* Update processing-pipelines.md
Under "things to try," inform users they can save metadata when using nlp.pipe(foobar, as_tuples=True)
Link to a new example on the attributes page detailing the following:
> ```
> data = [
> ("Some text to process", {"meta": "foo"}),
> ("And more text...", {"meta": "bar"})
> ]
>
> for doc, context in nlp.pipe(data, as_tuples=True):
> # Let's assume you have a "meta" extension registered on the Doc
> doc._.meta = context["meta"]
> ```
from https://stackoverflow.com/questions/57058798/make-spacy-nlp-pipe-process-tuples-of-text-and-additional-information-to-add-as
* Updating the attributes section
Update the attributes section with example of how extensions can be used to store metadata.
* Update processing-pipelines.md
* Update processing-pipelines.md
Made as_tuples example executable and relocated to the end of the "Processing Text" section.
* Update processing-pipelines.md
* Update processing-pipelines.md
Removed extra line
* Reformat and rephrase
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Update Tokenizer.explain with special matches
Update `Tokenizer.explain` and the pseudo-code in the docs to include
the processing of special cases that contain affixes or whitespace.
* Handle optional settings in explain
* Add test for special matches in explain
Add test for `Tokenizer.explain` for special cases containing affixes.
* Terminology: deprecated vs obsolete
Typically, deprecated is used for functionality that is bound to become unavailable but that can still be used. Obsolete is used for features that have been removed. In E941, I think what is meant is "obsolete" since loading a model by a shortcut simply does not work anymore (and throws an error). This is different from downloading a model with a shortcut, which is deprecated but still works.
In light of this, perhaps all other error codes should be checked as well.
* clarify that the link command is removed and not just deprecated
Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com>
* extend span scorer with consider_label and allow_overlap
* unit test for spans y2x overlap
* add score_spans unit test
* docs for new fields in scorer.score_spans
* rename to include_label
* spell out if-else for clarity
* rename to 'labeled'
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Support match alignments
* change naming from match_alignments to with_alignments, add conditional flow if with_alignments is given, validate with_alignments, add related test case
* remove added errors, utilize bint type, cleanup whitespace
* fix no new line in end of file
* Minor formatting
* Skip alignments processing if as_spans is set
* Add with_alignments to Matcher API docs
* Update website/docs/api/matcher.md
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* add multi-label textcat to menu
* add infobox on textcat API
* add info to v3 migration guide
* small edits
* further fixes in doc strings
* add infobox to textcat architectures
* add textcat_multilabel to overview of built-in components
* spelling
* fix unrelated warn msg
* Add textcat_multilabel to quickstart [ci skip]
* remove separate documentation page for multilabel_textcategorizer
* small edits
* positive label clarification
* avoid duplicating information in self.cfg and fix textcat.score
* fix multilabel textcat too
* revert threshold to storage in cfg
* revert threshold stuff for multi-textcat
Co-authored-by: Ines Montani <ines@ines.io>
* initialize NLP with train corpus
* add more pretraining tests
* more tests
* function to fetch tok2vec layer for pretraining
* clarify parameter name
* test different objectives
* formatting
* fix check for static vectors when using vectors objective
* clarify docs
* logger statement
* fix init_tok2vec and proc.initialize order
* test training after pretraining
* add init_config tests for pretraining
* pop pretraining block to avoid config validation errors
* custom errors
* Add regression test
* Run PhraseMatcher on Spans
* Add test for PhraseMatcher on Spans and Docs
* Add SCA
* Add test with 3 matches in Doc, 1 match in Span
* Update docs
* Use doc.length for find_matches in tokenizer
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>