explicitly use `int32_t*`
* Restore C CPU inference in the refactored parser (#10747)
* Bring back the C parsing model
The C parsing model is used for CPU inference and is still faster for
CPU inference than the forward pass of the Thinc model.
* Use C sgemm provided by the Ops implementation
* Make tb_framework module Cython, merge in C forward implementation
* TransitionModel: raise in backprop returned from forward_cpu
* Re-enable greedy parse test
* Return transition scores when forward_cpu is used
* Apply suggestions from code review
Import `Model` from `thinc.api`
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Use relative imports in tb_framework
* Don't assume a default for beam_width
* We don't have a direct dependency on BLIS anymore
* Rename forwards to _forward_{fallback,greedy_cpu}
* Require thinc >=8.1.0,<8.2.0
* tb_framework: clean up imports
* Fix return type of _get_seen_mask
* Move up _forward_greedy_cpu
* Style fixes.
* Lower thinc lowerbound to 8.1.0.dev0
* Formatting fix
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Reimplement parser rehearsal function (#10878)
* Reimplement parser rehearsal function
Before the parser refactor, rehearsal was driven by a loop in the
`rehearse` method itself. For each parsing step, the loops would:
1. Get the predictions of the teacher.
2. Get the predictions and backprop function of the student.
3. Compute the loss and backprop into the student.
4. Move the teacher and student forward with the predictions of
the student.
In the refactored parser, we cannot perform search stepwise rehearsal
anymore, since the model now predicts all parsing steps at once.
Therefore, rehearsal is performed in the following steps:
1. Get the predictions of all parsing steps from the student, along
with its backprop function.
2. Get the predictions from the teacher, but use the predictions of
the student to advance the parser while doing so.
3. Compute the loss and backprop into the student.
To support the second step a new method, `advance_with_actions` is
added to `GreedyBatch`, which performs the provided parsing steps.
* tb_framework: wrap upper_W and upper_b in Linear
Thinc's Optimizer cannot handle resizing of existing parameters. Until
it does, we work around this by wrapping the weights/biases of the upper
layer of the parser model in Linear. When the upper layer is resized, we
copy over the existing parameters into a new Linear instance. This does
not trigger an error in Optimizer, because it sees the resized layer as
a new set of parameters.
* Add test for TransitionSystem.apply_actions
* Better FIXME marker
Co-authored-by: Madeesh Kannan <shadeMe@users.noreply.github.com>
* Fixes from Madeesh
* Apply suggestions from Sofie
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Remove useless assignment
Co-authored-by: Madeesh Kannan <shadeMe@users.noreply.github.com>
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Rename some identifiers in the parser refactor (#10935)
* Rename _parseC to _parse_batch
* tb_framework: prefix many auxiliary functions with underscore
To clearly state the intent that they are private.
* Rename `lower` to `hidden`, `upper` to `output`
* Parser slow test fixup
We don't have TransitionBasedParser.{v1,v2} until we bring it back as a
legacy option.
* Remove last vestiges of PrecomputableAffine
This does not exist anymore as a separate layer.
* ner: re-enable sentence boundary checks
* Re-enable test that works now.
* test_ner: make loss test more strict again
* Remove commented line
* Re-enable some more beam parser tests
* Remove unused _forward_reference function
* Update for CBlas changes in Thinc 8.1.0.dev2
Bump thinc dependency to 8.1.0.dev3.
* Remove references to spacy.TransitionBasedParser.{v1,v2}
Since they will not be offered starting with spaCy v4.
* `tb_framework`: Replace references to `thinc.backends.linalg` with `CBlas`
* dont use get_array_module (#11056) (#11293)
Co-authored-by: kadarakos <kadar.akos@gmail.com>
* Move `thinc.extra.search` to `spacy.pipeline._parser_internals` (#11317)
* `search`: Move from `thinc.extra.search`
Fix NPE in `Beam.__dealloc__`
* `pytest`: Add support for executing Cython tests
Move `search` tests from thinc and patch them to run with `pytest`
* `mypy` fix
* Update comment
* `conftest`: Expose `register_cython_tests`
* Remove unused import
* Move `argmax` impls to new `_parser_utils` Cython module (#11410)
* Parser does not have to be a cdef class anymore
This also fixes validation of the initialization schema.
* Add back spacy.TransitionBasedParser.v2
* Fix a rename that was missed in #10878.
So that rehearsal tests pass.
* Remove module from setup.py that got added during the merge
* Bring back support for `update_with_oracle_cut_size` (#12086)
* Bring back support for `update_with_oracle_cut_size`
This option was available in the pre-refactor parser, but was never
implemented in the refactored parser. This option cuts transition
sequences that are longer than `update_with_oracle_cut` size into
separate sequences that have at most `update_with_oracle_cut`
transitions. The oracle (gold standard) transition sequence is used to
determine the cuts and the initial states for the additional sequences.
Applying this cut makes the batches more homogeneous in the transition
sequence lengths, making forward passes (and as a consequence training)
much faster.
Training time 1000 steps on de_core_news_lg:
- Before this change: 149s
- After this change: 68s
- Pre-refactor parser: 81s
* Fix a rename that was missed in #10878.
So that rehearsal tests pass.
* Apply suggestions from @shadeMe
* Use chained conditional
* Test with update_with_oracle_cut_size={0, 1, 5, 100}
And fix a git that occurs with a cut size of 1.
* Fix up some merge fall out
* Update parser distillation for the refactor
In the old parser, we'd iterate over the transitions in the distill
function and compute the loss/gradients on the go. In the refactored
parser, we first let the student model parse the inputs. Then we'll let
the teacher compute the transition probabilities of the states in the
student's transition sequence. We can then compute the gradients of the
student given the teacher.
* Add back spacy.TransitionBasedParser.v1 references
- Accordion in the architecture docs.
- Test in test_parse, but disabled until we have a spacy-legacy release.
Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
Co-authored-by: svlandeg <svlandeg@github.com>
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
Co-authored-by: Madeesh Kannan <shadeMe@users.noreply.github.com>
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
Co-authored-by: kadarakos <kadar.akos@gmail.com>
* Add `TrainablePipe.{distill,get_teacher_student_loss}`
This change adds two methods:
- `TrainablePipe::distill` which performs a training step of a
student pipe on a teacher pipe, giving a batch of `Doc`s.
- `TrainablePipe::get_teacher_student_loss` computes the loss
of a student relative to the teacher.
The `distill` or `get_teacher_student_loss` methods are also implemented
in the tagger, edit tree lemmatizer, and parser pipes, to enable
distillation in those pipes and as an example for other pipes.
* Fix stray `Beam` import
* Fix incorrect import
* Apply suggestions from code review
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Apply suggestions from code review
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* TrainablePipe.distill: use `Iterable[Example]`
* Add Pipe.is_distillable method
* Add `validate_distillation_examples`
This first calls `validate_examples` and then checks that the
student/teacher tokens are the same.
* Update distill documentation
* Add distill documentation for all pipes that support distillation
* Fix incorrect identifier
* Apply suggestions from code review
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Add comment to explain `is_distillable`
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Clean up displacy port-related error messages, docs
There were some issues in the error messages and docs in #11948.
1. the error messages didn't specify the port argument to displacy.serve correctly
2. the docs didn't mark the auto select argument as new
This addresses those issues.
* Update website/docs/api/top-level.md
Co-authored-by: Raphael Mitsch <r.mitsch@outlook.com>
* Apply prettier
Co-authored-by: Raphael Mitsch <r.mitsch@outlook.com>
* check port in use and add itself
* check port in use and add itself
* Auto switch to nearest available port.
* Use bind to check port instead of connect_ex.
* Reformat.
* Add auto_select_port argument.
* update docs for displacy.serve
* Update spacy/errors.py
Co-authored-by: Paul O'Leary McCann <polm@dampfkraft.com>
* Update website/docs/api/top-level.md
Co-authored-by: Paul O'Leary McCann <polm@dampfkraft.com>
* Update spacy/errors.py
Co-authored-by: Paul O'Leary McCann <polm@dampfkraft.com>
* Add test using multiprocessing
* fix argument name
* Increase sleep times
Want to rule this out as a cause of test failure
* Don't terminate a process that isn't alive
* Refactor port finding logic
This moves all the port logic into its own util function, which can be
tested without having to background a server directly.
* Use with for the server
This ensures the server is closed correctly.
* Pass in the host when checking port availability
* Shorten argument name
* Update error codes following merge
* Add types for arguments, specify docstrings.
* Add typing for arguments with default value.
* Update docstring to match spaCy format.
* Update docstring to match spaCy format.
* Fix docs
Arg name changed from `auto_select_port` to just `auto_select`.
* Revert "Fix docs"
This reverts commit 356966fe84.
Co-authored-by: zhiiw <1302593554@qq.com>
Co-authored-by: Paul O'Leary McCann <polm@dampfkraft.com>
Co-authored-by: Raphael Mitsch <r.mitsch@outlook.com>
* Add `ConsoleLogger.v3`
This addition expands the progress bar feature to count up the training/distillation steps to either the next evaluation pass or the maximum number of steps.
* Rename progress bar types
* Add defaults to docs
Minor fixes
* Move comment
* Minor punctuation fixes
* Explicitly check for `None` when validating progress bar type
Co-authored-by: Paul O'Leary McCann <polm@dampfkraft.com>
* Remove experimental multi-task components
These are incomplete implementations and are not usable in their current state.
* Remove orphaned error message
* Switch ubuntu-latest to ubuntu-20.04 in main tests (#11928)
* Switch ubuntu-latest to ubuntu-20.04 in main tests
* Only use 20.04 for 3.6
* Revert "Switch ubuntu-latest to ubuntu-20.04 in main tests (#11928)"
This reverts commit 77c0fd7b17.
Co-authored-by: Paul O'Leary McCann <polm@dampfkraft.com>
* Remove old model shortcuts
* Remove error, docs warnings about shortcuts
* Fix import in util
Accidentally deleted the whole import and not just the old part...
* Change universe example to v3 style
* Switch ubuntu-latest to ubuntu-20.04 in main tests (#11928)
* Switch ubuntu-latest to ubuntu-20.04 in main tests
* Only use 20.04 for 3.6
* Update some model loading in Universe
* Add v2 tag to neuralcoref
* Use the spacy-version feature instead of a v2 tag
Co-authored-by: svlandeg <svlandeg@github.com>
* Check textcat values for validity
* Fix error numbers
* Clean up vals reference
* Check category value validity through training
The _validate_categories is called in update, which for multilabel is
inherited from the single label component.
* Formatting
* Replace EntityRuler with SpanRuler implementation
Remove `EntityRuler` and rename the `SpanRuler`-based
`future_entity_ruler` to `entity_ruler`.
Main changes:
* It is no longer possible to load patterns on init as with
`EntityRuler(patterns=)`.
* The older serialization formats (`patterns.jsonl`) are no longer
supported and the related tests are removed.
* The config settings are only stored in the config, not in the
serialized component (in particular the `phrase_matcher_attr` and
overwrite settings).
* Add migration guide to EntityRuler API docs
* docs update
* Minor edit
Co-authored-by: svlandeg <svlandeg@github.com>
* `strings`: Remove unused `hash32_utf8` function
* `strings`: Make `hash_utf8` and `decode_Utf8Str` private
* `strings`: Reorganize private functions
* 'strings': Raise error when non-string/-int types are passed to functions that don't accept them
* `strings`: Add `items()` method, add type hints, remove unused methods, restrict inputs to specific types, reorganize methods
* `Morphology`: Use `StringStore.items()` to enumerate features when pickling
* `test_stringstore`: Update pre-Python 3 tests
* Update `StringStore` docs
* Fix `get_string_id` imports
* Replace redundant test with tests for type checking
* Rename `_retrieve_interned_str`, remove `.get` default arg
* Add `get_string_id` to `strings.pyi`
Remove `mypy` ignore directives from imports of the above
* `strings.pyi`: Replace functions that consume `Union`-typed params with overloads
* `strings.pyi`: Revert some function signatures
* Update `SYMBOLS_BY_INT` lookups and error codes post-merge
* Revert clobbered change introduced in a previous merge
* Remove unnecessary type hint
* Invert tuple order in `StringStore.items()`
* Add test for `StringStore.items()`
* Revert "`Morphology`: Use `StringStore.items()` to enumerate features when pickling"
This reverts commit 1af9510ceb.
* Rename `keys` and `key_map`
* Add `keys()` and `values()`
* Add comment about the inverted key-value semantics in the API
* Fix type hints
* Implement `keys()`, `values()`, `items()` without generators
* Fix type hints, remove unnecessary boxing
* Update docs
* Simplify `keys/values/items()` impl
* `mypy` fix
* Fix error message, doc fixes
* Change enable/disable behavior so that arguments take precedence over config options. Extend error message on conflict. Add warning message in case of overwriting config option with arguments.
* Fix tests in test_serialize_pipeline.py to reflect changes to handling of enable/disable.
* Fix type issue.
* Move comment.
* Move comment.
* Issue UserWarning instead of printing wasabi message. Adjust test.
* Added pytest.warns(UserWarning) for expected warning to fix tests.
* Update warning message.
* Move type handling out of fetch_pipes_status().
* Add global variable for default value. Use id() to determine whether used values are default value.
* Fix default value for disable.
* Rename DEFAULT_PIPE_STATUS to _DEFAULT_EMPTY_PIPES.
* replicate bug with tok2vec in annotating components
* add overfitting test with a frozen tok2vec
* remove broadcast from predict and check doc.tensor instead
* remove broadcast
* proper error
* slight rephrase of documentation
* Clean up old Matcher call style related stuff
In v2 Matcher.add was called with (key, on_match, *patterns). In v3 this
was changed to (key, patterns, *, on_match=None), but there were various
points where the old call syntax was documented or handled specially.
This removes all those.
The Matcher itself didn't need any code changes, as it just gives a
generic type error. However the PhraseMatcher required some changes
because it would automatically "fix" the old call style.
Surprisingly, the tokenizer was still using the old call style in one
place.
After these changes tests failed in two places:
1. one test for the "new" call style, including the "old" call style. I
removed this test.
2. deserializing the PhraseMatcher fails because the input docs are a
set.
I am not sure why 2 is happening - I guess it's a quirk of the
serialization format? - so for now I just convert the set to a list when
deserializing. The check that the input Docs are a List in the
PhraseMatcher is a new check, but makes it parallel with the other
Matchers, which seemed like the right thing to do.
* Add notes related to input docs / deserialization type
* Remove Typing import
* Remove old note about call style change
* Apply suggestions from code review
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Use separate method for setting internal doc representations
In addition to the title change, this changes the internal dict to be a
defaultdict, instead of a dict with frequent use of setdefault.
* Add _add_from_arrays for unpickling
* Cleanup around adding from arrays
This moves adding to internal structures into the private batch method,
and removes the single-add method.
This has one behavioral change for `add`, in that if something is wrong
with the list of input Docs (such as one of the items not being a Doc),
valid items before the invalid one will not be added. Also the callback
will not be updated if anything is invalid. This change should not be
significant.
This also adds a test to check failure when given a non-Doc.
* Update spacy/matcher/phrasematcher.pyx
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>