* Fix on_match callback and remove empty patterns (#6312)
For the `DependencyMatcher`:
* Fix on_match callback so that it is called once per matched pattern
* Fix results so that patterns with empty match lists are not returned
* Add --prefer-binary for python 3.5
* Add version pins for pyrsistent
* Use backwards-compatible super()
* Try to fix tests on Travis (2.7)
* Fix naming conflict and formatting
* Update pkuseg version in Chinese tokenizer warnings
* Some changes for Armenian (#5616)
* Fixing numericals
* We need a Armenian question sign to make the sentence a question
* Update lex_attrs.py (#5608)
* Fix compat
* Update Armenian from v2.3.x
Co-authored-by: Ines Montani <ines@ines.io>
Co-authored-by: Karen Hambardzumyan <mahnerak@gmail.com>
Co-authored-by: Marat M. Yavrumyan <myavrum@ysu.am>
* Limiting noun_chunks for specific langauges
* Limiting noun_chunks for specific languages
Contributor Agreement
* Addressing review comments
* Removed unused fixtures and imports
* Add fa_tokenizer in test suite
* Use fa_tokenizer in test
* Undo extraneous reformatting
Co-authored-by: adrianeboyd <adrianeboyd@gmail.com>
Check that row is within bounds for the vector data array when adding a
vector.
Don't add vectors with rank OOV_RANK in `init-model` (change is due to
shift from OOV as 0 to OOV as OOV_RANK).
Remove `TAG` value from Danish and Swedish tokenizer exceptions because
it may not be included in a tag map (and these settings are problematic
as tokenizer exceptions anyway).
Instead of treating `'d` in contractions like `I'd` as `would` in all
cases in the tokenizer exceptions, leave the tagging and lemmatization
up to later components.
* Initialize lower flag explicitly
* Handle whitespace words from GoldParse correctly when creating raw
text with orth variants
* Return the text with original casing if anything goes wrong
* `debug-data`: determine coverage of provided vectors
* `evaluate`: support `blank:lg` model to make it possible to just evaluate
tokenization
* `init-model`: add option to truncate vectors to N most frequent vectors
from word2vec file
* `train`:
* if training on GPU, only run evaluation/timing on CPU in the first
iteration
* if training is aborted, exit with a non-0 exit status
* simplify creation of KB by skipping dim reduction
* small fixes to train EL example script
* add KB creation and NEL training example scripts to example section
* update descriptions of example scripts in the documentation
* moving wiki_entity_linking folder from bin to projects
* remove test for wiki NEL functionality that is being moved
Reconstruction of the original PR #4697 by @MiniLau.
Removes unused `SENT_END` symbol and `IS_SENT_END` from `Matcher` schema
because the Matcher is only going to be able to support `IS_SENT_START`.
Improve GoldParse NER alignment by including all cases where the start
and end of the NER span can be aligned, regardless of internal
tokenization differences.
To do this, convert BILUO tags to character offsets, check start/end
alignment with `doc.char_span()`, and assign the BILUO tags for the
aligned spans. Alignment for `O/-` tags is handled through the
one-to-one and multi alignments.
Modify jieba install message to instruct the user to use
`ChineseDefaults.use_jieba = False` so that it's possible to load
pkuseg-only models without jieba installed.
* Add pkuseg and serialization support for Chinese
Add support for pkuseg alongside jieba
* Specify model through `Language` meta:
* split on characters (if no word segmentation packages are installed)
```
Chinese(meta={"tokenizer": {"config": {"use_jieba": False, "use_pkuseg": False}}})
```
* jieba (remains the default tokenizer if installed)
```
Chinese()
Chinese(meta={"tokenizer": {"config": {"use_jieba": True}}}) # explicit
```
* pkuseg
```
Chinese(meta={"tokenizer": {"config": {"pkuseg_model": "default", "use_jieba": False, "use_pkuseg": True}}})
```
* The new tokenizer setting `require_pkuseg` is used to override
`use_jieba` default, which is intended for models that provide a pkuseg
model:
```
nlp_pkuseg = Chinese(meta={"tokenizer": {"config": {"pkuseg_model": "default", "require_pkuseg": True}}})
nlp = Chinese() # has `use_jieba` as `True` by default
nlp.from_bytes(nlp_pkuseg.to_bytes()) # `require_pkuseg` overrides `use_jieba` when calling the tokenizer
```
Add support for serialization of tokenizer settings and pkuseg model, if
loaded
* Add sorting for `Language.to_bytes()` serialization of `Language.meta`
so that the (emptied, but still present) tokenizer metadata is in a
consistent position in the serialized data
Extend tests to cover all three tokenizer configurations and
serialization
* Fix from_disk and tests without jieba or pkuseg
* Load cfg first and only show error if `use_pkuseg`
* Fix blank/default initialization in serialization tests
* Explicitly initialize jieba's cache on init
* Add serialization for pkuseg pre/postprocessors
* Reformat pkuseg install message
* Matcher support for Span, as well as Doc #5056
* Removes an import unused
* Signed contributors agreement
* Code optimization and better test
* Add error message for bad Matcher call argument
* Fix merging
* Use max(uint64) for OOV lexeme rank
* Add test for default OOV rank
* Revert back to thinc==7.4.0
Requiring the updated version of thinc was unnecessary.
* Define OOV_RANK in one place
Define OOV_RANK in one place in `util`.
* Fix formatting [ci skip]
* Switch to external definitions of max(uint64)
Switch to external defintions of max(uint64) and confirm that they are
equal.
* Add Doc init from list of words and text
Add an option to initialize a `Doc` from a text and list of words where
the words may or may not include all whitespace tokens. If the text and
words are mismatched, raise an error.
* Fix error code
* Remove all whitespace before aligning words/text
* Move words/text init to util function
* Update error message
* Rename to get_words_and_spaces
* Fix formatting
* Fixed typo in cli warning
Fixed a typo in the warning for the provision of exactly two labels, which have not been designated as binary, to textcat.
* Create and signed contributor form
* Use inline flags in token_match patterns
Use inline flags in `token_match` patterns so that serializing does not
lose the flag information.
* Modify inline flag
* Modify inline flag