Commit Graph

7 Commits

Author SHA1 Message Date
Daniël de Kok
e2b70df012
Configure isort to use the Black profile, recursively isort the spacy module (#12721)
* Use isort with Black profile

* isort all the things

* Fix import cycles as a result of import sorting

* Add DOCBIN_ALL_ATTRS type definition

* Add isort to requirements

* Remove isort from build dependencies check

* Typo
2023-06-14 17:48:41 +02:00
Edward
de32011e4c
Add model-last saving mechanism to pretraining (#12459)
* Adjust pretrain command

* chane naming and add finally block

* Add unit test

* Add unit test assertions

* Update spacy/training/pretrain.py

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>

* change finally block

* Add to docs

* Update website/docs/usage/embeddings-transformers.mdx

* Add flag to skip saving model-last

---------

Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
2023-04-03 15:24:03 +02:00
Adriane Boyd
fac457a509
Support floret for PretrainVectors (#12435)
* Support floret for PretrainVectors

* Format
2023-03-24 16:28:51 +01:00
Adriane Boyd
260cb9c6fe
Raise error for non-default vectors with PretrainVectors (#12366) 2023-03-06 18:06:31 +01:00
Daniël de Kok
e5debc68e4
Tagger: use unnormalized probabilities for inference (#10197)
* Tagger: use unnormalized probabilities for inference

Using unnormalized softmax avoids use of the relatively expensive exp function,
which can significantly speed up non-transformer models (e.g. I got a speedup
of 27% on a German tagging + parsing pipeline).

* Add spacy.Tagger.v2 with configurable normalization

Normalization of probabilities is disabled by default to improve
performance.

* Update documentation, models, and tests to spacy.Tagger.v2

* Move Tagger.v1 to spacy-legacy

* docs/architectures: run prettier

* Unnormalized softmax is now a Softmax_v2 option

* Require thinc 8.0.14 and spacy-legacy 3.0.9
2022-03-15 14:15:31 +01:00
Adriane Boyd
5eeb25f043 Tidy up code 2021-06-28 12:08:15 +02:00
Sofie Van Landeghem
cd70c3cb79
Fixing pretrain (#7342)
* initialize NLP with train corpus

* add more pretraining tests

* more tests

* function to fetch tok2vec layer for pretraining

* clarify parameter name

* test different objectives

* formatting

* fix check for static vectors when using vectors objective

* clarify docs

* logger statement

* fix init_tok2vec and proc.initialize order

* test training after pretraining

* add init_config tests for pretraining

* pop pretraining block to avoid config validation errors

* custom errors
2021-03-09 14:01:13 +11:00