spaCy/bin/parser/train.py
2016-09-08 13:00:24 +02:00

319 lines
12 KiB
Python
Executable File

#!/usr/bin/env python
from __future__ import division
from __future__ import unicode_literals
from __future__ import print_function
import os
from os import path
import shutil
import io
import random
import plac
import re
import spacy.util
from spacy.syntax.util import Config
from spacy.gold import read_json_file
from spacy.gold import GoldParse
from spacy.scorer import Scorer
from spacy.syntax.arc_eager import ArcEager
from spacy.syntax.ner import BiluoPushDown
from spacy.tagger import Tagger
from spacy.syntax.parser import Parser, get_templates
from spacy.syntax.beam_parser import BeamParser
from spacy.syntax.nonproj import PseudoProjectivity
def _corrupt(c, noise_level):
if random.random() >= noise_level:
return c
elif c == ' ':
return '\n'
elif c == '\n':
return ' '
elif c in ['.', "'", "!", "?"]:
return ''
else:
return c.lower()
def add_noise(orig, noise_level):
if random.random() >= noise_level:
return orig
elif type(orig) == list:
corrupted = [_corrupt(word, noise_level) for word in orig]
corrupted = [w for w in corrupted if w]
return corrupted
else:
return ''.join(_corrupt(c, noise_level) for c in orig)
def _merge_sents(sents):
m_deps = [[], [], [], [], [], []]
m_brackets = []
i = 0
for (ids, words, tags, heads, labels, ner), brackets in sents:
m_deps[0].extend(id_ + i for id_ in ids)
m_deps[1].extend(words)
m_deps[2].extend(tags)
m_deps[3].extend(head + i for head in heads)
m_deps[4].extend(labels)
m_deps[5].extend(ner)
m_brackets.extend((b['first'] + i, b['last'] + i, b['label']) for b in brackets)
i += len(ids)
return [(m_deps, m_brackets)]
def train(Language, gold_tuples, model_dir, dev_loc, n_iter=15, feat_set=u'basic',
seed=0, gold_preproc=False, n_sents=0, corruption_level=0,
beam_width=1, verbose=False,
use_orig_arc_eager=False, pseudoprojective=False):
dep_model_dir = path.join(model_dir, 'deps')
ner_model_dir = path.join(model_dir, 'ner')
pos_model_dir = path.join(model_dir, 'pos')
if path.exists(dep_model_dir):
shutil.rmtree(dep_model_dir)
if path.exists(ner_model_dir):
shutil.rmtree(ner_model_dir)
if path.exists(pos_model_dir):
shutil.rmtree(pos_model_dir)
os.mkdir(dep_model_dir)
os.mkdir(ner_model_dir)
os.mkdir(pos_model_dir)
if pseudoprojective:
# preprocess training data here before ArcEager.get_labels() is called
gold_tuples = PseudoProjectivity.preprocess_training_data(gold_tuples)
Config.write(dep_model_dir, 'config', feat_set=feat_set, seed=seed,
labels=ArcEager.get_labels(gold_tuples),
rho=1e-5, eta=1.0, mu=0.9, noise=0.0,
beam_width=beam_width,projectivize=pseudoprojective)
#feat_set, slots = get_templates('neural')
#vector_widths = [10, 10, 10]
#hidden_layers = [100, 100, 100]
#update_step = 'adam'
#eta = 0.001
#rho = 1e-4
#Config.write(dep_model_dir, 'config', model='neural',
# seed=seed, labels=ArcEager.get_labels(gold_tuples),
# feat_set=feat_set,
# vector_widths=vector_widths,
# slots=slots,
# hidden_layers=hidden_layers,
# update_step=update_step,
# eta=eta,
# rho=rho)
Config.write(ner_model_dir, 'config', feat_set='ner', seed=seed,
labels=BiluoPushDown.get_labels(gold_tuples),
beam_width=beam_width, rho=1e-8, eta=1.0, mu=0.9, noise=0.0)
if n_sents > 0:
gold_tuples = gold_tuples[:n_sents]
micro_eval = gold_tuples[:50]
nlp = Language(data_dir=model_dir, tagger=False, parser=False, entity=False)
nlp.tagger = Tagger.blank(nlp.vocab, Tagger.default_templates())
if beam_width >= 2:
nlp.parser = Parser.from_dir(dep_model_dir, nlp.vocab.strings, ArcEager)
nlp.entity = BeamParser.from_dir(ner_model_dir, nlp.vocab.strings, BiluoPushDown)
else:
nlp.parser = Parser.from_dir(dep_model_dir, nlp.vocab.strings, ArcEager)
nlp.entity = Parser.from_dir(ner_model_dir, nlp.vocab.strings, BiluoPushDown)
print(nlp.parser.model.widths)
for raw_text, sents in gold_tuples:
for annot_tuples, ctnt in sents:
for word in annot_tuples[1]:
_ = nlp.vocab[word]
eg_seen = 0
print("Itn.\tP.Loss\tUAS\tNER F.\tTag %\tToken %")
for itn in range(n_iter):
try:
eg_seen = _train_epoch(nlp, gold_tuples, eg_seen, itn,
dev_loc, micro_eval,
gold_preproc, corruption_level)
except KeyboardInterrupt:
print("Saving model...")
break
dev_uas = score_file(nlp, dev_loc).uas
print("Dev before average", dev_uas)
nlp.end_training(model_dir)
print("Saved. Evaluating...")
def _train_epoch(nlp, gold_tuples, eg_seen, itn, dev_loc, micro_eval,
gold_preproc, corruption_level):
random.shuffle(gold_tuples)
loss = 0
nr_trimmed = 0
for raw_text, sents in gold_tuples:
if gold_preproc:
raw_text = None
else:
sents = _merge_sents(sents)
for annot_tuples, ctnt in sents:
if len(annot_tuples[1]) == 1:
continue
if raw_text is None:
words = add_noise(annot_tuples[1], corruption_level)
tokens = nlp.tokenizer.tokens_from_list(words)
else:
raw_text = add_noise(raw_text, corruption_level)
tokens = nlp.tokenizer(raw_text)
nlp.tagger(tokens)
gold = GoldParse(tokens, annot_tuples)
if not gold.is_projective:
raise Exception("Non-projective sentence in training: %s" % annot_tuples[1])
loss += nlp.parser.train(tokens, gold)
nlp.entity.train(tokens, gold)
nlp.tagger.train(tokens, gold.tags)
eg_seen += 1
if eg_seen % 1000 == 0:
scorer = score_sents(nlp, micro_eval)
print('%d:\t%d\t%.3f\t%.3f\t%.3f\t%.3f\t%d\t%d' % (itn, loss, scorer.uas, scorer.ents_f,
scorer.tags_acc,
scorer.token_acc,
nlp.parser.model.nr_active_feat,
nlp.entity.model.nr_active_feat))
loss = 0
#nlp.parser.model.learn_rate *= 0.99
scorer = score_file(nlp, dev_loc)
print('D:\t%d\t%.3f\t%.3f\t%.3f\t%.3f' % (loss, scorer.uas, scorer.ents_f,
scorer.tags_acc, scorer.token_acc))
return eg_seen
def score_file(nlp, loc):
gold_sents = read_json_file(loc, verbose=False)
scorer = Scorer()
for _, sents in gold_sents:
for annot_tuples, _ in sents:
score_model(scorer, nlp, None, annot_tuples)
return scorer
def score_sents(nlp, gold_tuples):
scorer = Scorer()
for _, sents in gold_tuples:
for annot_tuples, _ in sents:
score_model(scorer, nlp, None, annot_tuples)
return scorer
def score_model(scorer, nlp, raw_text, annot_tuples, verbose=False):
if raw_text is None:
tokens = nlp.tokenizer.tokens_from_list(annot_tuples[1])
else:
tokens = nlp.tokenizer(raw_text)
nlp.tagger(tokens)
nlp.entity(tokens)
nlp.parser(tokens)
gold = GoldParse(tokens, annot_tuples)
scorer.score(tokens, gold, verbose=verbose)
def evaluate(Language, gold_tuples, model_dir, gold_preproc=False, verbose=False,
beam_width=None, cand_preproc=None):
nlp = Language(data_dir=model_dir)
if nlp.lang == 'de':
nlp.vocab.morphology.lemmatizer = lambda string,pos: set([string])
if beam_width is not None:
nlp.parser.cfg.beam_width = beam_width
scorer = Scorer()
for raw_text, sents in gold_tuples:
if gold_preproc:
raw_text = None
else:
sents = _merge_sents(sents)
for annot_tuples, brackets in sents:
if raw_text is None:
tokens = nlp.tokenizer.tokens_from_list(annot_tuples[1])
nlp.tagger(tokens)
nlp.parser(tokens)
nlp.entity(tokens)
else:
tokens = nlp(raw_text)
gold = GoldParse(tokens, annot_tuples)
scorer.score(tokens, gold, verbose=verbose)
return scorer
def write_parses(Language, dev_loc, model_dir, out_loc):
nlp = Language(data_dir=model_dir)
gold_tuples = read_json_file(dev_loc, verbose=True)
scorer = Scorer()
out_file = io.open(out_loc, 'w', 'utf8')
for raw_text, sents in gold_tuples:
sents = _merge_sents(sents)
for annot_tuples, brackets in sents:
if raw_text is None:
tokens = nlp.tokenizer.tokens_from_list(annot_tuples[1])
nlp.tagger(tokens)
nlp.entity(tokens)
nlp.parser(tokens)
else:
tokens = nlp(raw_text)
#gold = GoldParse(tokens, annot_tuples)
#scorer.score(tokens, gold, verbose=False)
for sent in tokens.sents:
for t in sent:
if not t.is_space:
out_file.write(
'%d\t%s\t%s\t%s\t%s\n' % (t.i, t.orth_, t.tag_, t.head.orth_, t.dep_)
)
out_file.write('\n')
@plac.annotations(
language=("The language to train", "positional", None, str, ['en','de', 'zh']),
train_loc=("Location of training file or directory"),
dev_loc=("Location of development file or directory"),
model_dir=("Location of output model directory",),
beam_width=("Parser and NER beam width", "option", "k", int),
eval_only=("Skip training, and only evaluate", "flag", "e", bool),
corruption_level=("Amount of noise to add to training data", "option", "c", float),
gold_preproc=("Use gold-standard sentence boundaries in training?", "flag", "g", bool),
out_loc=("Out location", "option", "o", str),
n_sents=("Number of training sentences", "option", "n", int),
n_iter=("Number of training iterations", "option", "i", int),
verbose=("Verbose error reporting", "flag", "v", bool),
debug=("Debug mode", "flag", "d", bool),
pseudoprojective=("Use pseudo-projective parsing", "flag", "p", bool),
)
def main(language, train_loc, dev_loc, model_dir, n_sents=0, n_iter=15, out_loc="", verbose=False,
debug=False, corruption_level=0.0, beam_width=1,
gold_preproc=False, eval_only=False, pseudoprojective=False):
lang = spacy.util.get_lang_class(language)
if not eval_only:
gold_train = list(read_json_file(train_loc, verbose=True))
train(lang, gold_train, model_dir, dev_loc,
feat_set='basic', #'neural' if not debug else 'debug',
gold_preproc=gold_preproc, n_sents=n_sents,
corruption_level=corruption_level, n_iter=n_iter,
verbose=verbose, pseudoprojective=pseudoprojective,
beam_width=beam_width)
if out_loc:
write_parses(lang, dev_loc, model_dir, out_loc)
print(model_dir)
scorer = evaluate(lang, list(read_json_file(dev_loc, verbose=True)),
model_dir, gold_preproc=gold_preproc, verbose=verbose)
print('TOK', scorer.token_acc)
print('POS', scorer.tags_acc)
print('UAS', scorer.uas)
print('LAS', scorer.las)
print('NER P', scorer.ents_p)
print('NER R', scorer.ents_r)
print('NER F', scorer.ents_f)
if __name__ == '__main__':
plac.call(main)