When the default `max_length` is not set and there are longer training
documents, it can be difficult to train and evaluate the span finder due
to memory limits and the time it takes to evaluate a huge number of
predicted spans.
* `Language.replace_listeners`: Pass the replaced listener and the `tok2vec` pipe to the callback
* Update developer docs
* `isort` fixes
* Add error message to assertion
* Add clarification to dev docs
* Replace assertion with exception
* Doc fixes
* Fix problem with universe pages using `docker` language
* Fix problem with universe pages using `r` language
* Add fallback, in case code language is unknown
* Support custom token/lexeme attribute for vectors
* Fix imports
* Back off to ORTH without Vectors.attr
* Fallback if vectors.attr doesn't exist
* Update docs
When sourcing a component, the object from the original pipeline is added to the new pipeline as the same object. This creates a situation where there are several attributes that cannot be in sync between the original pipeline and the new pipeline at the same time for this one object:
* component.name
* component.listener_map / component.listening_components for tok2vec and transformer
When running replace_listeners on a component, the config is not updated correctly if the state of the component is incorrect for the current pipeline (in particular changes that should be applied from model.attrs["replace_listener_cfg"] as used in spacy-transformers) due to the fact that:
* find_listeners relies on component.name to set the name in the listener_map
* replace_listeners relies on listener_map to determine how to modify the configs
In addition, there are several places where pipeline components are modified and the listener map and/or internal component names aren't currently updated.
In cases where there is a component shared by two pipelines that cannot be in sync, this PR chooses to prioritize the most recently modified or initialized pipeline. There is no actual solution with the current source behavior that will make both pipelines usable, so the current pipeline is updated whenever components are added/renamed/removed or the pipeline is initialized for training.
* Add SpanMarker for NER to spaCy universe
* Escape the newlines in the text in the code example
Or at least, attempt to
* Remove now unnecessary import
* Disable NER pipeline component in code example
This is a really odd bug, where Firefox doesn't re-render the `code` element, even though `children` changed.
Two things fixed that:
- remove the `language-ini` `className`
- replace the `code` block with a `div`
Both are not ideal. Therefor this solution adds an inner `div` that now has the classes while still maintaining the semantic `code` element.
I couldn't find any explanation for why this is happening and why it only happens in Firefox. I assume it is a bug caused by one of our many dependencies (or their interplay)
To make matters worse: This bug *doesn't* occure when running the site in dev mode. You have to build and serve the site to recreate it.
* Use isort with Black profile
* isort all the things
* Fix import cycles as a result of import sorting
* Add DOCBIN_ALL_ATTRS type definition
* Add isort to requirements
* Remove isort from build dependencies check
* Typo
* span finder integrated into spacy from experimental
* black
* isort
* black
* default spankey constant
* black
* Update spacy/pipeline/spancat.py
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* rename
* rename
* max_length and min_length as Optional[int] and strict checking
* black
* mypy fix for integer type infinity
* revert line order
* implement all comparison operators for inf int
* avoid two for loops over all docs by not precomputing
* interleave thresholding with span creation
* black
* revert to not interleaving (relized its faster)
* black
* Update spacy/errors.py
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* update dosctring
* enforce that the gold and predicted documents have the same text
* new error for ensuring reference and predicted texts are the same
* remove todo
* adjust test
* black
* handle misaligned tokenization
* return correct variable
* failing overfit test
* only use a single spans_key like in spancat
* black
* remove debug lines
* typo
* remove comment
* remove near duplicate reduntant method
* use the 'spans_key' variable name everywhere
* Update spacy/pipeline/span_finder.py
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* flaky test fix suggestion, hand set bias terms
* only test suggester and test result exhaustively
* make it clear that the span_finder_suggester is more general (not specific to span_finder)
* Update spacy/tests/pipeline/test_span_finder.py
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Apply suggestions from code review
* remove question comment
* move preset_spans_suggester test to spancat tests
* Add docs and unify default configs for spancat and span finder
* Add `allow_overlap=True` to span finder scorer
* Fix offset bug in set_annotations
* Ignore labels in span finder scorer
* Format
* Add span_finder to quickstart template
* Move settings to self.cfg, store min/max unset as None
* Remove debugging
* Update docstrings and docs
* Update spacy/pipeline/span_finder.py
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Fix imports
---------
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
* Require that all SpanGroup spans are from the current doc
The restriction on only adding spans from the current doc were already
implemented for all operations except for `SpanGroup.__init__`.
Initialize copied spans for `SpanGroup.copy` with `Doc.char_span` in
order to validate the character offsets and to make it possible to copy
spans between documents with differing tokenization. Currently there is
no validation that the document texts are identical, but the span char
offsets must be valid spans in the target doc, which prevents you from
ending up with completely invalid spans.
* Undo change in test_beam_overfitting_IO
* add vetiver to spacy universe
* remove image
* update logo to render correctly in thumbnail
* apply Basil's suggestion
Co-authored-by: Basile Dura <bdura@users.noreply.github.com>
* refer to the same model
---------
Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com>
Co-authored-by: Basile Dura <bdura@users.noreply.github.com>
* Address upcoming numpy v1.25 deprecations in test suite
* Temporarily test most recent numpy prerelease in CI
* Revert "Temporarily test most recent numpy prerelease in CI"
This reverts commit d75a66e55e.
While the typing_extensions/pydantic `Literal` bugs are being sorted
out, disable fail-fast so the rest of the CI is available for
development purposes.
* Add scorer option to return per-component scores
Add `per_component` option to `Language.evaluate` and `Scorer.score` to
return scores keyed by `tokenizer` (hard-coded) or by component name.
Add option to `evaluate` CLI to score by component. Per-component scores
can only be saved to JSON.
* Update help text and messages
This reverts commit 6f314f99c4.
We are reverting this until we can support this normalization more
consistently across vectors, training corpora, and lemmatizer data.
* parsigs universe
* added model installation explanation in the description
* Update website/meta/universe.json
Co-authored-by: Basile Dura <bdura@users.noreply.github.com>
* added model installement instruction in the code example
---------
Co-authored-by: Basile Dura <bdura@users.noreply.github.com>