* Preserve existing ENT_KB_ID annotation in NER
Preserve `ent_kb_id` annotation on existing entity spans, which is not
preserved by the transition system.
* Simplify kb_id assignment
* Simplify further
* Fix pretraining objectives fragment
The fragment here is reused from a heading higher up, so you couldn't
link to this section.
* Fix section link to new fragment
This came up in #7878, but if --resume-path is a directory then loading
the weights will fail. On Linux this will give a straightforward error
message, but on Windows it gives "Permission Denied", which is
confusing.
* Fix percent unk display
This was showing (ratio %), so 10% would show as 0.10%. Fix by
multiplying ration by 100.
Might want to add a warning if this is over a threshold.
* Only show whole-integer percents
* Set up CI for tests with GPU agent
* Update tests for enabled GPU
* Fix steps filename
* Add parallel build jobs as a setting
* Fix test requirements
* Fix install test requirements condition
* Fix pipeline models test
* Reset current ops in prefer/require testing
* Fix more tests
* Remove separate test_models test
* Fix regression 5551
* fix StaticVectors for GPU use
* fix vocab tests
* Fix regression test 5082
* Move azure steps to .github and reenable default pool jobs
* Consolidate/rename azure steps
Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com>
* Add callback to copy vocab/tokenizer from model
Add callback `spacy.copy_from_base_model.v1` to copy the tokenizer
settings and/or vocab (including vectors) from a base model.
* Move spacy.copy_from_base_model.v1 to spacy.training.callbacks
* Add documentation
* Modify to specify model as tokenizer and vocab params
* Update sent_starts in Example.from_dict
Update `sent_starts` for `Example.from_dict` so that `Optional[bool]`
values have the same meaning as for `Token.is_sent_start`.
Use `Optional[bool]` as the type for sent start values in the docs.
* Use helper function for conversion to ternary ints
* Fix tokenizer cache flushing
Fix/simplify tokenizer init detection in order to fix cache flushing
when properties are modified.
* Remove init reloading logic
* Remove logic disabling `_reload_special_cases` on init
* Setting `rules` last in `__init__` (as before) means that setting
other properties doesn't reload any special cases
* Reset `rules` first in `from_bytes` so that setting other properties
during deserialization doesn't reload any special cases
unnecessarily
* Reset all properties in `Tokenizer.from_bytes` to allow any settings
to be `None`
* Also reset special matcher when special cache is flushed
* Remove duplicate special case validation
* Add test for special cases flushing
* Extend test for tokenizer deserialization of None values
* Replace negative rows with 0 in StaticVectors
Replace negative row indices with 0-vectors in `StaticVectors`.
* Increase versions related to StaticVectors
* Increase versions of all architctures and layers related to
`StaticVectors`
* Improve efficiency of 0-vector operations
Parallel `spacy-legacy` PR: https://github.com/explosion/spacy-legacy/pull/5
* Update config defaults to new versions
* Update docs
* Update processing-pipelines.md
Under "things to try," inform users they can save metadata when using nlp.pipe(foobar, as_tuples=True)
Link to a new example on the attributes page detailing the following:
> ```
> data = [
> ("Some text to process", {"meta": "foo"}),
> ("And more text...", {"meta": "bar"})
> ]
>
> for doc, context in nlp.pipe(data, as_tuples=True):
> # Let's assume you have a "meta" extension registered on the Doc
> doc._.meta = context["meta"]
> ```
from https://stackoverflow.com/questions/57058798/make-spacy-nlp-pipe-process-tuples-of-text-and-additional-information-to-add-as
* Updating the attributes section
Update the attributes section with example of how extensions can be used to store metadata.
* Update processing-pipelines.md
* Update processing-pipelines.md
Made as_tuples example executable and relocated to the end of the "Processing Text" section.
* Update processing-pipelines.md
* Update processing-pipelines.md
Removed extra line
* Reformat and rephrase
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
* Update Tokenizer.explain with special matches
Update `Tokenizer.explain` and the pseudo-code in the docs to include
the processing of special cases that contain affixes or whitespace.
* Handle optional settings in explain
* Add test for special matches in explain
Add test for `Tokenizer.explain` for special cases containing affixes.
* Set catalogue lower pin to v2.0.2
* Update importlib-metadata pins to match
* Require catalogue v2.0.3
Switch to vendored `importlib-metadata` v3.2.0 provided by `catalogue`.