Improve train CLI with a provided base model so that you can:
* add a new component
* extend an existing component
* replace an existing component
When the final model and best model are saved, reenable any disabled
components and merge the meta information to include the full pipeline
and accuracy information for all components in the base model plus the
newly added components if needed.
* Add arch for MishWindowEncoder
* Support mish in tok2vec and conv window >=2
* Pass new tok2vec settings from parser
* Syntax error
* Fix tok2vec setting
* Fix registration of MishWindowEncoder
* Fix receptive field setting
* Fix mish arch
* Pass more options from parser
* Support more tok2vec options in pretrain
* Require thinc 7.3
* Add docs [ci skip]
* Require thinc 7.3.0.dev0 to run CI
* Run black
* Fix typo
* Update Thinc version
Co-authored-by: Ines Montani <ines@ines.io>
* Flag to ignore examples with mismatched raw/gold text
After #4525, we're seeing some alignment failures on our OntoNotes data. I think we actually have fixes for most of these cases.
In general it's better to fix the data, but it seems good to allow the GoldCorpus class to just skip cases where the raw text doesn't
match up to the gold words. I think previously we were silently ignoring these cases.
* Try to fix test on Python 2.7
* Error for ill-formed input to iob_to_biluo()
Check for empty label in iob_to_biluo(), which can result from
ill-formed input.
* Check for empty NER label in debug-data
* fix overflow error on windows
* more documentation & logging fixes
* md fix
* 3 different limit parameters to play with execution time
* bug fixes directory locations
* small fixes
* exclude dev test articles from prior probabilities stats
* small fixes
* filtering wikidata entities, removing numeric and meta items
* adding aliases from wikidata also to the KB
* fix adding WD aliases
* adding also new aliases to previously added entities
* fixing comma's
* small doc fixes
* adding subclassof filtering
* append alias functionality in KB
* prevent appending the same entity-alias pair
* fix for appending WD aliases
* remove date filter
* remove unnecessary import
* small corrections and reformatting
* remove WD aliases for now (too slow)
* removing numeric entities from training and evaluation
* small fixes
* shortcut during prediction if there is only one candidate
* add counts and fscore logging, remove FP NER from evaluation
* fix entity_linker.predict to take docs instead of single sentences
* remove enumeration sentences from the WP dataset
* entity_linker.update to process full doc instead of single sentence
* spelling corrections and dump locations in readme
* NLP IO fix
* reading KB is unnecessary at the end of the pipeline
* small logging fix
* remove empty files
* Only import pkg_resources where it's needed
Apparently it's really slow
* Use importlib_metadata for entry points
* Revert "Only import pkg_resources where it's needed"
This reverts commit 5ed8c03afa.
* Revert "Revert "Only import pkg_resources where it's needed""
This reverts commit 8b30b57957.
* Revert "Use importlib_metadata for entry points"
This reverts commit 9f071f5c40.
* Revert "Revert "Use importlib_metadata for entry points""
This reverts commit 02e12a17ec.
* Skip test that weirdly hangs
* Fix hanging test by using global
* Allow vectors name to be specified in init-model
* Document --vectors-name argument to init-model
* Update website/docs/api/cli.md
Co-Authored-By: Ines Montani <ines@ines.io>
* Add doc.cats to spacy.gold at the paragraph level
Support `doc.cats` as `"cats": [{"label": string, "value": number}]` in
the spacy JSON training format at the paragraph level.
* `spacy.gold.docs_to_json()` writes `docs.cats`
* `GoldCorpus` reads in cats in each `GoldParse`
* Update instances of gold_tuples to handle cats
Update iteration over gold_tuples / gold_parses to handle addition of
cats at the paragraph level.
* Add textcat to train CLI
* Add textcat options to train CLI
* Add textcat labels in `TextCategorizer.begin_training()`
* Add textcat evaluation to `Scorer`:
* For binary exclusive classes with provided label: F1 for label
* For 2+ exclusive classes: F1 macro average
* For multilabel (not exclusive): ROC AUC macro average (currently
relying on sklearn)
* Provide user info on textcat evaluation settings, potential
incompatibilities
* Provide pipeline to Scorer in `Language.evaluate` for textcat config
* Customize train CLI output to include only metrics relevant to current
pipeline
* Add textcat evaluation to evaluate CLI
* Fix handling of unset arguments and config params
Fix handling of unset arguments and model confiug parameters in Scorer
initialization.
* Temporarily add sklearn requirement
* Remove sklearn version number
* Improve Scorer handling of models without textcats
* Fixing Scorer handling of models without textcats
* Update Scorer output for python 2.7
* Modify inf in Scorer for python 2.7
* Auto-format
Also make small adjustments to make auto-formatting with black easier and produce nicer results
* Move error message to Errors
* Update documentation
* Add cats to annotation JSON format [ci skip]
* Fix tpl flag and docs [ci skip]
* Switch to internal roc_auc_score
Switch to internal `roc_auc_score()` adapted from scikit-learn.
* Add AUCROCScore tests and improve errors/warnings
* Add tests for AUCROCScore and roc_auc_score
* Add missing error for only positive/negative values
* Remove unnecessary warnings and errors
* Make reduced roc_auc_score functions private
Because most of the checks and warnings have been stripped for the
internal functions and access is only intended through `ROCAUCScore`,
make the functions for roc_auc_score adapted from scikit-learn private.
* Check that data corresponds with multilabel flag
Check that the training instances correspond with the multilabel flag,
adding the multilabel flag if required.
* Add textcat score to early stopping check
* Add more checks to debug-data for textcat
* Add example training data for textcat
* Add more checks to textcat train CLI
* Check configuration when extending base model
* Fix typos
* Update textcat example data
* Provide licensing details and licenses for data
* Remove two labels with no positive instances from jigsaw-toxic-comment
data.
Co-authored-by: Ines Montani <ines@ines.io>
* Updates/bugfixes for NER/IOB converters
* Converter formats `ner` and `iob` use autodetect to choose a converter if
possible
* `iob2json` is reverted to handle sentence-per-line data like
`word1|pos1|ent1 word2|pos2|ent2`
* Fix bug in `merge_sentences()` so the second sentence in each batch isn't
skipped
* `conll_ner2json` is made more general so it can handle more formats with
whitespace-separated columns
* Supports all formats where the first column is the token and the final
column is the IOB tag; if present, the second column is the POS tag
* As in CoNLL 2003 NER, blank lines separate sentences, `-DOCSTART- -X- O O`
separates documents
* Add option for segmenting sentences (new flag `-s`)
* Parser-based sentence segmentation with a provided model, otherwise with
sentencizer (new option `-b` to specify model)
* Can group sentences into documents with `n_sents` as long as sentence
segmentation is available
* Only applies automatic segmentation when there are no existing delimiters
in the data
* Provide info about settings applied during conversion with warnings and
suggestions if settings conflict or might not be not optimal.
* Add tests for common formats
* Add '(default)' back to docs for -c auto
* Add document count back to output
* Revert changes to converter output message
* Use explicit tabs in convert CLI test data
* Adjust/add messages for n_sents=1 default
* Add sample NER data to training examples
* Update README
* Add links in docs to example NER data
* Define msg within converters
* Prevent subtok label if not learning tokens
The parser introduces the subtok label to mark tokens that should be
merged during post-processing. Previously this happened even if we did
not have the --learn-tokens flag set. This patch passes the config
through to the parser, to prevent the problem.
* Make merge_subtokens a parser post-process if learn_subtokens
* Fix train script
* Add test for 3830: subtok problem
* Fix handlign of non-subtok in parser training
* Extending debug-data with dependency checks, etc.
* Modify debug-data to load with GoldCorpus to iterate over .json/.jsonl
files within directories
* Add GoldCorpus iterator train_docs_without_preprocessing to load
original train docs without shuffling and projectivizing
* Report number of misaligned tokens
* Add more dependency checks and messages
* Update spacy/cli/debug_data.py
Co-Authored-By: Ines Montani <ines@ines.io>
* Fixed conflict
* Move counts to _compile_gold()
* Move all dependency nonproj/sent/head/cycle counting to
_compile_gold()
* Unclobber previous merges
* Update variable names
* Update more variable names, fix misspelling
* Don't clobber loading error messages
* Only warn about misaligned tokens if present