mirror of
https://github.com/explosion/spaCy.git
synced 2025-10-02 18:06:46 +03:00
403 lines
14 KiB
Python
403 lines
14 KiB
Python
from typing import Iterable, Tuple, Optional, Dict, Callable, Any, List
|
|
import warnings
|
|
|
|
from thinc.types import Floats2d, Floats3d, Ints2d
|
|
from thinc.api import Model, Config, Optimizer, CategoricalCrossentropy
|
|
from thinc.api import set_dropout_rate, to_categorical
|
|
from itertools import islice
|
|
import srsly
|
|
|
|
from .trainable_pipe import TrainablePipe
|
|
from ..language import Language
|
|
from ..training import Example, validate_examples, validate_get_examples
|
|
from ..errors import Errors
|
|
from ..scorer import Scorer, doc2clusters
|
|
from ..tokens import Doc
|
|
from ..vocab import Vocab
|
|
from ..util import registry, from_bytes, from_disk
|
|
|
|
from ..ml.models.coref_util import (
|
|
MentionClusters,
|
|
DEFAULT_CLUSTER_PREFIX,
|
|
)
|
|
|
|
default_span_predictor_config = """
|
|
[model]
|
|
@architectures = "spacy.SpanPredictor.v1"
|
|
hidden_size = 1024
|
|
distance_embedding_size = 64
|
|
conv_channels = 4
|
|
window_size = 1
|
|
max_distance = 128
|
|
prefix = "coref_head_clusters"
|
|
|
|
[model.tok2vec]
|
|
@architectures = "spacy.Tok2Vec.v2"
|
|
|
|
[model.tok2vec.embed]
|
|
@architectures = "spacy.MultiHashEmbed.v1"
|
|
width = 64
|
|
rows = [2000, 2000, 1000, 1000, 1000, 1000]
|
|
attrs = ["ORTH", "LOWER", "PREFIX", "SUFFIX", "SHAPE", "ID"]
|
|
include_static_vectors = false
|
|
|
|
[model.tok2vec.encode]
|
|
@architectures = "spacy.MaxoutWindowEncoder.v2"
|
|
width = ${model.tok2vec.embed.width}
|
|
window_size = 1
|
|
maxout_pieces = 3
|
|
depth = 2
|
|
"""
|
|
DEFAULT_SPAN_PREDICTOR_MODEL = Config().from_str(default_span_predictor_config)["model"]
|
|
|
|
|
|
def span_predictor_scorer(examples: Iterable[Example], **kwargs) -> Dict[str, Any]:
|
|
return Scorer.score_span_predictions(examples, **kwargs)
|
|
|
|
|
|
@registry.scorers("spacy.span_predictor_scorer.v1")
|
|
def make_span_predictor_scorer():
|
|
return span_predictor_scorer
|
|
|
|
|
|
@Language.factory(
|
|
"span_predictor",
|
|
assigns=["doc.spans"],
|
|
requires=["doc.spans"],
|
|
default_config={
|
|
"model": DEFAULT_SPAN_PREDICTOR_MODEL,
|
|
"input_prefix": "coref_head_clusters",
|
|
"output_prefix": "coref_clusters",
|
|
"scorer": {"@scorers": "spacy.span_predictor_scorer.v1"},
|
|
},
|
|
default_score_weights={"span_accuracy": 1.0},
|
|
)
|
|
def make_span_predictor(
|
|
nlp: Language,
|
|
name: str,
|
|
model,
|
|
input_prefix: str = "coref_head_clusters",
|
|
output_prefix: str = "coref_clusters",
|
|
scorer: Optional[Callable] = span_predictor_scorer,
|
|
) -> "SpanPredictor":
|
|
"""Create a SpanPredictor component."""
|
|
return SpanPredictor(
|
|
nlp.vocab,
|
|
model,
|
|
name,
|
|
input_prefix=input_prefix,
|
|
output_prefix=output_prefix,
|
|
scorer=scorer,
|
|
)
|
|
|
|
|
|
class SpanPredictor(TrainablePipe):
|
|
"""Pipeline component to resolve one-token spans to full spans.
|
|
|
|
Used in coreference resolution.
|
|
|
|
DOCS: https://spacy.io/api/span_predictor
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
vocab: Vocab,
|
|
model: Model,
|
|
name: str = "span_predictor",
|
|
*,
|
|
input_prefix: str = "coref_head_clusters",
|
|
output_prefix: str = "coref_clusters",
|
|
scorer: Optional[Callable] = span_predictor_scorer,
|
|
) -> None:
|
|
self.vocab = vocab
|
|
self.model = model
|
|
self.name = name
|
|
self.input_prefix = input_prefix
|
|
self.output_prefix = output_prefix
|
|
|
|
self.scorer = scorer
|
|
self.cfg: Dict[str, Any] = {
|
|
"output_prefix": output_prefix,
|
|
}
|
|
|
|
def predict(self, docs: Iterable[Doc]) -> List[MentionClusters]:
|
|
"""Apply the pipeline's model to a batch of docs, without modifying them.
|
|
Return the list of predicted span clusters.
|
|
|
|
docs (Iterable[Doc]): The documents to predict.
|
|
RETURNS (List[MentionClusters]): The model's prediction for each document.
|
|
|
|
DOCS: https://spacy.io/api/span_predictor#predict
|
|
"""
|
|
# for now pretend there's just one doc
|
|
|
|
out = []
|
|
for doc in docs:
|
|
# TODO check shape here
|
|
span_scores = self.model.predict([doc])
|
|
if span_scores.size:
|
|
# the information about clustering has to come from the input docs
|
|
# first let's convert the scores to a list of span idxs
|
|
start_scores = span_scores[:, :, 0]
|
|
end_scores = span_scores[:, :, 1]
|
|
starts = start_scores.argmax(axis=1)
|
|
ends = end_scores.argmax(axis=1)
|
|
|
|
# TODO check start < end
|
|
|
|
# get the old clusters (shape will be preserved)
|
|
clusters = doc2clusters(doc, self.input_prefix)
|
|
cidx = 0
|
|
out_clusters = []
|
|
for cluster in clusters:
|
|
ncluster = []
|
|
for mention in cluster:
|
|
ncluster.append((starts[cidx], ends[cidx]))
|
|
cidx += 1
|
|
out_clusters.append(ncluster)
|
|
else:
|
|
out_clusters = []
|
|
out.append(out_clusters)
|
|
return out
|
|
|
|
def set_annotations(self, docs: Iterable[Doc], clusters_by_doc) -> None:
|
|
"""Modify a batch of Doc objects, using pre-computed scores.
|
|
|
|
docs (Iterable[Doc]): The documents to modify.
|
|
clusters: The span clusters, produced by SpanPredictor.predict.
|
|
|
|
DOCS: https://spacy.io/api/span_predictor#set_annotations
|
|
"""
|
|
for doc, clusters in zip(docs, clusters_by_doc):
|
|
for ii, cluster in enumerate(clusters):
|
|
spans = [doc[mm[0] : mm[1]] for mm in cluster]
|
|
doc.spans[f"{self.output_prefix}_{ii}"] = spans
|
|
|
|
def update(
|
|
self,
|
|
examples: Iterable[Example],
|
|
*,
|
|
drop: float = 0.0,
|
|
sgd: Optional[Optimizer] = None,
|
|
losses: Optional[Dict[str, float]] = None,
|
|
) -> Dict[str, float]:
|
|
"""Learn from a batch of documents and gold-standard information,
|
|
updating the pipe's model. Delegates to predict and get_loss.
|
|
|
|
examples (Iterable[Example]): A batch of Example objects.
|
|
drop (float): The dropout rate.
|
|
sgd (thinc.api.Optimizer): The optimizer.
|
|
losses (Dict[str, float]): Optional record of the loss during training.
|
|
Updated using the component name as the key.
|
|
RETURNS (Dict[str, float]): The updated losses dictionary.
|
|
|
|
DOCS: https://spacy.io/api/span_predictor#update
|
|
"""
|
|
if losses is None:
|
|
losses = {}
|
|
losses.setdefault(self.name, 0.0)
|
|
validate_examples(examples, "SpanPredictor.update")
|
|
if not any(len(eg.reference) if eg.reference else 0 for eg in examples):
|
|
# Handle cases where there are no tokens in any docs.
|
|
return losses
|
|
set_dropout_rate(self.model, drop)
|
|
|
|
total_loss = 0
|
|
for eg in examples:
|
|
if eg.x.text != eg.y.text:
|
|
# TODO assign error number
|
|
raise ValueError(
|
|
"""Text, including whitespace, must match between reference and
|
|
predicted docs in span predictor training.
|
|
"""
|
|
)
|
|
span_scores, backprop = self.model.begin_update([eg.predicted])
|
|
# FIXME, this only happens once in the first 1000 docs of OntoNotes
|
|
# and I'm not sure yet why.
|
|
if span_scores.size:
|
|
loss, d_scores = self.get_loss([eg], span_scores)
|
|
total_loss += loss
|
|
# TODO check shape here
|
|
backprop((d_scores))
|
|
|
|
if sgd is not None:
|
|
self.finish_update(sgd)
|
|
losses[self.name] += total_loss
|
|
return losses
|
|
|
|
def rehearse(
|
|
self,
|
|
examples: Iterable[Example],
|
|
*,
|
|
drop: float = 0.0,
|
|
sgd: Optional[Optimizer] = None,
|
|
losses: Optional[Dict[str, float]] = None,
|
|
) -> Dict[str, float]:
|
|
# TODO this should be added later
|
|
raise NotImplementedError(
|
|
Errors.E931.format(
|
|
parent="SpanPredictor", method="add_label", name=self.name
|
|
)
|
|
)
|
|
|
|
def add_label(self, label: str) -> int:
|
|
"""Technically this method should be implemented from TrainablePipe,
|
|
but it is not relevant for this component.
|
|
"""
|
|
raise NotImplementedError(
|
|
Errors.E931.format(
|
|
parent="SpanPredictor", method="add_label", name=self.name
|
|
)
|
|
)
|
|
|
|
def get_loss(
|
|
self,
|
|
examples: Iterable[Example],
|
|
span_scores: Floats3d,
|
|
):
|
|
"""Find the loss and gradient of loss for the batch of documents and
|
|
their predicted scores.
|
|
|
|
examples (Iterable[Examples]): The batch of examples.
|
|
scores: Scores representing the model's predictions.
|
|
RETURNS (Tuple[float, float]): The loss and the gradient.
|
|
|
|
DOCS: https://spacy.io/api/span_predictor#get_loss
|
|
"""
|
|
ops = self.model.ops
|
|
|
|
# NOTE This is doing fake batching, and should always get a list of one example
|
|
assert len(list(examples)) == 1, "Only fake batching is supported."
|
|
# starts and ends are gold starts and ends (Ints1d)
|
|
# span_scores is a Floats3d. What are the axes? mention x token x start/end
|
|
for eg in examples:
|
|
starts = []
|
|
ends = []
|
|
keeps = []
|
|
sidx = 0
|
|
for key, sg in eg.reference.spans.items():
|
|
if key.startswith(self.output_prefix):
|
|
for ii, mention in enumerate(sg):
|
|
sidx += 1
|
|
# convert to span in pred
|
|
sch, ech = (mention.start_char, mention.end_char)
|
|
span = eg.predicted.char_span(sch, ech)
|
|
# TODO add to errors.py
|
|
if span is None:
|
|
warnings.warn("Could not align gold span in span predictor, skipping")
|
|
continue
|
|
starts.append(span.start)
|
|
ends.append(span.end)
|
|
keeps.append(sidx - 1)
|
|
|
|
starts = self.model.ops.xp.asarray(starts)
|
|
ends = self.model.ops.xp.asarray(ends)
|
|
start_scores = span_scores[:, :, 0][keeps]
|
|
end_scores = span_scores[:, :, 1][keeps]
|
|
|
|
|
|
n_classes = start_scores.shape[1]
|
|
start_probs = ops.softmax(start_scores, axis=1)
|
|
end_probs = ops.softmax(end_scores, axis=1)
|
|
start_targets = to_categorical(starts, n_classes)
|
|
end_targets = to_categorical(ends, n_classes)
|
|
start_grads = start_probs - start_targets
|
|
end_grads = end_probs - end_targets
|
|
# now return to original shape, with 0s
|
|
final_start_grads = ops.alloc2f(*span_scores[:, :, 0].shape)
|
|
final_start_grads[keeps] = start_grads
|
|
final_end_grads = ops.alloc2f(*final_start_grads.shape)
|
|
final_end_grads[keeps] = end_grads
|
|
# XXX Note this only works with fake batching
|
|
grads = ops.xp.stack((final_start_grads, final_end_grads), axis=2)
|
|
|
|
loss = float((grads**2).sum())
|
|
return loss, grads
|
|
|
|
def initialize(
|
|
self,
|
|
get_examples: Callable[[], Iterable[Example]],
|
|
*,
|
|
nlp: Optional[Language] = None,
|
|
) -> None:
|
|
"""Initialize the pipe for training, using a representative set
|
|
of data examples.
|
|
|
|
get_examples (Callable[[], Iterable[Example]]): Function that
|
|
returns a representative sample of gold-standard Example objects.
|
|
nlp (Language): The current nlp object the component is part of.
|
|
|
|
DOCS: https://spacy.io/api/span_predictor#initialize
|
|
"""
|
|
validate_get_examples(get_examples, "SpanPredictor.initialize")
|
|
|
|
X = []
|
|
Y = []
|
|
for ex in islice(get_examples(), 2):
|
|
|
|
if not ex.predicted.spans:
|
|
# set placeholder for shape inference
|
|
doc = ex.predicted
|
|
# TODO should be able to check if there are some valid docs in the batch
|
|
assert len(doc) > 2, "Coreference requires at least two tokens"
|
|
doc.spans[f"{self.input_prefix}_0"] = [doc[0:1], doc[1:2]]
|
|
X.append(ex.predicted)
|
|
Y.append(ex.reference)
|
|
|
|
assert len(X) > 0, Errors.E923.format(name=self.name)
|
|
self.model.initialize(X=X, Y=Y)
|
|
|
|
# Store the input dimensionality. nI and nO are not stored explicitly
|
|
# for PyTorch models. This makes it tricky to reconstruct the model
|
|
# during deserialization. So, besides storing the labels, we also
|
|
# store the number of inputs.
|
|
span_predictor = self.model.get_ref("span_predictor")
|
|
self.cfg["nI"] = span_predictor.get_dim("nI")
|
|
|
|
def from_bytes(self, bytes_data, *, exclude=tuple()):
|
|
deserializers = {
|
|
"cfg": lambda b: self.cfg.update(srsly.json_loads(b)),
|
|
"vocab": lambda b: self.vocab.from_bytes(b, exclude=exclude),
|
|
}
|
|
from_bytes(bytes_data, deserializers, exclude)
|
|
|
|
self._initialize_from_disk()
|
|
|
|
model_deserializers = {
|
|
"model": lambda b: self.model.from_bytes(b),
|
|
}
|
|
from_bytes(bytes_data, model_deserializers, exclude)
|
|
|
|
return self
|
|
|
|
def from_disk(self, path, exclude=tuple()):
|
|
def load_model(p):
|
|
try:
|
|
with open(p, "rb") as mfile:
|
|
self.model.from_bytes(mfile.read())
|
|
except AttributeError:
|
|
raise ValueError(Errors.E149) from None
|
|
|
|
deserializers = {
|
|
"cfg": lambda p: self.cfg.update(srsly.read_json(p)),
|
|
"vocab": lambda p: self.vocab.from_disk(p, exclude=exclude),
|
|
}
|
|
from_disk(path, deserializers, exclude)
|
|
|
|
self._initialize_from_disk()
|
|
|
|
model_deserializers = {
|
|
"model": load_model,
|
|
}
|
|
from_disk(path, model_deserializers, exclude)
|
|
|
|
return self
|
|
|
|
def _initialize_from_disk(self):
|
|
# The PyTorch model is constructed lazily, so we need to
|
|
# explicitly initialize the model before deserialization.
|
|
model = self.model.get_ref("span_predictor")
|
|
if model.has_dim("nI") is None:
|
|
model.set_dim("nI", self.cfg["nI"])
|
|
self.model.initialize()
|