Add Kannada, Tamil, and Telugu unicode blocks to uncased character
classes so that period is recognized as a suffix during tokenization.
(I'm sure a few symbols in the code blocks should not be ALPHA, but this
is mainly relevant for suffix detection and seems to be an improvement
in practice.)
* Changes to wiki_entity_linker
* No more f-strings
* Make some requested changes
* Add back option to get descriptions from wd not wp
* Fix logs
* Address comments and clean evaluation
* Remove type hints
* Refactor evaluation, add back metrics by label
* Address comments
* Log training performance as well as dev
* Allow copying the user_data with as_doc + unit test
* add option to docs
* add typing
* import fix
* workaround to avoid bool clashing ...
* bint instead of bool
* Improve load_language_data helper
* WIP: Add Lookups implementation
* Start moving lemma data over to JSON
* WIP: move data over for more languages
* Convert more languages
* Fix lemmatizer fixtures in tests
* Finish conversion
* Auto-format JSON files
* Fix test for now
* Make sure tables are stored on instance
* Update docstrings
* Update docstrings and errors
* Update test
* Add Lookups.__len__
* Add serialization methods
* Add Lookups.remove_table
* Use msgpack for serialization to disk
* Fix file exists check
* Try using OrderedDict for everything
* Update .flake8 [ci skip]
* Try fixing serialization
* Update test_lookups.py
* Update test_serialize_vocab_strings.py
* Fix serialization for lookups
* Fix lookups
* Fix lookups
* Fix lookups
* Try to fix serialization
* Try to fix serialization
* Try to fix serialization
* Try to fix serialization
* Give up on serialization test
* Xfail more serialization tests for 3.5
* Fix lookups for 2.7
* Modify retokenizer to use span root attributes
* tag/pos/morph are set to root tag/pos/morph
* lemma and norm are reset and end up as orth (not ideal, but better
than orth of first token)
* Also handle individual merge case
* Add test
* Attempt to handle ent_iob and ent_type in merges
* Fix check for whether B-ENT should become I-ENT
* Move IOB consistency check to after attrs
Move all IOB consistency checks after attrs are set and simplify to
check entire document, modifying I to B at the beginning of the document
or if the entity type of the previous token isn't the same.
* Move IOB consistency check for single merge
Move IOB consistency check after the token array is compressed for the
single merge case.
* Update spacy/tokens/_retokenize.pyx
Co-Authored-By: Matthew Honnibal <honnibal+gh@gmail.com>
* Remove single vs. multiple merge distinction
Remove original single-instance `_merge()` and use `_bulk_merge()` (now
renamed `_merge()`) for all merges.
* Add out-of-bound check in previous entity check
* Updates/bugfixes for NER/IOB converters
* Converter formats `ner` and `iob` use autodetect to choose a converter if
possible
* `iob2json` is reverted to handle sentence-per-line data like
`word1|pos1|ent1 word2|pos2|ent2`
* Fix bug in `merge_sentences()` so the second sentence in each batch isn't
skipped
* `conll_ner2json` is made more general so it can handle more formats with
whitespace-separated columns
* Supports all formats where the first column is the token and the final
column is the IOB tag; if present, the second column is the POS tag
* As in CoNLL 2003 NER, blank lines separate sentences, `-DOCSTART- -X- O O`
separates documents
* Add option for segmenting sentences (new flag `-s`)
* Parser-based sentence segmentation with a provided model, otherwise with
sentencizer (new option `-b` to specify model)
* Can group sentences into documents with `n_sents` as long as sentence
segmentation is available
* Only applies automatic segmentation when there are no existing delimiters
in the data
* Provide info about settings applied during conversion with warnings and
suggestions if settings conflict or might not be not optimal.
* Add tests for common formats
* Add '(default)' back to docs for -c auto
* Add document count back to output
* Revert changes to converter output message
* Use explicit tabs in convert CLI test data
* Adjust/add messages for n_sents=1 default
* Add sample NER data to training examples
* Update README
* Add links in docs to example NER data
* Define msg within converters