2015-01-09 20:53:26 +03:00
|
|
|
#!/usr/bin/env python
|
|
|
|
from __future__ import division
|
|
|
|
from __future__ import unicode_literals
|
2015-07-24 05:52:35 +03:00
|
|
|
from __future__ import print_function
|
2015-01-09 20:53:26 +03:00
|
|
|
|
|
|
|
import os
|
|
|
|
from os import path
|
|
|
|
import shutil
|
2015-09-30 21:16:52 +03:00
|
|
|
import io
|
2015-01-09 20:53:26 +03:00
|
|
|
import random
|
|
|
|
|
|
|
|
import plac
|
2015-05-23 18:21:25 +03:00
|
|
|
import re
|
2015-01-09 20:53:26 +03:00
|
|
|
|
|
|
|
import spacy.util
|
|
|
|
|
|
|
|
from spacy.syntax.util import Config
|
2015-05-24 22:35:02 +03:00
|
|
|
from spacy.gold import read_json_file
|
|
|
|
from spacy.gold import GoldParse
|
2015-01-09 20:53:26 +03:00
|
|
|
|
2015-03-10 20:00:23 +03:00
|
|
|
from spacy.scorer import Scorer
|
|
|
|
|
2015-09-06 18:51:48 +03:00
|
|
|
from spacy.syntax.arc_eager import ArcEager
|
|
|
|
from spacy.syntax.ner import BiluoPushDown
|
|
|
|
from spacy.tagger import Tagger
|
2016-07-20 17:28:02 +03:00
|
|
|
from spacy.syntax.parser import Parser, get_templates
|
|
|
|
from spacy.syntax.beam_parser import BeamParser
|
2016-03-03 17:21:00 +03:00
|
|
|
from spacy.syntax.nonproj import PseudoProjectivity
|
2015-09-06 18:51:48 +03:00
|
|
|
|
2015-01-09 20:53:26 +03:00
|
|
|
|
2015-06-05 20:33:32 +03:00
|
|
|
def _corrupt(c, noise_level):
|
2015-05-24 03:50:14 +03:00
|
|
|
if random.random() >= noise_level:
|
|
|
|
return c
|
|
|
|
elif c == ' ':
|
|
|
|
return '\n'
|
|
|
|
elif c == '\n':
|
|
|
|
return ' '
|
|
|
|
elif c in ['.', "'", "!", "?"]:
|
|
|
|
return ''
|
|
|
|
else:
|
|
|
|
return c.lower()
|
|
|
|
|
|
|
|
|
2015-06-05 20:33:32 +03:00
|
|
|
def add_noise(orig, noise_level):
|
|
|
|
if random.random() >= noise_level:
|
|
|
|
return orig
|
|
|
|
elif type(orig) == list:
|
|
|
|
corrupted = [_corrupt(word, noise_level) for word in orig]
|
|
|
|
corrupted = [w for w in corrupted if w]
|
|
|
|
return corrupted
|
|
|
|
else:
|
|
|
|
return ''.join(_corrupt(c, noise_level) for c in orig)
|
|
|
|
|
|
|
|
|
2015-05-30 06:23:02 +03:00
|
|
|
def _merge_sents(sents):
|
|
|
|
m_deps = [[], [], [], [], [], []]
|
|
|
|
m_brackets = []
|
|
|
|
i = 0
|
|
|
|
for (ids, words, tags, heads, labels, ner), brackets in sents:
|
|
|
|
m_deps[0].extend(id_ + i for id_ in ids)
|
|
|
|
m_deps[1].extend(words)
|
|
|
|
m_deps[2].extend(tags)
|
|
|
|
m_deps[3].extend(head + i for head in heads)
|
|
|
|
m_deps[4].extend(labels)
|
|
|
|
m_deps[5].extend(ner)
|
|
|
|
m_brackets.extend((b['first'] + i, b['last'] + i, b['label']) for b in brackets)
|
|
|
|
i += len(ids)
|
|
|
|
return [(m_deps, m_brackets)]
|
|
|
|
|
2015-05-31 02:11:11 +03:00
|
|
|
|
2016-09-05 02:44:30 +03:00
|
|
|
def train(Language, gold_tuples, model_dir, dev_loc, n_iter=15, feat_set=u'basic',
|
2015-05-31 02:11:11 +03:00
|
|
|
seed=0, gold_preproc=False, n_sents=0, corruption_level=0,
|
2015-06-14 21:28:14 +03:00
|
|
|
beam_width=1, verbose=False,
|
2016-03-03 17:21:00 +03:00
|
|
|
use_orig_arc_eager=False, pseudoprojective=False):
|
2015-01-09 20:53:26 +03:00
|
|
|
dep_model_dir = path.join(model_dir, 'deps')
|
2015-03-09 08:46:53 +03:00
|
|
|
ner_model_dir = path.join(model_dir, 'ner')
|
2015-09-08 16:36:23 +03:00
|
|
|
pos_model_dir = path.join(model_dir, 'pos')
|
2015-01-09 20:53:26 +03:00
|
|
|
if path.exists(dep_model_dir):
|
|
|
|
shutil.rmtree(dep_model_dir)
|
2015-03-09 08:46:53 +03:00
|
|
|
if path.exists(ner_model_dir):
|
|
|
|
shutil.rmtree(ner_model_dir)
|
2015-09-08 16:36:23 +03:00
|
|
|
if path.exists(pos_model_dir):
|
|
|
|
shutil.rmtree(pos_model_dir)
|
2015-01-09 20:53:26 +03:00
|
|
|
os.mkdir(dep_model_dir)
|
2015-03-09 08:46:53 +03:00
|
|
|
os.mkdir(ner_model_dir)
|
2015-09-08 16:36:23 +03:00
|
|
|
os.mkdir(pos_model_dir)
|
2015-03-09 08:46:53 +03:00
|
|
|
|
2016-03-03 17:21:00 +03:00
|
|
|
if pseudoprojective:
|
|
|
|
# preprocess training data here before ArcEager.get_labels() is called
|
|
|
|
gold_tuples = PseudoProjectivity.preprocess_training_data(gold_tuples)
|
|
|
|
|
2016-09-05 02:44:30 +03:00
|
|
|
Config.write(dep_model_dir, 'config', feat_set=feat_set, seed=seed,
|
2015-09-06 18:51:48 +03:00
|
|
|
labels=ArcEager.get_labels(gold_tuples),
|
2016-09-08 14:00:24 +03:00
|
|
|
rho=1e-5, eta=1.0, mu=0.9, noise=0.0,
|
2016-03-03 17:21:00 +03:00
|
|
|
beam_width=beam_width,projectivize=pseudoprojective)
|
2016-07-20 17:28:02 +03:00
|
|
|
#feat_set, slots = get_templates('neural')
|
|
|
|
#vector_widths = [10, 10, 10]
|
|
|
|
#hidden_layers = [100, 100, 100]
|
|
|
|
#update_step = 'adam'
|
|
|
|
#eta = 0.001
|
|
|
|
#rho = 1e-4
|
|
|
|
#Config.write(dep_model_dir, 'config', model='neural',
|
|
|
|
# seed=seed, labels=ArcEager.get_labels(gold_tuples),
|
|
|
|
# feat_set=feat_set,
|
|
|
|
# vector_widths=vector_widths,
|
|
|
|
# slots=slots,
|
|
|
|
# hidden_layers=hidden_layers,
|
|
|
|
# update_step=update_step,
|
|
|
|
# eta=eta,
|
|
|
|
# rho=rho)
|
|
|
|
|
|
|
|
|
2016-09-05 02:44:30 +03:00
|
|
|
Config.write(ner_model_dir, 'config', feat_set='ner', seed=seed,
|
2015-09-06 18:51:48 +03:00
|
|
|
labels=BiluoPushDown.get_labels(gold_tuples),
|
2016-09-08 14:00:24 +03:00
|
|
|
beam_width=beam_width, rho=1e-8, eta=1.0, mu=0.9, noise=0.0)
|
2015-03-09 08:46:53 +03:00
|
|
|
|
2015-03-10 20:00:23 +03:00
|
|
|
if n_sents > 0:
|
|
|
|
gold_tuples = gold_tuples[:n_sents]
|
2016-09-05 02:44:30 +03:00
|
|
|
micro_eval = gold_tuples[:50]
|
2015-09-06 18:51:48 +03:00
|
|
|
nlp = Language(data_dir=model_dir, tagger=False, parser=False, entity=False)
|
|
|
|
nlp.tagger = Tagger.blank(nlp.vocab, Tagger.default_templates())
|
2016-09-08 14:00:24 +03:00
|
|
|
if beam_width >= 2:
|
|
|
|
nlp.parser = Parser.from_dir(dep_model_dir, nlp.vocab.strings, ArcEager)
|
|
|
|
nlp.entity = BeamParser.from_dir(ner_model_dir, nlp.vocab.strings, BiluoPushDown)
|
|
|
|
else:
|
|
|
|
nlp.parser = Parser.from_dir(dep_model_dir, nlp.vocab.strings, ArcEager)
|
|
|
|
nlp.entity = Parser.from_dir(ner_model_dir, nlp.vocab.strings, BiluoPushDown)
|
2016-07-20 17:28:02 +03:00
|
|
|
print(nlp.parser.model.widths)
|
|
|
|
for raw_text, sents in gold_tuples:
|
|
|
|
for annot_tuples, ctnt in sents:
|
|
|
|
for word in annot_tuples[1]:
|
|
|
|
_ = nlp.vocab[word]
|
2016-09-05 02:44:30 +03:00
|
|
|
eg_seen = 0
|
2015-07-24 05:52:35 +03:00
|
|
|
print("Itn.\tP.Loss\tUAS\tNER F.\tTag %\tToken %")
|
2015-01-09 20:53:26 +03:00
|
|
|
for itn in range(n_iter):
|
2016-09-05 02:44:30 +03:00
|
|
|
try:
|
|
|
|
eg_seen = _train_epoch(nlp, gold_tuples, eg_seen, itn,
|
|
|
|
dev_loc, micro_eval,
|
|
|
|
gold_preproc, corruption_level)
|
|
|
|
except KeyboardInterrupt:
|
|
|
|
print("Saving model...")
|
|
|
|
break
|
|
|
|
dev_uas = score_file(nlp, dev_loc).uas
|
|
|
|
print("Dev before average", dev_uas)
|
2015-09-06 18:51:48 +03:00
|
|
|
nlp.end_training(model_dir)
|
2016-09-05 02:44:30 +03:00
|
|
|
print("Saved. Evaluating...")
|
|
|
|
|
|
|
|
|
|
|
|
def _train_epoch(nlp, gold_tuples, eg_seen, itn, dev_loc, micro_eval,
|
|
|
|
gold_preproc, corruption_level):
|
|
|
|
random.shuffle(gold_tuples)
|
|
|
|
loss = 0
|
|
|
|
nr_trimmed = 0
|
|
|
|
for raw_text, sents in gold_tuples:
|
|
|
|
if gold_preproc:
|
|
|
|
raw_text = None
|
|
|
|
else:
|
|
|
|
sents = _merge_sents(sents)
|
|
|
|
for annot_tuples, ctnt in sents:
|
|
|
|
if len(annot_tuples[1]) == 1:
|
|
|
|
continue
|
|
|
|
if raw_text is None:
|
|
|
|
words = add_noise(annot_tuples[1], corruption_level)
|
|
|
|
tokens = nlp.tokenizer.tokens_from_list(words)
|
|
|
|
else:
|
|
|
|
raw_text = add_noise(raw_text, corruption_level)
|
|
|
|
tokens = nlp.tokenizer(raw_text)
|
|
|
|
nlp.tagger(tokens)
|
|
|
|
gold = GoldParse(tokens, annot_tuples)
|
|
|
|
if not gold.is_projective:
|
|
|
|
raise Exception("Non-projective sentence in training: %s" % annot_tuples[1])
|
|
|
|
loss += nlp.parser.train(tokens, gold)
|
|
|
|
nlp.entity.train(tokens, gold)
|
|
|
|
nlp.tagger.train(tokens, gold.tags)
|
|
|
|
|
|
|
|
eg_seen += 1
|
|
|
|
if eg_seen % 1000 == 0:
|
|
|
|
scorer = score_sents(nlp, micro_eval)
|
|
|
|
print('%d:\t%d\t%.3f\t%.3f\t%.3f\t%.3f\t%d\t%d' % (itn, loss, scorer.uas, scorer.ents_f,
|
|
|
|
scorer.tags_acc,
|
|
|
|
scorer.token_acc,
|
|
|
|
nlp.parser.model.nr_active_feat,
|
|
|
|
nlp.entity.model.nr_active_feat))
|
|
|
|
loss = 0
|
2016-09-08 14:00:24 +03:00
|
|
|
#nlp.parser.model.learn_rate *= 0.99
|
2016-09-05 02:44:30 +03:00
|
|
|
scorer = score_file(nlp, dev_loc)
|
|
|
|
print('D:\t%d\t%.3f\t%.3f\t%.3f\t%.3f' % (loss, scorer.uas, scorer.ents_f,
|
|
|
|
scorer.tags_acc, scorer.token_acc))
|
|
|
|
return eg_seen
|
|
|
|
|
|
|
|
|
|
|
|
def score_file(nlp, loc):
|
|
|
|
gold_sents = read_json_file(loc, verbose=False)
|
|
|
|
scorer = Scorer()
|
|
|
|
for _, sents in gold_sents:
|
|
|
|
for annot_tuples, _ in sents:
|
|
|
|
score_model(scorer, nlp, None, annot_tuples)
|
|
|
|
return scorer
|
|
|
|
|
|
|
|
|
|
|
|
def score_sents(nlp, gold_tuples):
|
|
|
|
scorer = Scorer()
|
|
|
|
for _, sents in gold_tuples:
|
|
|
|
for annot_tuples, _ in sents:
|
|
|
|
score_model(scorer, nlp, None, annot_tuples)
|
|
|
|
return scorer
|
|
|
|
|
|
|
|
|
|
|
|
def score_model(scorer, nlp, raw_text, annot_tuples, verbose=False):
|
|
|
|
if raw_text is None:
|
|
|
|
tokens = nlp.tokenizer.tokens_from_list(annot_tuples[1])
|
|
|
|
else:
|
|
|
|
tokens = nlp.tokenizer(raw_text)
|
|
|
|
nlp.tagger(tokens)
|
|
|
|
nlp.entity(tokens)
|
|
|
|
nlp.parser(tokens)
|
|
|
|
gold = GoldParse(tokens, annot_tuples)
|
|
|
|
scorer.score(tokens, gold, verbose=verbose)
|
2015-01-09 20:53:26 +03:00
|
|
|
|
2015-10-06 02:35:22 +03:00
|
|
|
|
2015-06-06 00:49:26 +03:00
|
|
|
def evaluate(Language, gold_tuples, model_dir, gold_preproc=False, verbose=False,
|
2015-10-06 02:35:22 +03:00
|
|
|
beam_width=None, cand_preproc=None):
|
2015-04-08 23:48:26 +03:00
|
|
|
nlp = Language(data_dir=model_dir)
|
2016-03-03 17:21:00 +03:00
|
|
|
if nlp.lang == 'de':
|
|
|
|
nlp.vocab.morphology.lemmatizer = lambda string,pos: set([string])
|
2015-06-06 00:49:26 +03:00
|
|
|
if beam_width is not None:
|
|
|
|
nlp.parser.cfg.beam_width = beam_width
|
2015-03-10 20:00:23 +03:00
|
|
|
scorer = Scorer()
|
2015-05-30 02:25:46 +03:00
|
|
|
for raw_text, sents in gold_tuples:
|
2015-05-30 06:23:02 +03:00
|
|
|
if gold_preproc:
|
|
|
|
raw_text = None
|
|
|
|
else:
|
|
|
|
sents = _merge_sents(sents)
|
2015-05-30 02:25:46 +03:00
|
|
|
for annot_tuples, brackets in sents:
|
2015-05-30 06:23:02 +03:00
|
|
|
if raw_text is None:
|
2015-05-30 02:25:46 +03:00
|
|
|
tokens = nlp.tokenizer.tokens_from_list(annot_tuples[1])
|
|
|
|
nlp.tagger(tokens)
|
|
|
|
nlp.parser(tokens)
|
2015-11-11 20:43:52 +03:00
|
|
|
nlp.entity(tokens)
|
2015-05-30 02:25:46 +03:00
|
|
|
else:
|
2015-10-06 02:35:22 +03:00
|
|
|
tokens = nlp(raw_text)
|
2015-05-30 02:25:46 +03:00
|
|
|
gold = GoldParse(tokens, annot_tuples)
|
|
|
|
scorer.score(tokens, gold, verbose=verbose)
|
2015-03-10 20:00:23 +03:00
|
|
|
return scorer
|
2015-03-08 08:17:12 +03:00
|
|
|
|
|
|
|
|
2015-10-06 02:35:22 +03:00
|
|
|
def write_parses(Language, dev_loc, model_dir, out_loc):
|
2015-06-07 20:08:48 +03:00
|
|
|
nlp = Language(data_dir=model_dir)
|
2016-09-05 02:44:30 +03:00
|
|
|
gold_tuples = read_json_file(dev_loc, verbose=True)
|
2015-03-20 03:14:20 +03:00
|
|
|
scorer = Scorer()
|
2015-10-10 06:13:01 +03:00
|
|
|
out_file = io.open(out_loc, 'w', 'utf8')
|
2015-06-07 20:08:48 +03:00
|
|
|
for raw_text, sents in gold_tuples:
|
|
|
|
sents = _merge_sents(sents)
|
|
|
|
for annot_tuples, brackets in sents:
|
|
|
|
if raw_text is None:
|
|
|
|
tokens = nlp.tokenizer.tokens_from_list(annot_tuples[1])
|
|
|
|
nlp.tagger(tokens)
|
2015-06-17 00:36:54 +03:00
|
|
|
nlp.entity(tokens)
|
2015-06-07 20:08:48 +03:00
|
|
|
nlp.parser(tokens)
|
|
|
|
else:
|
2015-10-06 02:35:22 +03:00
|
|
|
tokens = nlp(raw_text)
|
|
|
|
#gold = GoldParse(tokens, annot_tuples)
|
|
|
|
#scorer.score(tokens, gold, verbose=False)
|
|
|
|
for sent in tokens.sents:
|
|
|
|
for t in sent:
|
|
|
|
if not t.is_space:
|
|
|
|
out_file.write(
|
|
|
|
'%d\t%s\t%s\t%s\t%s\n' % (t.i, t.orth_, t.tag_, t.head.orth_, t.dep_)
|
|
|
|
)
|
|
|
|
out_file.write('\n')
|
2015-03-20 03:14:20 +03:00
|
|
|
|
|
|
|
|
2015-02-23 22:05:04 +03:00
|
|
|
@plac.annotations(
|
2016-04-24 19:44:24 +03:00
|
|
|
language=("The language to train", "positional", None, str, ['en','de', 'zh']),
|
2015-05-29 04:52:55 +03:00
|
|
|
train_loc=("Location of training file or directory"),
|
|
|
|
dev_loc=("Location of development file or directory"),
|
2015-06-06 00:49:26 +03:00
|
|
|
model_dir=("Location of output model directory",),
|
2016-09-08 14:00:24 +03:00
|
|
|
beam_width=("Parser and NER beam width", "option", "k", int),
|
2015-06-06 00:49:26 +03:00
|
|
|
eval_only=("Skip training, and only evaluate", "flag", "e", bool),
|
2015-05-24 03:50:14 +03:00
|
|
|
corruption_level=("Amount of noise to add to training data", "option", "c", float),
|
2015-05-30 02:25:46 +03:00
|
|
|
gold_preproc=("Use gold-standard sentence boundaries in training?", "flag", "g", bool),
|
2015-03-20 03:14:20 +03:00
|
|
|
out_loc=("Out location", "option", "o", str),
|
2015-03-14 18:09:55 +03:00
|
|
|
n_sents=("Number of training sentences", "option", "n", int),
|
2015-05-24 22:35:02 +03:00
|
|
|
n_iter=("Number of training iterations", "option", "i", int),
|
2015-03-14 18:09:55 +03:00
|
|
|
verbose=("Verbose error reporting", "flag", "v", bool),
|
2015-06-14 21:28:14 +03:00
|
|
|
debug=("Debug mode", "flag", "d", bool),
|
2016-03-03 17:21:00 +03:00
|
|
|
pseudoprojective=("Use pseudo-projective parsing", "flag", "p", bool),
|
2015-02-23 22:05:04 +03:00
|
|
|
)
|
2016-03-03 17:21:00 +03:00
|
|
|
def main(language, train_loc, dev_loc, model_dir, n_sents=0, n_iter=15, out_loc="", verbose=False,
|
2016-09-08 14:00:24 +03:00
|
|
|
debug=False, corruption_level=0.0, beam_width=1,
|
|
|
|
gold_preproc=False, eval_only=False, pseudoprojective=False):
|
2016-04-24 19:44:24 +03:00
|
|
|
lang = spacy.util.get_lang_class(language)
|
2016-03-03 17:21:00 +03:00
|
|
|
|
2015-06-06 00:49:26 +03:00
|
|
|
if not eval_only:
|
2016-09-05 02:44:30 +03:00
|
|
|
gold_train = list(read_json_file(train_loc, verbose=True))
|
|
|
|
train(lang, gold_train, model_dir, dev_loc,
|
|
|
|
feat_set='basic', #'neural' if not debug else 'debug',
|
2015-06-06 00:49:26 +03:00
|
|
|
gold_preproc=gold_preproc, n_sents=n_sents,
|
|
|
|
corruption_level=corruption_level, n_iter=n_iter,
|
2016-09-08 14:00:24 +03:00
|
|
|
verbose=verbose, pseudoprojective=pseudoprojective,
|
|
|
|
beam_width=beam_width)
|
2015-10-06 02:35:22 +03:00
|
|
|
if out_loc:
|
2016-03-03 17:21:00 +03:00
|
|
|
write_parses(lang, dev_loc, model_dir, out_loc)
|
2016-07-20 17:28:02 +03:00
|
|
|
print(model_dir)
|
2016-09-05 02:44:30 +03:00
|
|
|
scorer = evaluate(lang, list(read_json_file(dev_loc, verbose=True)),
|
2015-07-17 23:38:05 +03:00
|
|
|
model_dir, gold_preproc=gold_preproc, verbose=verbose)
|
2015-07-24 05:52:35 +03:00
|
|
|
print('TOK', scorer.token_acc)
|
|
|
|
print('POS', scorer.tags_acc)
|
|
|
|
print('UAS', scorer.uas)
|
|
|
|
print('LAS', scorer.las)
|
|
|
|
|
|
|
|
print('NER P', scorer.ents_p)
|
|
|
|
print('NER R', scorer.ents_r)
|
|
|
|
print('NER F', scorer.ents_f)
|
2015-04-19 11:31:31 +03:00
|
|
|
|
2015-01-09 20:53:26 +03:00
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
plac.call(main)
|