* document token ent_kb_id
* document span kb_id
* update pipeline documentation
* prior and context weights as bool's instead
* entitylinker api documentation
* drop for both models
* finish entitylinker documentation
* small fixes
* documentation for KB
* candidate documentation
* links to api pages in code
* small fix
* frequency examples as counts for consistency
* consistent documentation about tensors returned by predict
* add entity linking to usage 101
* add entity linking infobox and KB section to 101
* entity-linking in linguistic features
* small typo corrections
* training example and docs for entity_linker
* predefined nlp and kb
* revert back to similarity encodings for simplicity (for now)
* set prior probabilities to 0 when excluded
* code clean up
* bugfix: deleting kb ID from tokens when entities were removed
* refactor train el example to use either model or vocab
* pretrain_kb example for example kb generation
* add to training docs for KB + EL example scripts
* small fixes
* error numbering
* ensure the language of vocab and nlp stay consistent across serialization
* equality with =
* avoid conflict in errors file
* add error 151
* final adjustements to the train scripts - consistency
* update of goldparse documentation
* small corrections
* push commit
* typo fix
* add candidate API to kb documentation
* update API sidebar with EntityLinker and KnowledgeBase
* remove EL from 101 docs
* remove entity linker from 101 pipelines / rephrase
* custom el model instead of existing model
* set version to 2.2 for EL functionality
* update documentation for 2 CLI scripts
* Updates/bugfixes for NER/IOB converters
* Converter formats `ner` and `iob` use autodetect to choose a converter if
possible
* `iob2json` is reverted to handle sentence-per-line data like
`word1|pos1|ent1 word2|pos2|ent2`
* Fix bug in `merge_sentences()` so the second sentence in each batch isn't
skipped
* `conll_ner2json` is made more general so it can handle more formats with
whitespace-separated columns
* Supports all formats where the first column is the token and the final
column is the IOB tag; if present, the second column is the POS tag
* As in CoNLL 2003 NER, blank lines separate sentences, `-DOCSTART- -X- O O`
separates documents
* Add option for segmenting sentences (new flag `-s`)
* Parser-based sentence segmentation with a provided model, otherwise with
sentencizer (new option `-b` to specify model)
* Can group sentences into documents with `n_sents` as long as sentence
segmentation is available
* Only applies automatic segmentation when there are no existing delimiters
in the data
* Provide info about settings applied during conversion with warnings and
suggestions if settings conflict or might not be not optimal.
* Add tests for common formats
* Add '(default)' back to docs for -c auto
* Add document count back to output
* Revert changes to converter output message
* Use explicit tabs in convert CLI test data
* Adjust/add messages for n_sents=1 default
* Add sample NER data to training examples
* Update README
* Add links in docs to example NER data
* Define msg within converters
* Fix typo in rule-based matching docs
* Improve token pattern checking without validation
Add more detailed token pattern checks without full JSON pattern validation and
provide more detailed error messages.
Addresses #4070 (also related: #4063, #4100).
* Check whether top-level attributes in patterns and attr for PhraseMatcher are
in token pattern schema
* Check whether attribute value types are supported in general (as opposed to
per attribute with full validation)
* Report various internal error types (OverflowError, AttributeError, KeyError)
as ValueError with standard error messages
* Check for tagger/parser in PhraseMatcher pipeline for attributes TAG, POS,
LEMMA, and DEP
* Add error messages with relevant details on how to use validate=True or nlp()
instead of nlp.make_doc()
* Support attr=TEXT for PhraseMatcher
* Add NORM to schema
* Expand tests for pattern validation, Matcher, PhraseMatcher, and EntityRuler
* Remove unnecessary .keys()
* Rephrase error messages
* Add another type check to Matcher
Add another type check to Matcher for more understandable error messages
in some rare cases.
* Support phrase_matcher_attr=TEXT for EntityRuler
* Don't use spacy.errors in examples and bin scripts
* Fix error code
* Auto-format
Also try get Azure pipelines to finally start a build :(
* Update errors.py
Co-authored-by: Ines Montani <ines@ines.io>
Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
* Added RONEC to spaCy Universe
* Added contributor file
* Corrected date from .github/contributors/avramandrei.md
* Convert tabs to spaces
* Remove duplicate keys
Can only have one GitHub link unfortunately
* Also add models category
* Adjust ID
This is used to generate the URL, so a simpler string is better
* Add entry for Blackstone in universe.json
Add an entry for the Blackstone project. Checked JSON is valid.
* Create ICLRandD.md
* Fix indentation (tabs to spaces)
It looks like during validation, the JSON file automatically changed spaces to tabs. This caused the diff to show *everything* as changed, which is obviously not true. This hopefully fixes that.
* Try to fix formatting for diff
* Fix diff
Co-authored-by: Ines Montani <ines@ines.io>
* Typo fix for AllenAI url
Changed incorrect home page url for AllenAI from appenai.org to allenai.org
* Sign contributor agreement
* Change date format
* add `words`
* update name of entity list to `ner`
I think it might be a bit more consistent to have `ner` named `entities`
or `ents` (and `ents` is actually set somewhere to `None`, which is a
bit confusing), but it looks like renaming it would be a non-trivial
decision.
* Update pretrain to prevent unintended overwriting of weight files for #3859
* Add '--epoch-start' to pretrain docs
* Add mising pretrain arguments to bash example
* Update doc tag for v2.1.5
* Perserve flags in EntityRuler
The EntityRuler (explosion/spaCy#3526) does not preserve
overwrite flags (or `ent_id_sep`) when serialized. This
commit adds support for serialization/deserialization preserving
overwrite and ent_id_sep flags.
* add signed contributor agreement
* flake8 cleanup
mostly blank line issues.
* mark test from the issue as needing a model
The test from the issue needs some language model for serialization
but the test wasn't originally marked correctly.
* Adds `phrase_matcher_attr` to allow args to PhraseMatcher
This is an added arg to pass to the `PhraseMatcher`. For example,
this allows creation of a case insensitive phrase matcher when the
`EntityRuler` is created. References explosion/spaCy#3822
* remove unneeded model loading
The model didn't need to be loaded, and I replaced it with
a change that doesn't require it (using existings fixtures)
* updated docstring for new argument
* updated docs to reflect new argument to the EntityRuler constructor
* change tempdir handling to be compatible with python 2.7
* return conflicted code to entityruler
Some stuff got cut out because of merge conflicts, this
returns that code for the phrase_matcher_attr.
* fixed typo in the code added back after conflicts
* flake8 compliance
When I deconflicted the branch there were some flake8 issues
introduced. This resolves the spacing problems.
* test changes: attempts to fix flaky test in python3.5
These tests seem to be alittle flaky in 3.5 so I changed the check to avoid
the comparisons that seem to be fail sometimes.
* Add error to `get_vectors_loss` for unsupported loss function of `pretrain`
* Add missing "--loss-func" argument to pretrain docs. Update pretrain plac annotations to match docs.
* Add missing quotation marks
* Changed learning rate by its param name.
I've been searching for a while how the parameter learning rate was named, with `beta1` and `beta2` its easy as they are marked as code, but learning rate wasn't. I think writing the actual parameter name would be helpful.
* Signing SCA
* Update tokenizer.md for construction example
Self contained example. You should really say what nlp is so that the example will work as is
* Update CONTRIBUTOR_AGREEMENT.md
* Restore contributor agreement
* Adjust construction examples
* Add check for empty input file to CLI pretrain
* Raise error if JSONL is not a dict or contains neither `tokens` nor `text` key
* Skip empty values for correct pretrain keys and log a counter as warning
* Add tests for CLI pretrain core function make_docs.
* Add a short hint for the `tokens` key to the CLI pretrain docs
* Add success message to CLI pretrain
* Update model loading to fix the tests
* Skip empty values and do not create docs out of it