* Add load_from_config function
* Add train_from_config script
* Merge configs and expose via spacy.config
* Fix script
* Suggest create_evaluation_callback
* Hard-code for NER
* Fix errors
* Register command
* Add TODO
* Update train-from-config todos
* Fix imports
* Allow delayed setting of parser model nr_class
* Get train-from-config working
* Tidy up and fix scores and printing
* Hide traceback if cancelled
* Fix weighted score formatting
* Fix score formatting
* Make output_path optional
* Add Tok2Vec component
* Tidy up and add tok2vec_tensors
* Add option to copy docs in nlp.update
* Copy docs in nlp.update
* Adjust nlp.update() for set_annotations
* Don't shuffle pipes in nlp.update, decruft
* Support set_annotations arg in component update
* Support set_annotations in parser update
* Add get_gradients method
* Add get_gradients to parser
* Update errors.py
* Fix problems caused by merge
* Add _link_components method in nlp
* Add concept of 'listeners' and ControlledModel
* Support optional attributes arg in ControlledModel
* Try having tok2vec component in pipeline
* Fix tok2vec component
* Fix config
* Fix tok2vec
* Update for Example
* Update for Example
* Update config
* Add eg2doc util
* Update and add schemas/types
* Update schemas
* Fix nlp.update
* Fix tagger
* Remove hacks from train-from-config
* Remove hard-coded config str
* Calculate loss in tok2vec component
* Tidy up and use function signatures instead of models
* Support union types for registry models
* Minor cleaning in Language.update
* Make ControlledModel specifically Tok2VecListener
* Fix train_from_config
* Fix tok2vec
* Tidy up
* Add function for bilstm tok2vec
* Fix type
* Fix syntax
* Fix pytorch optimizer
* Add example configs
* Update for thinc describe changes
* Update for Thinc changes
* Update for dropout/sgd changes
* Update for dropout/sgd changes
* Unhack gradient update
* Work on refactoring _ml
* Remove _ml.py module
* WIP upgrade cli scripts for thinc
* Move some _ml stuff to util
* Import link_vectors from util
* Update train_from_config
* Import from util
* Import from util
* Temporarily add ml.component_models module
* Move ml methods
* Move typedefs
* Update load vectors
* Update gitignore
* Move imports
* Add PrecomputableAffine
* Fix imports
* Fix imports
* Fix imports
* Fix missing imports
* Update CLI scripts
* Update spacy.language
* Add stubs for building the models
* Update model definition
* Update create_default_optimizer
* Fix import
* Fix comment
* Update imports in tests
* Update imports in spacy.cli
* Fix import
* fix obsolete thinc imports
* update srsly pin
* from thinc to ml_datasets for example data such as imdb
* update ml_datasets pin
* using STATE.vectors
* small fix
* fix Sentencizer.pipe
* black formatting
* rename Affine to Linear as in thinc
* set validate explicitely to True
* rename with_square_sequences to with_list2padded
* rename with_flatten to with_list2array
* chaining layernorm
* small fixes
* revert Optimizer import
* build_nel_encoder with new thinc style
* fixes using model's get and set methods
* Tok2Vec in component models, various fixes
* fix up legacy tok2vec code
* add model initialize calls
* add in build_tagger_model
* small fixes
* setting model dims
* fixes for ParserModel
* various small fixes
* initialize thinc Models
* fixes
* consistent naming of window_size
* fixes, removing set_dropout
* work around Iterable issue
* remove legacy tok2vec
* util fix
* fix forward function of tok2vec listener
* more fixes
* trying to fix PrecomputableAffine (not succesful yet)
* alloc instead of allocate
* add morphologizer
* rename residual
* rename fixes
* Fix predict function
* Update parser and parser model
* fixing few more tests
* Fix precomputable affine
* Update component model
* Update parser model
* Move backprop padding to own function, for test
* Update test
* Fix p. affine
* Update NEL
* build_bow_text_classifier and extract_ngrams
* Fix parser init
* Fix test add label
* add build_simple_cnn_text_classifier
* Fix parser init
* Set gpu off by default in example
* Fix tok2vec listener
* Fix parser model
* Small fixes
* small fix for PyTorchLSTM parameters
* revert my_compounding hack (iterable fixed now)
* fix biLSTM
* Fix uniqued
* PyTorchRNNWrapper fix
* small fixes
* use helper function to calculate cosine loss
* small fixes for build_simple_cnn_text_classifier
* putting dropout default at 0.0 to ensure the layer gets built
* using thinc util's set_dropout_rate
* moving layer normalization inside of maxout definition to optimize dropout
* temp debugging in NEL
* fixed NEL model by using init defaults !
* fixing after set_dropout_rate refactor
* proper fix
* fix test_update_doc after refactoring optimizers in thinc
* Add CharacterEmbed layer
* Construct tagger Model
* Add missing import
* Remove unused stuff
* Work on textcat
* fix test (again :)) after optimizer refactor
* fixes to allow reading Tagger from_disk without overwriting dimensions
* don't build the tok2vec prematuraly
* fix CharachterEmbed init
* CharacterEmbed fixes
* Fix CharacterEmbed architecture
* fix imports
* renames from latest thinc update
* one more rename
* add initialize calls where appropriate
* fix parser initialization
* Update Thinc version
* Fix errors, auto-format and tidy up imports
* Fix validation
* fix if bias is cupy array
* revert for now
* ensure it's a numpy array before running bp in ParserStepModel
* no reason to call require_gpu twice
* use CupyOps.to_numpy instead of cupy directly
* fix initialize of ParserModel
* remove unnecessary import
* fixes for CosineDistance
* fix device renaming
* use refactored loss functions (Thinc PR 251)
* overfitting test for tagger
* experimental settings for the tagger: avoid zero-init and subword normalization
* clean up tagger overfitting test
* use previous default value for nP
* remove toy config
* bringing layernorm back (had a bug - fixed in thinc)
* revert setting nP explicitly
* remove setting default in constructor
* restore values as they used to be
* add overfitting test for NER
* add overfitting test for dep parser
* add overfitting test for textcat
* fixing init for linear (previously affine)
* larger eps window for textcat
* ensure doc is not None
* Require newer thinc
* Make float check vaguer
* Slop the textcat overfit test more
* Fix textcat test
* Fix exclusive classes for textcat
* fix after renaming of alloc methods
* fixing renames and mandatory arguments (staticvectors WIP)
* upgrade to thinc==8.0.0.dev3
* refer to vocab.vectors directly instead of its name
* rename alpha to learn_rate
* adding hashembed and staticvectors dropout
* upgrade to thinc 8.0.0.dev4
* add name back to avoid warning W020
* thinc dev4
* update srsly
* using thinc 8.0.0a0 !
Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
Co-authored-by: Ines Montani <ines@ines.io>
* Adjust Table API and add docs
* Add attributes and update description [ci skip]
* Use strings.get_string_id instead of hash_string
* Fix table method calls
* Make orth arg in Lemmatizer.lookup optional
Fall back to string, which is now handled by Table.__contains__ out-of-the-box
* Fix method name
* Auto-format
* Improve load_language_data helper
* WIP: Add Lookups implementation
* Start moving lemma data over to JSON
* WIP: move data over for more languages
* Convert more languages
* Fix lemmatizer fixtures in tests
* Finish conversion
* Auto-format JSON files
* Fix test for now
* Make sure tables are stored on instance
* Update docstrings
* Update docstrings and errors
* Update test
* Add Lookups.__len__
* Add serialization methods
* Add Lookups.remove_table
* Use msgpack for serialization to disk
* Fix file exists check
* Try using OrderedDict for everything
* Update .flake8 [ci skip]
* Try fixing serialization
* Update test_lookups.py
* Update test_serialize_vocab_strings.py
* Lookups / Tables now work
This implements the stubs in the Lookups/Table classes. Currently this
is in Cython but with no type declarations, so that could be improved.
* Add lookups to setup.py
* Actually add lookups pyx
The previous commit added the old py file...
* Lookups work-in-progress
* Move from pyx back to py
* Add string based lookups, fix serialization
* Update tests, language/lemmatizer to work with string lookups
There are some outstanding issues here:
- a pickling-related test fails due to the bloom filter
- some custom lemmatizers (fr/nl at least) have issues
More generally, there's a question of how to deal with the case where
you have a string but want to use the lookup table. Currently the table
allows access by string or id, but that's getting pretty awkward.
* Change lemmatizer lookup method to pass (orth, string)
* Fix token lookup
* Fix French lookup
* Fix lt lemmatizer test
* Fix Dutch lemmatizer
* Fix lemmatizer lookup test
This was using a normal dict instead of a Table, so checks for the
string instead of an integer key failed.
* Make uk/nl/ru lemmatizer lookup methods consistent
The mentioned tokenizers all have their own implementation of the
`lookup` method, which accesses a `Lookups` table. The way that was
called in `token.pyx` was changed so this should be updated to have the
same arguments as `lookup` in `lemmatizer.py` (specificially (orth/id,
string)).
Prior to this change tests weren't failing, but there would probably be
issues with normal use of a model. More tests should proably be added.
Additionally, the language-specific `lookup` implementations seem like
they might not be needed, since they handle things like lower-casing
that aren't actually language specific.
* Make recently added Greek method compatible
* Remove redundant class/method
Leftovers from a merge not cleaned up adequately.
* Improve load_language_data helper
* WIP: Add Lookups implementation
* Start moving lemma data over to JSON
* WIP: move data over for more languages
* Convert more languages
* Fix lemmatizer fixtures in tests
* Finish conversion
* Auto-format JSON files
* Fix test for now
* Make sure tables are stored on instance
* Update docstrings
* Update docstrings and errors
* Update test
* Add Lookups.__len__
* Add serialization methods
* Add Lookups.remove_table
* Use msgpack for serialization to disk
* Fix file exists check
* Try using OrderedDict for everything
* Update .flake8 [ci skip]
* Try fixing serialization
* Update test_lookups.py
* Update test_serialize_vocab_strings.py
* Fix serialization for lookups
* Fix lookups
* Fix lookups
* Fix lookups
* Try to fix serialization
* Try to fix serialization
* Try to fix serialization
* Try to fix serialization
* Give up on serialization test
* Xfail more serialization tests for 3.5
* Fix lookups for 2.7
* Improve load_language_data helper
* WIP: Add Lookups implementation
* Start moving lemma data over to JSON
* WIP: move data over for more languages
* Convert more languages
* Fix lemmatizer fixtures in tests
* Finish conversion
* Auto-format JSON files
* Fix test for now
* Make sure tables are stored on instance
* Add xfail test for vocab.writing_system
* Add vocab.writing_system property
* Set Language.Defaults.writing_system
* Set default writing system
* Remove xfail on test_vocab_writing_system
* Auto-format tests with black
* Add flake8 config
* Tidy up and remove unused imports
* Fix redefinitions of test functions
* Replace orths_and_spaces with words and spaces
* Fix compatibility with pytest 4.0
* xfail test for now
Test was previously overwritten by following test due to naming conflict, so failure wasn't reported
* Unfail passing test
* Only use fixture via arguments
Fixes pytest 4.0 compatibility
## Description
Related issues: #2379 (should be fixed by separating model tests)
* **total execution time down from > 300 seconds to under 60 seconds** 🎉
* removed all model-specific tests that could only really be run manually anyway – those will now live in a separate test suite in the [`spacy-models`](https://github.com/explosion/spacy-models) repository and are already integrated into our new model training infrastructure
* changed all relative imports to absolute imports to prepare for moving the test suite from `/spacy/tests` to `/tests` (it'll now always test against the installed version)
* merged old regression tests into collections, e.g. `test_issue1001-1500.py` (about 90% of the regression tests are very short anyways)
* tidied up and rewrote existing tests wherever possible
### Todo
- [ ] move tests to `/tests` and adjust CI commands accordingly
- [x] move model test suite from internal repo to `spacy-models`
- [x] ~~investigate why `pipeline/test_textcat.py` is flakey~~
- [x] review old regression tests (leftover files) and see if they can be merged, simplified or deleted
- [ ] update documentation on how to run tests
### Types of change
enhancement, tests
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [ ] My changes don't require a change to the documentation, or if they do, I've added all required information.