Commit Graph

23 Commits

Author SHA1 Message Date
Ines Montani
fa47f87924 Tidy up and auto-format 2020-09-29 21:39:28 +02:00
svlandeg
b556a10808 rename converts in_to_out 2020-09-22 11:50:19 +02:00
Ines Montani
67fbcb3da5 Tidy up tests and docs 2020-09-21 20:43:54 +02:00
Adriane Boyd
7e4cd7575c
Refactor Docs.is_ flags (#6044)
* Refactor Docs.is_ flags

* Add derived `Doc.has_annotation` method

  * `Doc.has_annotation(attr)` returns `True` for partial annotation

  * `Doc.has_annotation(attr, require_complete=True)` returns `True` for
    complete annotation

* Add deprecation warnings to `is_tagged`, `is_parsed`, `is_sentenced`
and `is_nered`

* Add `Doc._get_array_attrs()`, which returns a full list of `Doc` attrs
for use with `Doc.to_array`, `Doc.to_bytes` and `Doc.from_docs`. The
list is the `DocBin` attributes list plus `SPACY` and `LENGTH`.

Notes on `Doc.has_annotation`:

* `HEAD` is converted to `DEP` because heads don't have an unset state

* Accept `IS_SENT_START` as a synonym of `SENT_START`

Additional changes:

* Add `NORM`, `ENT_ID` and `SENT_START` to default attributes for
`DocBin`

* In `Doc.from_array()` the presence of `DEP` causes `HEAD` to override
`SENT_START`

* In `Doc.from_array()` using `attrs` other than
`Doc._get_array_attrs()` (i.e., a user's custom list rather than our
default internal list) with both `HEAD` and `SENT_START` shows a warning
that `HEAD` will override `SENT_START`

* `set_children_from_heads` does not require dependency labels to set
sentence boundaries and sets `sent_start` for all non-sentence starts to
`-1`

* Fix call to set_children_form_heads

Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
2020-09-17 00:14:01 +02:00
Sofie Van Landeghem
8e7557656f
Renaming gold & annotation_setter (#6042)
* version bump to 3.0.0a16

* rename "gold" folder to "training"

* rename 'annotation_setter' to 'set_extra_annotations'

* formatting
2020-09-09 10:31:03 +02:00
Adriane Boyd
5e683a6e46
Fix return values for per feat score (#5885)
* Fix return values for per feat score

Convert `PRFScore` to dict as other per type scores.

* Update tests accordingly
2020-08-06 15:14:47 +02:00
Ines Montani
e92df281ce Tidy up, autoformat, add types 2020-07-25 15:01:15 +02:00
Adriane Boyd
2bcceb80c4
Refactor the Scorer to improve flexibility (#5731)
* Refactor the Scorer to improve flexibility

Refactor the `Scorer` to improve flexibility for arbitrary pipeline
components.

* Individual pipeline components provide their own `evaluate` methods
that score a list of `Example`s and return a dictionary of scores
* `Scorer` is initialized either:
  * with a provided pipeline containing components to be scored
  * with a default pipeline containing the built-in statistical
    components (senter, tagger, morphologizer, parser, ner)
* `Scorer.score` evaluates a list of `Example`s and returns a dictionary
of scores referring to the scores provided by the components in the
pipeline

Significant differences:

* `tags_acc` is renamed to `tag_acc` to be consistent with `token_acc`
and the new `morph_acc`, `pos_acc`, and `lemma_acc`
* Scoring is no longer cumulative: `Scorer.score` scores a list of
examples rather than a single example and does not retain any state
about previously scored examples
* PRF values in the returned scores are no longer multiplied by 100

* Add kwargs to Morphologizer.evaluate

* Create generalized scoring methods in Scorer

* Generalized static scoring methods are added to `Scorer`
  * Methods require an attribute (either on Token or Doc) that is
used to key the returned scores

Naming differences:

* `uas`, `las`, and `las_per_type` in the scores dict are renamed to
`dep_uas`, `dep_las`, and `dep_las_per_type`

Scoring differences:

* `Doc.sents` is now scored as spans rather than on sentence-initial
token positions so that `Doc.sents` and `Doc.ents` can be scored with
the same method (this lowers scores since a single incorrect sentence
start results in two incorrect spans)

* Simplify / extend hasattr check for eval method

* Add hasattr check to tokenizer scoring
* Simplify to hasattr check for component scoring

* Reset Example alignment if docs are set

Reset the Example alignment if either doc is set in case the
tokenization has changed.

* Add PRF tokenization scoring for tokens as spans

Add PRF scores for tokens as character spans. The scores are:

* token_acc: # correct tokens / # gold tokens
* token_p/r/f: PRF for (token.idx, token.idx + len(token))

* Add docstring to Scorer.score_tokenization

* Rename component.evaluate() to component.score()

* Update Scorer API docs

* Update scoring for positive_label in textcat

* Fix TextCategorizer.score kwargs

* Update Language.evaluate docs

* Update score names in default config
2020-07-25 12:53:02 +02:00
Matthew Honnibal
8c29268749
Improve spacy.gold (no GoldParse, no json format!) (#5555)
* Update errors

* Remove beam for now (maybe)

Remove beam_utils

Update setup.py

Remove beam

* Remove GoldParse

WIP on removing goldparse

Get ArcEager compiling after GoldParse excise

Update setup.py

Get spacy.syntax compiling after removing GoldParse

Rename NewExample -> Example and clean up

Clean html files

Start updating tests

Update Morphologizer

* fix error numbers

* fix merge conflict

* informative error when calling to_array with wrong field

* fix error catching

* fixing language and scoring tests

* start testing get_aligned

* additional tests for new get_aligned function

* Draft create_gold_state for arc_eager oracle

* Fix import

* Fix import

* Remove TokenAnnotation code from nonproj

* fixing NER one-to-many alignment

* Fix many-to-one IOB codes

* fix test for misaligned

* attempt to fix cases with weird spaces

* fix spaces

* test_gold_biluo_different_tokenization works

* allow None as BILUO annotation

* fixed some tests + WIP roundtrip unit test

* add spaces to json output format

* minibatch utiltiy can deal with strings, docs or examples

* fix augment (needs further testing)

* various fixes in scripts - needs to be further tested

* fix test_cli

* cleanup

* correct silly typo

* add support for MORPH in to/from_array, fix morphologizer overfitting test

* fix tagger

* fix entity linker

* ensure test keeps working with non-linked entities

* pipe() takes docs, not examples

* small bug fix

* textcat bugfix

* throw informative error when running the components with the wrong type of objects

* fix parser tests to work with example (most still failing)

* fix BiluoPushDown parsing entities

* small fixes

* bugfix tok2vec

* fix renames and simple_ner labels

* various small fixes

* prevent writing dummy values like deps because that could interfer with sent_start values

* fix the fix

* implement split_sent with aligned SENT_START attribute

* test for split sentences with various alignment issues, works

* Return ArcEagerGoldParse from ArcEager

* Update parser and NER gold stuff

* Draft new GoldCorpus class

* add links to to_dict

* clean up

* fix test checking for variants

* Fix oracles

* Start updating converters

* Move converters under spacy.gold

* Move things around

* Fix naming

* Fix name

* Update converter to produce DocBin

* Update converters

* Allow DocBin to take list of Doc objects.

* Make spacy convert output docbin

* Fix import

* Fix docbin

* Fix compile in ArcEager

* Fix import

* Serialize all attrs by default

* Update converter

* Remove jsonl converter

* Add json2docs converter

* Draft Corpus class for DocBin

* Work on train script

* Update Corpus

* Update DocBin

* Allocate Doc before starting to add words

* Make doc.from_array several times faster

* Update train.py

* Fix Corpus

* Fix parser model

* Start debugging arc_eager oracle

* Update header

* Fix parser declaration

* Xfail some tests

* Skip tests that cause crashes

* Skip test causing segfault

* Remove GoldCorpus

* Update imports

* Update after removing GoldCorpus

* Fix module name of corpus

* Fix mimport

* Work on parser oracle

* Update arc_eager oracle

* Restore ArcEager.get_cost function

* Update transition system

* Update test_arc_eager_oracle

* Remove beam test

* Update test

* Unskip

* Unskip tests

* add links to to_dict

* clean up

* fix test checking for variants

* Allow DocBin to take list of Doc objects.

* Fix compile in ArcEager

* Serialize all attrs by default

Move converters under spacy.gold

Move things around

Fix naming

Fix name

Update converter to produce DocBin

Update converters

Make spacy convert output docbin

Fix import

Fix docbin

Fix import

Update converter

Remove jsonl converter

Add json2docs converter

* Allocate Doc before starting to add words

* Make doc.from_array several times faster

* Start updating converters

* Work on train script

* Draft Corpus class for DocBin

Update Corpus

Fix Corpus

* Update DocBin

Add missing strings when serializing

* Update train.py

* Fix parser model

* Start debugging arc_eager oracle

* Update header

* Fix parser declaration

* Xfail some tests

Skip tests that cause crashes

Skip test causing segfault

* Remove GoldCorpus

Update imports

Update after removing GoldCorpus

Fix module name of corpus

Fix mimport

* Work on parser oracle

Update arc_eager oracle

Restore ArcEager.get_cost function

Update transition system

* Update tests

Remove beam test

Update test

Unskip

Unskip tests

* Add get_aligned_parse method in Example

Fix Example.get_aligned_parse

* Add kwargs to Corpus.dev_dataset to match train_dataset

* Update nonproj

* Use get_aligned_parse in ArcEager

* Add another arc-eager oracle test

* Remove Example.doc property

Remove Example.doc

Remove Example.doc

Remove Example.doc

Remove Example.doc

* Update ArcEager oracle

Fix Break oracle

* Debugging

* Fix Corpus

* Fix eg.doc

* Format

* small fixes

* limit arg for Corpus

* fix test_roundtrip_docs_to_docbin

* fix test_make_orth_variants

* fix add_label test

* Update tests

* avoid writing temp dir in json2docs, fixing 4402 test

* Update test

* Add missing costs to NER oracle

* Update test

* Work on Example.get_aligned_ner method

* Clean up debugging

* Xfail tests

* Remove prints

* Remove print

* Xfail some tests

* Replace unseen labels for parser

* Update test

* Update test

* Xfail test

* Fix Corpus

* fix imports

* fix docs_to_json

* various small fixes

* cleanup

* Support gold_preproc in Corpus

* Support gold_preproc

* Pass gold_preproc setting into corpus

* Remove debugging

* Fix gold_preproc

* Fix json2docs converter

* Fix convert command

* Fix flake8

* Fix import

* fix output_dir (converted to Path by typer)

* fix var

* bugfix: update states after creating golds to avoid out of bounds indexing

* Improve efficiency of ArEager oracle

* pull merge_sent into iob2docs to avoid Doc creation for each line

* fix asserts

* bugfix excl Span.end in iob2docs

* Support max_length in Corpus

* Fix arc_eager oracle

* Filter out uannotated sentences in NER

* Remove debugging in parser

* Simplify NER alignment

* Fix conversion of NER data

* Fix NER init_gold_batch

* Tweak efficiency of precomputable affine

* Update onto-json default

* Update gold test for NER

* Fix parser test

* Update test

* Add NER data test

* Fix convert for single file

* Fix test

* Hack scorer to avoid evaluating non-nered data

* Fix handling of NER data in Example

* Output unlabelled spans from O biluo tags in iob_utils

* Fix unset variable

* Return kept examples from init_gold_batch

* Return examples from init_gold_batch

* Dont return Example from init_gold_batch

* Set spaces on gold doc after conversion

* Add test

* Fix spaces reading

* Improve NER alignment

* Improve handling of missing values in NER

* Restore the 'cutting' in parser training

* Add assertion

* Print epochs

* Restore random cuts in parser/ner training

* Implement Doc.copy

* Implement Example.copy

* Copy examples at the start of Language.update

* Don't unset example docs

* Tweak parser model slightly

* attempt to fix _guess_spaces

* _add_entities_to_doc first, so that links don't get overwritten

* fixing get_aligned_ner for one-to-many

* fix indexing into x_text

* small fix biluo_tags_from_offsets

* Add onto-ner config

* Simplify NER alignment

* Fix NER scoring for partially annotated documents

* fix indexing into x_text

* fix test_cli failing tests by ignoring spans in doc.ents with empty label

* Fix limit

* Improve NER alignment

* Fix count_train

* Remove print statement

* fix tests, we're not having nothing but None

* fix clumsy fingers

* Fix tests

* Fix doc.ents

* Remove empty docs in Corpus and improve limit

* Update config

Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com>
2020-06-26 19:34:12 +02:00
Ines Montani
8283df80e9 Tidy up and auto-format 2020-06-20 14:15:04 +02:00
adrianeboyd
b71a11ff6d
Update morphologizer (#5108)
* Add pos and morph scoring to Scorer

Add pos, morph, and morph_per_type to `Scorer`. Report pos and morph
accuracy in `spacy evaluate`.

* Update morphologizer for v3

* switch to tagger-based morphologizer
* use `spacy.HashCharEmbedCNN` for morphologizer defaults
* add `Doc.is_morphed` flag

* Add morphologizer to train CLI

* Add basic morphologizer pipeline tests

* Add simple morphologizer training example

* Remove subword_features from CharEmbed models

Remove `subword_features` argument from `spacy.HashCharEmbedCNN.v1` and
`spacy.HashCharEmbedBiLSTM.v1` since in these cases `subword_features`
is always `False`.

* Rename setting in morphologizer example

Use `with_pos_tags` instead of `without_pos_tags`.

* Fix kwargs for spacy.HashCharEmbedBiLSTM.v1

* Remove defaults for spacy.HashCharEmbedBiLSTM.v1

Remove default `nM/nC` for `spacy.HashCharEmbedBiLSTM.v1`.

* Set random seed for textcat overfitting test
2020-04-02 14:46:32 +02:00
Ines Montani
db55577c45
Drop Python 2.7 and 3.5 (#4828)
* Remove unicode declarations

* Remove Python 3.5 and 2.7 from CI

* Don't require pathlib

* Replace compat helpers

* Remove OrderedDict

* Use f-strings

* Set Cython compiler language level

* Fix typo

* Re-add OrderedDict for Table

* Update setup.cfg

* Revert CONTRIBUTING.md

* Revert lookups.md

* Revert top-level.md

* Small adjustments and docs [ci skip]
2019-12-22 01:53:56 +01:00
Ines Montani
158b98a3ef Merge branch 'master' into develop 2019-12-21 18:55:03 +01:00
adrianeboyd
392c4880d9 Restructure Example with merged sents as default (#4632)
* Switch to train_dataset() function in train CLI

* Fixes for pipe() methods in pipeline components

* Don't clobber `examples` variable with `as_example` in pipe() methods
* Remove unnecessary traversals of `examples`

* Update Parser.pipe() for Examples

* Add `as_examples` kwarg to `pipe()` with implementation to return
`Example`s

* Accept `Doc` or `Example` in `pipe()` with `_get_doc()` (copied from
`Pipe`)

* Fixes to Example implementation in spacy.gold

* Move `make_projective` from an attribute of Example to an argument of
`Example.get_gold_parses()`

* Head of 0 are not treated as unset

* Unset heads are set to self rather than `None` (which causes problems
while projectivizing)

* Check for `Doc` (not just not `None`) when creating GoldParses for
pre-merged example

* Don't clobber `examples` variable in `iter_gold_docs()`

* Add/modify gold tests for handling projectivity

* In JSON roundtrip compare results from `dev_dataset` rather than
`train_dataset` to avoid projectivization (and other potential
modifications)

* Add test for projective train vs. nonprojective dev versions of the
same `Doc`

* Handle ignore_misaligned as arg rather than attr

Move `ignore_misaligned` from an attribute of `Example` to an argument
to `Example.get_gold_parses()`, which makes it parallel to
`make_projective`.

Add test with old and new align that checks whether `ignore_misaligned`
errors are raised as expected (only for new align).

* Remove unused attrs from gold.pxd

Remove `ignore_misaligned` and `make_projective` from `gold.pxd`

* Restructure Example with merged sents as default

An `Example` now includes a single `TokenAnnotation` that includes all
the information from one `Doc` (=JSON `paragraph`). If required, the
individual sentences can be returned as a list of examples with
`Example.split_sents()` with no raw text available.

* Input/output a single `Example.token_annotation`

* Add `sent_starts` to `TokenAnnotation` to handle sentence boundaries

* Replace `Example.merge_sents()` with `Example.split_sents()`

* Modify components to use a single `Example.token_annotation`

  * Pipeline components
  * conllu2json converter

* Rework/rename `add_token_annotation()` and `add_doc_annotation()` to
`set_token_annotation()` and `set_doc_annotation()`, functions that set
rather then appending/extending.

* Rename `morphology` to `morphs` in `TokenAnnotation` and `GoldParse`

* Add getters to `TokenAnnotation` to supply default values when a given
attribute is not available

* `Example.get_gold_parses()` in `spacy.gold._make_golds()` is only
applied on single examples, so the `GoldParse` is returned saved in the
provided `Example` rather than creating a new `Example` with no other
internal annotation

* Update tests for API changes and `merge_sents()` vs. `split_sents()`

* Refer to Example.goldparse in iter_gold_docs()

Use `Example.goldparse` in `iter_gold_docs()` instead of `Example.gold`
because a `None` `GoldParse` is generated with ignore_misaligned and
generating it on-the-fly can raise an unwanted AlignmentError

* Fix make_orth_variants()

Fix bug in make_orth_variants() related to conversion from multiple to
one TokenAnnotation per Example.

* Add basic test for make_orth_variants()

* Replace try/except with conditionals

* Replace default morph value with set
2019-11-25 16:03:28 +01:00
Ines Montani
6e303de717 Auto-format 2019-11-20 13:15:24 +01:00
Sofie Van Landeghem
e48a09df4e Example class for training data (#4543)
* OrigAnnot class instead of gold.orig_annot list of zipped tuples

* from_orig to replace from_annot_tuples

* rename to RawAnnot

* some unit tests for GoldParse creation and internal format

* removing orig_annot and switching to lists instead of tuple

* rewriting tuples to use RawAnnot (+ debug statements, WIP)

* fix pop() changing the data

* small fixes

* pop-append fixes

* return RawAnnot for existing GoldParse to have uniform interface

* clean up imports

* fix merge_sents

* add unit test for 4402 with new structure (not working yet)

* introduce DocAnnot

* typo fixes

* add unit test for merge_sents

* rename from_orig to from_raw

* fixing unit tests

* fix nn parser

* read_annots to produce text, doc_annot pairs

* _make_golds fix

* rename golds_to_gold_annots

* small fixes

* fix encoding

* have golds_to_gold_annots use DocAnnot

* missed a spot

* merge_sents as function in DocAnnot

* allow specifying only part of the token-level annotations

* refactor with Example class + underlying dicts

* pipeline components to work with Example objects (wip)

* input checking

* fix yielding

* fix calls to update

* small fixes

* fix scorer unit test with new format

* fix kwargs order

* fixes for ud and conllu scripts

* fix reading data for conllu script

* add in proper errors (not fixed numbering yet to avoid merge conflicts)

* fixing few more small bugs

* fix EL script
2019-11-11 17:35:27 +01:00
adrianeboyd
56ad3a3988 Add LAS per dependency to Scorer (#4560) 2019-10-31 21:18:16 +01:00
Ines Montani
3d8fd4b461 Revert #4334 2019-09-29 17:32:12 +02:00
Ines Montani
c9cd516d96 Move tests out of package (#4334)
* Move tests out of package

* Fix typo
2019-09-28 18:05:00 +02:00
Ines Montani
00a8cbc306 Tidy up and auto-format 2019-09-18 20:27:03 +02:00
adrianeboyd
b5d999e510 Add textcat to train CLI (#4226)
* Add doc.cats to spacy.gold at the paragraph level

Support `doc.cats` as `"cats": [{"label": string, "value": number}]` in
the spacy JSON training format at the paragraph level.

* `spacy.gold.docs_to_json()` writes `docs.cats`

* `GoldCorpus` reads in cats in each `GoldParse`

* Update instances of gold_tuples to handle cats

Update iteration over gold_tuples / gold_parses to handle addition of
cats at the paragraph level.

* Add textcat to train CLI

* Add textcat options to train CLI
* Add textcat labels in `TextCategorizer.begin_training()`
* Add textcat evaluation to `Scorer`:
  * For binary exclusive classes with provided label: F1 for label
  * For 2+ exclusive classes: F1 macro average
  * For multilabel (not exclusive): ROC AUC macro average (currently
relying on sklearn)
* Provide user info on textcat evaluation settings, potential
incompatibilities
* Provide pipeline to Scorer in `Language.evaluate` for textcat config
* Customize train CLI output to include only metrics relevant to current
pipeline
* Add textcat evaluation to evaluate CLI

* Fix handling of unset arguments and config params

Fix handling of unset arguments and model confiug parameters in Scorer
initialization.

* Temporarily add sklearn requirement

* Remove sklearn version number

* Improve Scorer handling of models without textcats

* Fixing Scorer handling of models without textcats

* Update Scorer output for python 2.7

* Modify inf in Scorer for python 2.7

* Auto-format

Also make small adjustments to make auto-formatting with black easier and produce nicer results

* Move error message to Errors

* Update documentation

* Add cats to annotation JSON format [ci skip]

* Fix tpl flag and docs [ci skip]

* Switch to internal roc_auc_score

Switch to internal `roc_auc_score()` adapted from scikit-learn.

* Add AUCROCScore tests and improve errors/warnings

* Add tests for AUCROCScore and roc_auc_score
* Add missing error for only positive/negative values
* Remove unnecessary warnings and errors

* Make reduced roc_auc_score functions private

Because most of the checks and warnings have been stripped for the
internal functions and access is only intended through `ROCAUCScore`,
make the functions for roc_auc_score adapted from scikit-learn private.

* Check that data corresponds with multilabel flag

Check that the training instances correspond with the multilabel flag,
adding the multilabel flag if required.

* Add textcat score to early stopping check

* Add more checks to debug-data for textcat

* Add example training data for textcat

* Add more checks to textcat train CLI

* Check configuration when extending base model
* Fix typos

* Update textcat example data

* Provide licensing details and licenses for data
* Remove two labels with no positive instances from jigsaw-toxic-comment
data.


Co-authored-by: Ines Montani <ines@ines.io>
2019-09-15 22:31:31 +02:00
Ines Montani
009280fbc5 Tidy up and auto-format 2019-08-18 15:09:16 +02:00
adrianeboyd
925a852bb6 Improve NER per type scoring (#4052)
* Improve NER per type scoring

* include all gold labels in per type scoring, not only when recall > 0
* improve efficiency of per type scoring

* Create Scorer tests, initially with NER tests

* move regression test #3968 (per type NER scoring) to Scorer tests

* add new test for per type NER scoring with imperfect P/R/F and per
type P/R/F including a case where R == 0.0
2019-08-01 17:15:36 +02:00