Commit Graph

17 Commits

Author SHA1 Message Date
Adriane Boyd
c053f158c5
Add support for floret vectors (#8909)
* Add support for fasttext-bloom hash-only vectors

Overview:

* Extend `Vectors` to have two modes: `default` and `ngram`
  * `default` is the default mode and equivalent to the current
    `Vectors`
  * `ngram` supports the hash-only ngram tables from `fasttext-bloom`
* Extend `spacy.StaticVectors.v2` to handle both modes with no changes
  for `default` vectors
* Extend `spacy init vectors` to support ngram tables

The `ngram` mode **only** supports vector tables produced by this
fork of fastText, which adds an option to represent all vectors using
only the ngram buckets table and which uses the exact same ngram
generation algorithm and hash function (`MurmurHash3_x64_128`).
`fasttext-bloom` produces an additional `.hashvec` table, which can be
loaded by `spacy init vectors --fasttext-bloom-vectors`.

https://github.com/adrianeboyd/fastText/tree/feature/bloom

Implementation details:

* `Vectors` now includes the `StringStore` as `Vectors.strings` so that
  the API can stay consistent for both `default` (which can look up from
  `str` or `int`) and `ngram` (which requires `str` to calculate the
  ngrams).

* In ngram mode `Vectors` uses a default `Vectors` object as a cache
  since the ngram vectors lookups are relatively expensive.

  * The default cache size is the same size as the provided ngram vector
    table.

  * Once the cache is full, no more entries are added. The user is
    responsible for managing the cache in cases where the initial
    documents are not representative of the texts.

  * The cache can be resized by setting `Vectors.ngram_cache_size` or
    cleared with `vectors._ngram_cache.clear()`.

* The API ends up a bit split between methods for `default` and for
  `ngram`, so functions that only make sense for `default` or `ngram`
  include warnings with custom messages suggesting alternatives where
  possible.

* `Vocab.vectors` becomes a property so that the string stores can be
  synced when assigning vectors to a vocab.

* `Vectors` serializes its own config settings as `vectors.cfg`.

* The `Vectors` serialization methods have added support for `exclude`
  so that the `Vocab` can exclude the `Vectors` strings while serializing.

Removed:

* The `minn` and `maxn` options and related code from
  `Vocab.get_vector`, which does not work in a meaningful way for default
  vector tables.

* The unused `GlobalRegistry` in `Vectors`.

* Refactor to use reduce_mean

Refactor to use reduce_mean and remove the ngram vectors cache.

* Rename to floret

* Rename to floret in error messages

* Use --vectors-mode in CLI, vector init

* Fix vectors mode in init

* Remove unused var

* Minor API and docstrings adjustments

* Rename `--vectors-mode` to `--mode` in `init vectors` CLI
* Rename `Vectors.get_floret_vectors` to `Vectors.get_batch` and support
  both modes.
* Minor updates to Vectors docstrings.

* Update API docs for Vectors and init vectors CLI

* Update types for StaticVectors
2021-10-27 14:08:31 +02:00
Stanislav Schmidt
2516896849
Make vocab update in get_docs deterministic (#7603)
* Make vocab update in get_docs deterministic

The attribute `DocBin.strings` is a set. In `DocBin.get_docs`
a given vocab is updated by iterating over this set.
Iteration over a python set produces an arbitrary ordering,
therefore vocab is updated non-deterministically.

When training (fine-tuning) a spacy model, the base model's
vocabulary will be updated with the new vocabulary in the
training data in exactly the way described above. After
serialization, the file `model/vocab/strings.json` will
be sorted in an arbitrary way. This prevents reproducible
model training.

* Revert "Make vocab update in get_docs deterministic"

This reverts commit d6b87a2f55.

* Sort strings in StringStore serialization

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
2021-04-09 11:53:13 +02:00
Adriane Boyd
e962784531
Add Lemmatizer and simplify related components (#5848)
* Add Lemmatizer and simplify related components

* Add `Lemmatizer` pipe with `lookup` and `rule` modes using the
`Lookups` tables.
* Reduce `Tagger` to a simple tagger that sets `Token.tag` (no pos or lemma)
* Reduce `Morphology` to only keep track of morph tags (no tag map, lemmatizer,
or morph rules)
* Remove lemmatizer from `Vocab`
* Adjust many many tests

Differences:

* No default lookup lemmas
* No special treatment of TAG in `from_array` and similar required
* Easier to modify labels in a `Tagger`
* No extra strings added from morphology / tag map

* Fix test

* Initial fix for Lemmatizer config/serialization

* Adjust init test to be more generic

* Adjust init test to force empty Lookups

* Add simple cache to rule-based lemmatizer

* Convert language-specific lemmatizers

Convert language-specific lemmatizers to component lemmatizers. Remove
previous lemmatizer class.

* Fix French and Polish lemmatizers

* Remove outdated UPOS conversions

* Update Russian lemmatizer init in tests

* Add minimal init/run tests for custom lemmatizers

* Add option to overwrite existing lemmas

* Update mode setting, lookup loading, and caching

* Make `mode` an immutable property
* Only enforce strict `load_lookups` for known supported modes
* Move caching into individual `_lemmatize` methods

* Implement strict when lang is not found in lookups

* Fix tables/lookups in make_lemmatizer

* Reallow provided lookups and allow for stricter checks

* Add lookups asset to all Lemmatizer pipe tests

* Rename lookups in lemmatizer init test

* Clean up merge

* Refactor lookup table loading

* Add helper from `load_lemmatizer_lookups` that loads required and
optional lookups tables based on settings provided by a config.

Additional slight refactor of lookups:

* Add `Lookups.set_table` to set a table from a provided `Table`
* Reorder class definitions to be able to specify type as `Table`

* Move registry assets into test methods

* Refactor lookups tables config

Use class methods within `Lemmatizer` to provide the config for
particular modes and to load the lookups from a config.

* Add pipe and score to lemmatizer

* Simplify Tagger.score

* Add missing import

* Clean up imports and auto-format

* Remove unused kwarg

* Tidy up and auto-format

* Update docstrings for Lemmatizer

Update docstrings for Lemmatizer.

Additionally modify `is_base_form` API to take `Token` instead of
individual features.

* Update docstrings

* Remove tag map values from Tagger.add_label

* Update API docs

* Fix relative link in Lemmatizer API docs
2020-08-07 15:27:13 +02:00
Sofie Van Landeghem
c9da9605f7
Test suite clean up (#5781)
* step_through tests: skip instead of xfail

* test_empty_doc should be fixed with new Thinc version

* remove outdated test (there are other misaligned tests now)

* xfail reason

* fix test according to french exceptions

* clarified some skipped tests

* skip ukranian test instead of xfail

* skip instead of xfail

* skip + reason instead of xfail

* removed obsolete tests referring to removed "set_frozen" functionality

* fix test 999

* remove unused AlignmentError

* remove xfail where possible, skip otherwise

* increment thinc release for empty_doc test
2020-07-20 14:49:54 +02:00
Ines Montani
8283df80e9 Tidy up and auto-format 2020-06-20 14:15:04 +02:00
Adriane Boyd
17ee9ab53a Fix _SP/POS=SPACE in strings serialization tests 2020-05-21 19:49:08 +02:00
Ines Montani
24f72c669c Merge branch 'develop' into master-tmp 2020-05-21 18:39:06 +02:00
Ines Montani
d8f3190c0a Tidy up and auto-format 2020-05-21 14:14:01 +02:00
adrianeboyd
a5cd203284
Reduce stored lexemes data, move feats to lookups (#5238)
* Reduce stored lexemes data, move feats to lookups

* Move non-derivable lexemes features (`norm / cluster / prob`) to
`spacy-lookups-data` as lookups
  * Get/set `norm` in both lookups and `LexemeC`, serialize in lookups
  * Remove `cluster` and `prob` from `LexemesC`, get/set/serialize in
    lookups only
* Remove serialization of lexemes data as `vocab/lexemes.bin`
  * Remove `SerializedLexemeC`
  * Remove `Lexeme.to_bytes/from_bytes`
* Modify normalization exception loading:
  * Always create `Vocab.lookups` table `lexeme_norm` for
    normalization exceptions
  * Load base exceptions from `lang.norm_exceptions`, but load
    language-specific exceptions from lookups
  * Set `lex_attr_getter[NORM]` including new lookups table in
    `BaseDefaults.create_vocab()` and when deserializing `Vocab`
* Remove all cached lexemes when deserializing vocab to override
  existing normalizations with the new normalizations (as a replacement
  for the previous step that replaced all lexemes data with the
  deserialized data)

* Skip English normalization test

Skip English normalization test because the data is now in
`spacy-lookups-data`.

* Remove norm exceptions

Moved to spacy-lookups-data.

* Move norm exceptions test to spacy-lookups-data

* Load extra lookups from spacy-lookups-data lazily

Load extra lookups (currently for cluster and prob) lazily from the
entry point `lg_extra` as `Vocab.lookups_extra`.

* Skip creating lexeme cache on load

To improve model loading times, do not create the full lexeme cache when
loading. The lexemes will be created on demand when processing.

* Identify numeric values in Lexeme.set_attrs()

With the removal of a special case for `PROB`, also identify `float` to
avoid trying to convert it with the `StringStore`.

* Skip lexeme cache init in from_bytes

* Unskip and update lookups tests for python3.6+

* Update vocab pickle to include lookups_extra

* Update vocab serialization tests

Check strings rather than lexemes since lexemes aren't initialized
automatically, account for addition of "_SP".

* Re-skip lookups test because of python3.5

* Skip PROB/float values in Lexeme.set_attrs

* Convert is_oov from lexeme flag to lex in vectors

Instead of storing `is_oov` as a lexeme flag, `is_oov` reports whether
the lexeme has a vector.

Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
2020-05-19 15:59:14 +02:00
Ines Montani
db55577c45
Drop Python 2.7 and 3.5 (#4828)
* Remove unicode declarations

* Remove Python 3.5 and 2.7 from CI

* Don't require pathlib

* Replace compat helpers

* Remove OrderedDict

* Use f-strings

* Set Cython compiler language level

* Fix typo

* Re-add OrderedDict for Table

* Update setup.cfg

* Revert CONTRIBUTING.md

* Revert lookups.md

* Revert top-level.md

* Small adjustments and docs [ci skip]
2019-12-22 01:53:56 +01:00
Ines Montani
3d8fd4b461 Revert #4334 2019-09-29 17:32:12 +02:00
Ines Montani
c9cd516d96 Move tests out of package (#4334)
* Move tests out of package

* Fix typo
2019-09-28 18:05:00 +02:00
Ines Montani
3e8f136ba7 💫 WIP: Basic lookup class scaffolding and JSON for all lemmatizer data (#4178)
* Improve load_language_data helper

* WIP: Add Lookups implementation

* Start moving lemma data over to JSON

* WIP: move data over for more languages

* Convert more languages

* Fix lemmatizer fixtures in tests

* Finish conversion

* Auto-format JSON files

* Fix test for now

* Make sure tables are stored on instance

* Update docstrings

* Update docstrings and errors

* Update test

* Add Lookups.__len__

* Add serialization methods

* Add Lookups.remove_table

* Use msgpack for serialization to disk

* Fix file exists check

* Try using OrderedDict for everything

* Update .flake8 [ci skip]

* Try fixing serialization

* Update test_lookups.py

* Update test_serialize_vocab_strings.py

* Fix serialization for lookups

* Fix lookups

* Fix lookups

* Fix lookups

* Try to fix serialization

* Try to fix serialization

* Try to fix serialization

* Try to fix serialization

* Give up on serialization test

* Xfail more serialization tests for 3.5

* Fix lookups for 2.7
2019-09-09 19:17:55 +02:00
Matthew Honnibal
27dd820753
Fix vocab deserialization when loading already present lexemes (#3383)
* Fix vocab deserialization bug. Closes #2153

* Un-xfail test for #2153
2019-03-10 17:21:19 +01:00
Matthew Honnibal
61e5ce02a4 Add xfailing test for #2153 2019-03-10 16:36:29 +01:00
Ines Montani
b6e991440c 💫 Tidy up and auto-format tests (#2967)
* Auto-format tests with black

* Add flake8 config

* Tidy up and remove unused imports

* Fix redefinitions of test functions

* Replace orths_and_spaces with words and spaces

* Fix compatibility with pytest 4.0

* xfail test for now

Test was previously overwritten by following test due to naming conflict, so failure wasn't reported

* Unfail passing test

* Only use fixture via arguments

Fixes pytest 4.0 compatibility
2018-11-27 01:09:36 +01:00
Ines Montani
75f3234404
💫 Refactor test suite (#2568)
## Description

Related issues: #2379 (should be fixed by separating model tests)

* **total execution time down from > 300 seconds to under 60 seconds** 🎉
* removed all model-specific tests that could only really be run manually anyway – those will now live in a separate test suite in the [`spacy-models`](https://github.com/explosion/spacy-models) repository and are already integrated into our new model training infrastructure
* changed all relative imports to absolute imports to prepare for moving the test suite from `/spacy/tests` to `/tests` (it'll now always test against the installed version)
* merged old regression tests into collections, e.g. `test_issue1001-1500.py` (about 90% of the regression tests are very short anyways)
* tidied up and rewrote existing tests wherever possible

### Todo

- [ ] move tests to `/tests` and adjust CI commands accordingly
- [x] move model test suite from internal repo to `spacy-models`
- [x] ~~investigate why `pipeline/test_textcat.py` is flakey~~
- [x] review old regression tests (leftover files) and see if they can be merged, simplified or deleted
- [ ] update documentation on how to run tests


### Types of change
enhancement, tests

## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [ ] My changes don't require a change to the documentation, or if they do, I've added all required information.
2018-07-24 23:38:44 +02:00