Commit Graph

199 Commits

Author SHA1 Message Date
Ines Montani
00a8cbc306 Tidy up and auto-format 2019-09-18 20:27:03 +02:00
adrianeboyd
b5d999e510 Add textcat to train CLI (#4226)
* Add doc.cats to spacy.gold at the paragraph level

Support `doc.cats` as `"cats": [{"label": string, "value": number}]` in
the spacy JSON training format at the paragraph level.

* `spacy.gold.docs_to_json()` writes `docs.cats`

* `GoldCorpus` reads in cats in each `GoldParse`

* Update instances of gold_tuples to handle cats

Update iteration over gold_tuples / gold_parses to handle addition of
cats at the paragraph level.

* Add textcat to train CLI

* Add textcat options to train CLI
* Add textcat labels in `TextCategorizer.begin_training()`
* Add textcat evaluation to `Scorer`:
  * For binary exclusive classes with provided label: F1 for label
  * For 2+ exclusive classes: F1 macro average
  * For multilabel (not exclusive): ROC AUC macro average (currently
relying on sklearn)
* Provide user info on textcat evaluation settings, potential
incompatibilities
* Provide pipeline to Scorer in `Language.evaluate` for textcat config
* Customize train CLI output to include only metrics relevant to current
pipeline
* Add textcat evaluation to evaluate CLI

* Fix handling of unset arguments and config params

Fix handling of unset arguments and model confiug parameters in Scorer
initialization.

* Temporarily add sklearn requirement

* Remove sklearn version number

* Improve Scorer handling of models without textcats

* Fixing Scorer handling of models without textcats

* Update Scorer output for python 2.7

* Modify inf in Scorer for python 2.7

* Auto-format

Also make small adjustments to make auto-formatting with black easier and produce nicer results

* Move error message to Errors

* Update documentation

* Add cats to annotation JSON format [ci skip]

* Fix tpl flag and docs [ci skip]

* Switch to internal roc_auc_score

Switch to internal `roc_auc_score()` adapted from scikit-learn.

* Add AUCROCScore tests and improve errors/warnings

* Add tests for AUCROCScore and roc_auc_score
* Add missing error for only positive/negative values
* Remove unnecessary warnings and errors

* Make reduced roc_auc_score functions private

Because most of the checks and warnings have been stripped for the
internal functions and access is only intended through `ROCAUCScore`,
make the functions for roc_auc_score adapted from scikit-learn private.

* Check that data corresponds with multilabel flag

Check that the training instances correspond with the multilabel flag,
adding the multilabel flag if required.

* Add textcat score to early stopping check

* Add more checks to debug-data for textcat

* Add example training data for textcat

* Add more checks to textcat train CLI

* Check configuration when extending base model
* Fix typos

* Update textcat example data

* Provide licensing details and licenses for data
* Remove two labels with no positive instances from jigsaw-toxic-comment
data.


Co-authored-by: Ines Montani <ines@ines.io>
2019-09-15 22:31:31 +02:00
Ines Montani
af25323653 Tidy up and auto-format 2019-09-11 14:00:36 +02:00
Matthew Honnibal
7b858ba606 Update from master 2019-09-10 20:14:08 +02:00
Sofie Van Landeghem
482c7cd1b9 pulling tqdm imports in functions to avoid bug (tmp fix) (#4263) 2019-09-09 16:32:11 +02:00
Adriane Boyd
f3906950d3 Add separate noise vs orth level to train CLI 2019-08-29 09:10:35 +02:00
Matthew Honnibal
bc5ce49859 Fix 'noise_level' in train cmd 2019-08-28 17:55:38 +02:00
Matthew Honnibal
bb911e5f4e Fix #3830: 'subtok' label being added even if learn_tokens=False (#4188)
* Prevent subtok label if not learning tokens

The parser introduces the subtok label to mark tokens that should be
merged during post-processing. Previously this happened even if we did
not have the --learn-tokens flag set. This patch passes the config
through to the parser, to prevent the problem.

* Make merge_subtokens a parser post-process if learn_subtokens

* Fix train script

* Add test for 3830: subtok problem

* Fix handlign of non-subtok in parser training
2019-08-23 17:54:00 +02:00
Ines Montani
6b3a79ac96 Call rmtree and copytree with strings (closes #3713) 2019-05-11 15:48:35 +02:00
Ines Montani
e0f487f904 Rename early_stopping_iter to n_early_stopping 2019-04-22 14:31:25 +02:00
Ines Montani
9767427669 Auto-format 2019-04-22 14:31:11 +02:00
Krzysztof Kowalczyk
cc1516ec26 Improved training and evaluation (#3538)
* Add early stopping

* Add return_score option to evaluate

* Fix missing str to path conversion

* Fix import + old python compatibility

* Fix bad beam_width setting during cpu evaluation in spacy train with gpu option turned on
2019-04-15 12:04:36 +02:00
Ines Montani
0f8739c7cb Update train.py 2019-03-16 16:04:15 +01:00
Ines Montani
e7aa25d9b1 Fix beam width integration 2019-03-16 16:02:47 +01:00
Ines Montani
c94742ff64 Only add beam width if customised 2019-03-16 15:55:31 +01:00
Ines Montani
7a354761c7 Auto-format 2019-03-16 15:55:13 +01:00
Matthew Honnibal
daa8c3787a Add eval_beam_widths argument to spacy train 2019-03-16 15:02:39 +01:00
Matthew Honnibal
f762c36e61 Evaluate accuracy at multiple beam widths 2019-03-15 15:19:49 +01:00
Jari Bakken
0546135fba Set vectors.name when updating meta.json during training (#3100)
* Set vectors.name when updating meta.json during training

* add vectors name to meta in `spacy package`
2018-12-27 19:55:40 +01:00
Matthew Honnibal
1788bf1af7 Unbreak progress bar 2018-12-20 13:57:00 +01:00
Matthew Honnibal
92f4b9c8ea set max batch size to 1000 2018-12-17 23:15:39 +00:00
Matthew Honnibal
fb56028476 Remove b1 and b2 decay 2018-12-12 12:37:07 +01:00
Matthew Honnibal
83ac227bd3
💫 Better support for semi-supervised learning (#3035)
The new spacy pretrain command implemented BERT/ULMFit/etc-like transfer learning, using our Language Modelling with Approximate Outputs version of BERT's cloze task. Pretraining is convenient, but in some ways it's a bit of a strange solution. All we're doing is initialising the weights. At the same time, we're putting a lot of work into our optimisation so that it's less sensitive to initial conditions, and more likely to find good optima. I discuss this a bit in the pseudo-rehearsal blog post: https://explosion.ai/blog/pseudo-rehearsal-catastrophic-forgetting
Support semi-supervised learning in spacy train

One obvious way to improve these pretraining methods is to do multi-task learning, instead of just transfer learning. This has been shown to work very well: https://arxiv.org/pdf/1809.08370.pdf . This patch makes it easy to do this sort of thing.

    Add a new argument to spacy train, --raw-text. This takes a jsonl file with unlabelled data that can be used in arbitrary ways to do semi-supervised learning.

    Add a new method to the Language class and to pipeline components, .rehearse(). This is like .update(), but doesn't expect GoldParse objects. It takes a batch of Doc objects, and performs an update on some semi-supervised objective.

    Move the BERT-LMAO objective out from spacy/cli/pretrain.py into spacy/_ml.py, so we can create a new pipeline component, ClozeMultitask. This can be specified as a parser or NER multitask in the spacy train command. Example usage:

python -m spacy train en ./tmp ~/data/en-core-web/train/nw.json ~/data/en-core-web/dev/nw.json --pipeline parser --raw-textt ~/data/unlabelled/reddit-100k.jsonl --vectors en_vectors_web_lg --parser-multitasks cloze

Implement rehearsal methods for pipeline components

The new --raw-text argument and nlp.rehearse() method also gives us a good place to implement the the idea in the pseudo-rehearsal blog post in the parser. This works as follows:

    Add a new nlp.resume_training() method. This allocates copies of pre-trained models in the pipeline, setting things up for the rehearsal updates. It also returns an optimizer object. This also greatly reduces confusion around the nlp.begin_training() method, which randomises the weights, making it not suitable for adding new labels or otherwise fine-tuning a pre-trained model.

    Implement rehearsal updates on the Parser class, making it available for the dependency parser and NER. During rehearsal, the initial model is used to supervise the model being trained. The current model is asked to match the predictions of the initial model on some data. This minimises catastrophic forgetting, by keeping the model's predictions close to the original. See the blog post for details.

    Implement rehearsal updates for tagger

    Implement rehearsal updates for text categoriz
2018-12-10 16:25:33 +01:00
Matthew Honnibal
b1c8731b4d Make spacy train respect LOG_FRIENDLY 2018-12-10 09:46:53 +01:00
Matthew Honnibal
0994dc50d8 Merge branch 'develop' of https://github.com/explosion/spaCy into develop 2018-12-10 05:35:01 +00:00
Matthew Honnibal
24f2e9bc07 Tweak training params 2018-12-09 17:08:58 +00:00
Matthew Honnibal
1b1a1af193 Fix printing in spacy train 2018-12-09 06:03:49 +01:00
Matthew Honnibal
cb16b78b0d Set dropout rate to 0.2 2018-12-08 19:59:11 +01:00
Ines Montani
ffdd5e964f
Small CLI improvements (#3030)
* Add todo

* Auto-format

* Update wasabi pin

* Format training results with wasabi

* Remove loading animation from model saving

Currently behaves weirdly

* Inline messages

* Remove unnecessary path2str

Already taken care of by printer

* Inline messages in CLI

* Remove unused function

* Move loading indicator into loading function

* Check for invalid whitespace entities
2018-12-08 11:49:43 +01:00
Matthew Honnibal
b2bfd1e1c8 Move dropout and batch sizes out of global scope in train cmd 2018-12-07 20:54:35 +01:00
Ines Montani
f37863093a 💫 Replace ujson, msgpack and dill/pickle/cloudpickle with srsly (#3003)
Remove hacks and wrappers, keep code in sync across our libraries and move spaCy a few steps closer to only depending on packages with binary wheels 🎉

See here: https://github.com/explosion/srsly

    Serialization is hard, especially across Python versions and multiple platforms. After dealing with many subtle bugs over the years (encodings, locales, large files) our libraries like spaCy and Prodigy have steadily grown a number of utility functions to wrap the multiple serialization formats we need to support (especially json, msgpack and pickle). These wrapping functions ended up duplicated across our codebases, so we wanted to put them in one place.

    At the same time, we noticed that having a lot of small dependencies was making maintainence harder, and making installation slower. To solve this, we've made srsly standalone, by including the component packages directly within it. This way we can provide all the serialization utilities we need in a single binary wheel.

    srsly currently includes forks of the following packages:

        ujson
        msgpack
        msgpack-numpy
        cloudpickle



* WIP: replace json/ujson with srsly

* Replace ujson in examples

Use regular json instead of srsly to make code easier to read and follow

* Update requirements

* Fix imports

* Fix typos

* Replace msgpack with srsly

* Fix warning
2018-12-03 01:28:22 +01:00
Matthew Honnibal
d9d339186b Fix dropout and batch-size defaults 2018-12-01 13:42:35 +00:00
Matthew Honnibal
3139b020b5 Fix train script 2018-11-30 22:17:08 +00:00
Ines Montani
37c7c85a86 💫 New JSON helpers, training data internals & CLI rewrite (#2932)
* Support nowrap setting in util.prints

* Tidy up and fix whitespace

* Simplify script and use read_jsonl helper

* Add JSON schemas (see #2928)

* Deprecate Doc.print_tree

Will be replaced with Doc.to_json, which will produce a unified format

* Add Doc.to_json() method (see #2928)

Converts Doc objects to JSON using the same unified format as the training data. Method also supports serializing selected custom attributes in the doc._. space.

* Remove outdated test

* Add write_json and write_jsonl helpers

* WIP: Update spacy train

* Tidy up spacy train

* WIP: Use wasabi for formatting

* Add GoldParse helpers for JSON format

* WIP: add debug-data command

* Fix typo

* Add missing import

* Update wasabi pin

* Add missing import

* 💫 Refactor CLI (#2943)

To be merged into #2932.

## Description
- [x] refactor CLI To use [`wasabi`](https://github.com/ines/wasabi)
- [x] use [`black`](https://github.com/ambv/black) for auto-formatting
- [x] add `flake8` config
- [x] move all messy UD-related scripts to `cli.ud`
- [x] make converters function that take the opened file and return the converted data (instead of having them handle the IO)

### Types of change
enhancement

## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.

* Update wasabi pin

* Delete old test

* Update errors

* Fix typo

* Tidy up and format remaining code

* Fix formatting

* Improve formatting of messages

* Auto-format remaining code

* Add tok2vec stuff to spacy.train

* Fix typo

* Update wasabi pin

* Fix path checks for when train() is called as function

* Reformat and tidy up pretrain script

* Update argument annotations

* Raise error if model language doesn't match lang

* Document new train command
2018-11-30 20:16:14 +01:00
Matthew Honnibal
ef0820827a
Update hyper-parameters after NER random search (#2972)
These experiments were completed a few weeks ago, but I didn't make the PR, pending model release.

    Token vector width: 128->96
    Hidden width: 128->64
    Embed size: 5000->2000
    Dropout: 0.2->0.1
    Updated optimizer defaults (unclear how important?)

This should improve speed, model size and load time, while keeping
similar or slightly better accuracy.

The tl;dr is we prefer to prevent over-fitting by reducing model size,
rather than using more dropout.
2018-11-27 18:49:52 +01:00
Matthew Honnibal
2874b8efd8 Fix tok2vec loading in spacy train 2018-11-15 23:34:54 +00:00
Matthew Honnibal
8fdb9bc278
💫 Add experimental ULMFit/BERT/Elmo-like pretraining (#2931)
* Add 'spacy pretrain' command

* Fix pretrain command for Python 2

* Fix pretrain command

* Fix pretrain command
2018-11-15 22:17:16 +01:00
Matthew Honnibal
595c893791 Expose noise_level option in train CLI 2018-08-16 00:41:44 +02:00
Matthew Honnibal
4336397ecb Update develop from master 2018-08-14 03:04:28 +02:00
Xiaoquan Kong
f0c9652ed1 New Feature: display more detail when Error E067 (#2639)
* Fix off-by-one error

* Add verbose option

* Update verbose option

* Update documents for verbose option
2018-08-07 10:45:29 +02:00
Matthew Honnibal
c83fccfe2a Fix output of best model 2018-06-25 23:05:56 +02:00
Matthew Honnibal
c4698f5712 Don't collate model unless training succeeds 2018-06-25 16:36:42 +02:00
Matthew Honnibal
24dfbb8a28 Fix model collation 2018-06-25 14:35:24 +02:00
Matthew Honnibal
62237755a4 Import shutil 2018-06-25 13:40:17 +02:00
Matthew Honnibal
a040fca99e Import json into cli.train 2018-06-25 11:50:37 +02:00
Matthew Honnibal
2c703d99c2 Fix collation of best models 2018-06-25 01:21:34 +02:00
Matthew Honnibal
2c80b7c013 Collate best model after training 2018-06-24 23:39:52 +02:00
ines
330c039106 Merge branch 'master' into develop 2018-05-26 18:30:52 +02:00
James Messinger
4515e96e90 Better formatting for spacy train CLI (#2357)
* Better formatting for `spacy train` CLI

Changed to use fixed-spaces rather than tabs to align table headers and data.

### Before:
```
Itn.    P.Loss  N.Loss  UAS     NER P.  NER R.  NER F.  Tag %   Token %
0       4618.857        2910.004        76.172  79.645  67.987  88.732  88.261  100.000 4436.9  6376.4
1       4671.972        3764.812        74.481  78.046  62.374  82.680  88.377  100.000 4672.2  6227.1
2       4742.756        3673.473        71.994  77.380  63.966  84.494  90.620  100.000 4298.0  5983.9
```

### After:
```
Itn.  Dep Loss  NER Loss  UAS     NER P.  NER R.  NER F.  Tag %   Token %  CPU WPS  GPU WPS
0     4618.857  2910.004  76.172  79.645  67.987  88.732  88.261  100.000  4436.9   6376.4
1     4671.972  3764.812  74.481  78.046  62.374  82.680  88.377  100.000  4672.2   6227.1
2     4742.756  3673.473  71.994  77.380  63.966  84.494  90.620  100.000  4298.0   5983.9
```

* Added contributor file
2018-05-25 13:08:45 +02:00
Matthew Honnibal
2c4a6d66fa Merge master into develop. Big merge, many conflicts -- need to review 2018-04-29 14:49:26 +02:00
Ines Montani
3141e04822
💫 New system for error messages and warnings (#2163)
* Add spacy.errors module

* Update deprecation and user warnings

* Replace errors and asserts with new error message system

* Remove redundant asserts

* Fix whitespace

* Add messages for print/util.prints statements

* Fix typo

* Fix typos

* Move CLI messages to spacy.cli._messages

* Add decorator to display error code with message

An implementation like this is nice because it only modifies the string when it's retrieved from the containing class – so we don't have to worry about manipulating tracebacks etc.

* Remove unused link in spacy.about

* Update errors for invalid pipeline components

* Improve error for unknown factories

* Add displaCy warnings

* Update formatting consistency

* Move error message to spacy.errors

* Update errors and check if doc returned by component is None
2018-04-03 15:50:31 +02:00
Matthew Honnibal
17c3e7efa2 Add message noting vectors 2018-03-28 16:33:43 +02:00
Matthew Honnibal
1f7229f40f Revert "Merge branch 'develop' of https://github.com/explosion/spaCy into develop"
This reverts commit c9ba3d3c2d, reversing
changes made to 92c26a35d4.
2018-03-27 19:23:02 +02:00
Matthew Honnibal
86405e4ad1 Fix CLI for multitask objectives 2018-02-18 10:59:11 +01:00
Matthew Honnibal
a34749b2bf Add multitask objectives options to train CLI 2018-02-17 22:03:54 +01:00
Matthew Honnibal
262d0a3148 Fix overwriting of lexical attributes when loading vectors during training 2018-02-17 18:11:11 +01:00
Johannes Dollinger
bf94c13382 Don't fix random seeds on import 2018-02-13 12:42:23 +01:00
Søren Lind Kristiansen
7f0ab145e9 Don't pass CLI command name as dummy argument 2018-01-04 21:33:47 +01:00
Søren Lind Kristiansen
a9ff6eadc9 Prefix dummy argument names with underscore 2018-01-03 20:48:12 +01:00
Isaac Sijaranamual
20ae0c459a Fixes "Error saving model" #1622 2017-12-10 23:07:13 +01:00
Isaac Sijaranamual
e188b61960 Make cli/train.py not eat exception 2017-12-10 22:53:08 +01:00
Matthew Honnibal
c2bbf076a4 Add document length cap for training 2017-11-03 01:54:54 +01:00
ines
37e62ab0e2 Update vector meta in meta.json 2017-11-01 01:25:09 +01:00
Matthew Honnibal
3659a807b0 Remove vector pruning arg from train CLI 2017-10-31 19:21:05 +01:00
Matthew Honnibal
e98451b5f7 Add -prune-vectors argument to spacy.cly.train 2017-10-30 18:00:10 +01:00
ines
d941fc3667 Tidy up CLI 2017-10-27 14:38:39 +02:00
ines
11e3f19764 Fix vectors data added after training (see #1457) 2017-10-25 16:08:26 +02:00
ines
273e638183 Add vector data to model meta after training (see #1457) 2017-10-25 16:03:05 +02:00
Matthew Honnibal
a955843684 Increase default number of epochs 2017-10-12 13:13:01 +02:00
Matthew Honnibal
acba2e1051 Fix metadata in training 2017-10-11 08:55:52 +02:00
Matthew Honnibal
74c2c6a58c Add default name and lang to meta 2017-10-11 08:49:12 +02:00
Matthew Honnibal
5156074df1 Make loading code more consistent in train command 2017-10-10 12:51:20 -05:00
Matthew Honnibal
97c9b5db8b Patch spacy.train for new pipeline management 2017-10-09 23:41:16 -05:00
Matthew Honnibal
808d8740d6 Remove print statement 2017-10-09 08:45:20 -05:00
Matthew Honnibal
0f41b25f60 Add speed benchmarks to metadata 2017-10-09 08:05:37 -05:00
Matthew Honnibal
be4f0b6460 Update defaults 2017-10-08 02:08:12 -05:00
Matthew Honnibal
9d66a915da Update training defaults 2017-10-07 21:02:38 -05:00
Matthew Honnibal
c6cd81f192 Wrap try/except around model saving 2017-10-05 08:14:24 -05:00
Matthew Honnibal
5743b06e36 Wrap model saving in try/except 2017-10-05 08:12:50 -05:00
Matthew Honnibal
8902df44de Fix component disabling during training 2017-10-02 21:07:23 +02:00
Matthew Honnibal
c617d288d8 Update pipeline component names in spaCy train 2017-10-02 17:20:19 +02:00
Matthew Honnibal
ac8481a7b0 Print NER loss 2017-09-28 08:05:31 -05:00
Matthew Honnibal
542ebfa498 Improve defaults 2017-09-27 18:54:37 -05:00
Matthew Honnibal
dcb86bdc43 Default batch size to 32 2017-09-27 11:48:19 -05:00
ines
1ff62eaee7 Fix option shortcut to avoid conflict 2017-09-26 17:59:34 +02:00
ines
7fdfb78141 Add version option to cli.train 2017-09-26 17:34:52 +02:00
Matthew Honnibal
698fc0d016 Remove merge artefact 2017-09-26 08:31:37 -05:00
Matthew Honnibal
defb68e94f Update feature/noshare with recent develop changes 2017-09-26 08:15:14 -05:00
ines
edf7e4881d Add meta.json option to cli.train and add relevant properties
Add accuracy scores to meta.json instead of accuracy.json and replace
all relevant properties like lang, pipeline, spacy_version in existing
meta.json. If not present, also add name and version placeholders to
make it packagable.
2017-09-25 19:00:47 +02:00
Matthew Honnibal
204b58c864 Fix evaluation during training 2017-09-24 05:01:03 -05:00
Matthew Honnibal
dc3a623d00 Remove unused update_shared argument 2017-09-24 05:00:37 -05:00
Matthew Honnibal
4348c479fc Merge pre-trained vectors and noshare patches 2017-09-22 20:07:28 -05:00
Matthew Honnibal
e93d43a43a Fix training with preset vectors 2017-09-22 20:00:40 -05:00
Matthew Honnibal
a2357cce3f Set random seed in train script 2017-09-23 02:57:31 +02:00
Matthew Honnibal
0a9016cade Fix serialization during training 2017-09-21 13:06:45 -05:00
Matthew Honnibal
20193371f5 Don't share CNN, to reduce complexities 2017-09-21 14:59:48 +02:00
Matthew Honnibal
1d73dec8b1 Refactor train script 2017-09-20 19:17:10 -05:00
Matthew Honnibal
a0c4b33d03 Support resuming a model during spacy train 2017-09-18 18:04:47 -05:00
Matthew Honnibal
8496d76224 Merge branch 'develop' of https://github.com/explosion/spaCy into develop 2017-09-14 09:21:20 -05:00
Matthew Honnibal
24ff6b0ad9 Fix parsing and tok2vec models 2017-09-06 05:50:58 -05:00