mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-11-01 00:17:44 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			341 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			341 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | |
| title: SpanPredictor
 | |
| tag: class
 | |
| source: spacy/pipeline/span_predictor.py
 | |
| new: 3.4
 | |
| teaser: 'Pipeline component for resolving tokens into spans'
 | |
| api_base_class: /api/pipe
 | |
| api_string_name: span_predictor
 | |
| api_trainable: true
 | |
| ---
 | |
| 
 | |
| A `SpanPredictor` component takes in tokens (represented as `Span`s of length
 | |
| 
 | |
| 1. and resolves them into `Span`s of arbitrary length. The initial use case is
 | |
|    as a post-processing step on word-level [coreference resolution](/api/coref).
 | |
|    The input and output keys used to store `Span`s are configurable.
 | |
| 
 | |
| ## Assigned Attributes {#assigned-attributes}
 | |
| 
 | |
| Predictions will be saved to `Doc.spans` as [`SpanGroup`s](/api/spangroup).
 | |
| 
 | |
| Input token spans will be read in using an input prefix, by default
 | |
| `"coref_head_clusters"`, and output spans will be saved using an output prefix
 | |
| (default `"coref_clusters"`) plus a serial number starting from zero. The
 | |
| prefixes are configurable.
 | |
| 
 | |
| | Location                                          | Value                                       |
 | |
| | ------------------------------------------------- | ------------------------------------------- |
 | |
| | `Doc.spans[output_prefix + "_" + cluster_number]` | One group of predicted spans. ~~SpanGroup~~ |
 | |
| 
 | |
| ## Config and implementation {#config}
 | |
| 
 | |
| The default config is defined by the pipeline component factory and describes
 | |
| how the component should be configured. You can override its settings via the
 | |
| `config` argument on [`nlp.add_pipe`](/api/language#add_pipe) or in your
 | |
| [`config.cfg` for training](/usage/training#config). See the
 | |
| [model architectures](/api/architectures) documentation for details on the
 | |
| architectures and their arguments and hyperparameters.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > from spacy.pipeline.span_predictor import DEFAULT_SPAN_PREDICTOR_MODEL
 | |
| > config={
 | |
| >     "model": DEFAULT_SPAN_PREDICTOR_MODEL,
 | |
| >     "span_cluster_prefix": DEFAULT_CLUSTER_PREFIX,
 | |
| > },
 | |
| > nlp.add_pipe("span_predictor", config=config)
 | |
| > ```
 | |
| 
 | |
| | Setting         | Description                                                                                                                                              |
 | |
| | --------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------- |
 | |
| | `model`         | The [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. Defaults to [SpanPredictor](/api/architectures#SpanPredictor). ~~Model~~ |
 | |
| | `input_prefix`  | The prefix to use for input `SpanGroup`s. Defaults to `coref_head_clusters`. ~~str~~                                                                     |
 | |
| | `output_prefix` | The prefix for predicted `SpanGroup`s. Defaults to `coref_clusters`. ~~str~~                                                                             |
 | |
| 
 | |
| ```python
 | |
| %%GITHUB_SPACY/spacy/pipeline/span_predictor.py
 | |
| ```
 | |
| 
 | |
| ## SpanPredictor.\_\_init\_\_ {#init tag="method"}
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > # Construction via add_pipe with default model
 | |
| > span_predictor = nlp.add_pipe("span_predictor")
 | |
| >
 | |
| > # Construction via add_pipe with custom model
 | |
| > config = {"model": {"@architectures": "my_span_predictor.v1"}}
 | |
| > span_predictor = nlp.add_pipe("span_predictor", config=config)
 | |
| >
 | |
| > # Construction from class
 | |
| > from spacy.pipeline import SpanPredictor
 | |
| > span_predictor = SpanPredictor(nlp.vocab, model)
 | |
| > ```
 | |
| 
 | |
| Create a new pipeline instance. In your application, you would normally use a
 | |
| shortcut for this and instantiate the component using its string name and
 | |
| [`nlp.add_pipe`](/api/language#add_pipe).
 | |
| 
 | |
| | Name            | Description                                                                                         |
 | |
| | --------------- | --------------------------------------------------------------------------------------------------- |
 | |
| | `vocab`         | The shared vocabulary. ~~Vocab~~                                                                    |
 | |
| | `model`         | The [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. ~~Model~~           |
 | |
| | `name`          | String name of the component instance. Used to add entries to the `losses` during training. ~~str~~ |
 | |
| | _keyword-only_  |                                                                                                     |
 | |
| | `input_prefix`  | The prefix to use for input `SpanGroup`s. Defaults to `coref_head_clusters`. ~~str~~                |
 | |
| | `output_prefix` | The prefix for predicted `SpanGroup`s. Defaults to `coref_clusters`. ~~str~~                        |
 | |
| 
 | |
| ## SpanPredictor.\_\_call\_\_ {#call tag="method"}
 | |
| 
 | |
| Apply the pipe to one document. The document is modified in place and returned.
 | |
| This usually happens under the hood when the `nlp` object is called on a text
 | |
| and all pipeline components are applied to the `Doc` in order. Both
 | |
| [`__call__`](#call) and [`pipe`](#pipe) delegate to the [`predict`](#predict)
 | |
| and [`set_annotations`](#set_annotations) methods.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > doc = nlp("This is a sentence.")
 | |
| > span_predictor = nlp.add_pipe("span_predictor")
 | |
| > # This usually happens under the hood
 | |
| > processed = span_predictor(doc)
 | |
| > ```
 | |
| 
 | |
| | Name        | Description                      |
 | |
| | ----------- | -------------------------------- |
 | |
| | `doc`       | The document to process. ~~Doc~~ |
 | |
| | **RETURNS** | The processed document. ~~Doc~~  |
 | |
| 
 | |
| ## SpanPredictor.pipe {#pipe tag="method"}
 | |
| 
 | |
| Apply the pipe to a stream of documents. This usually happens under the hood
 | |
| when the `nlp` object is called on a text and all pipeline components are
 | |
| applied to the `Doc` in order. Both [`__call__`](/api/span-predictor#call) and
 | |
| [`pipe`](/api/span-predictor#pipe) delegate to the
 | |
| [`predict`](/api/span-predictor#predict) and
 | |
| [`set_annotations`](/api/span-predictor#set_annotations) methods.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > span_predictor = nlp.add_pipe("span_predictor")
 | |
| > for doc in span_predictor.pipe(docs, batch_size=50):
 | |
| >     pass
 | |
| > ```
 | |
| 
 | |
| | Name           | Description                                                   |
 | |
| | -------------- | ------------------------------------------------------------- |
 | |
| | `stream`       | A stream of documents. ~~Iterable[Doc]~~                      |
 | |
| | _keyword-only_ |                                                               |
 | |
| | `batch_size`   | The number of documents to buffer. Defaults to `128`. ~~int~~ |
 | |
| | **YIELDS**     | The processed documents in order. ~~Doc~~                     |
 | |
| 
 | |
| ## SpanPredictor.initialize {#initialize tag="method"}
 | |
| 
 | |
| Initialize the component for training. `get_examples` should be a function that
 | |
| returns an iterable of [`Example`](/api/example) objects. The data examples are
 | |
| used to **initialize the model** of the component and can either be the full
 | |
| training data or a representative sample. Initialization includes validating the
 | |
| network,
 | |
| [inferring missing shapes](https://thinc.ai/docs/usage-models#validation) and
 | |
| setting up the label scheme based on the data. This method is typically called
 | |
| by [`Language.initialize`](/api/language#initialize).
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > span_predictor = nlp.add_pipe("span_predictor")
 | |
| > span_predictor.initialize(lambda: [], nlp=nlp)
 | |
| > ```
 | |
| 
 | |
| | Name           | Description                                                                                                                           |
 | |
| | -------------- | ------------------------------------------------------------------------------------------------------------------------------------- |
 | |
| | `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. ~~Callable[[], Iterable[Example]]~~ |
 | |
| | _keyword-only_ |                                                                                                                                       |
 | |
| | `nlp`          | The current `nlp` object. Defaults to `None`. ~~Optional[Language]~~                                                                  |
 | |
| 
 | |
| ## SpanPredictor.predict {#predict tag="method"}
 | |
| 
 | |
| Apply the component's model to a batch of [`Doc`](/api/doc) objects, without
 | |
| modifying them. Predictions are returned as a list of `MentionClusters`, one for
 | |
| each input `Doc`. A `MentionClusters` instance is just a list of lists of pairs
 | |
| of `int`s, where each item corresponds to an input `SpanGroup`, and the `int`s
 | |
| correspond to token indices.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > span_predictor = nlp.add_pipe("span_predictor")
 | |
| > spans = span_predictor.predict([doc1, doc2])
 | |
| > ```
 | |
| 
 | |
| | Name        | Description                                                   |
 | |
| | ----------- | ------------------------------------------------------------- |
 | |
| | `docs`      | The documents to predict. ~~Iterable[Doc]~~                   |
 | |
| | **RETURNS** | The predicted spans for the `Doc`s. ~~List[MentionClusters]~~ |
 | |
| 
 | |
| ## SpanPredictor.set_annotations {#set_annotations tag="method"}
 | |
| 
 | |
| Modify a batch of documents, saving predictions using the output prefix in
 | |
| `Doc.spans`.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > span_predictor = nlp.add_pipe("span_predictor")
 | |
| > spans = span_predictor.predict([doc1, doc2])
 | |
| > span_predictor.set_annotations([doc1, doc2], spans)
 | |
| > ```
 | |
| 
 | |
| | Name    | Description                                                   |
 | |
| | ------- | ------------------------------------------------------------- |
 | |
| | `docs`  | The documents to modify. ~~Iterable[Doc]~~                    |
 | |
| | `spans` | The predicted spans for the `docs`. ~~List[MentionClusters]~~ |
 | |
| 
 | |
| ## SpanPredictor.update {#update tag="method"}
 | |
| 
 | |
| Learn from a batch of [`Example`](/api/example) objects. Delegates to
 | |
| [`predict`](/api/span-predictor#predict).
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > span_predictor = nlp.add_pipe("span_predictor")
 | |
| > optimizer = nlp.initialize()
 | |
| > losses = span_predictor.update(examples, sgd=optimizer)
 | |
| > ```
 | |
| 
 | |
| | Name           | Description                                                                                                              |
 | |
| | -------------- | ------------------------------------------------------------------------------------------------------------------------ |
 | |
| | `examples`     | A batch of [`Example`](/api/example) objects to learn from. ~~Iterable[Example]~~                                        |
 | |
| | _keyword-only_ |                                                                                                                          |
 | |
| | `drop`         | The dropout rate. ~~float~~                                                                                              |
 | |
| | `sgd`          | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~            |
 | |
| | `losses`       | Optional record of the loss during training. Updated using the component name as the key. ~~Optional[Dict[str, float]]~~ |
 | |
| | **RETURNS**    | The updated `losses` dictionary. ~~Dict[str, float]~~                                                                    |
 | |
| 
 | |
| ## SpanPredictor.create_optimizer {#create_optimizer tag="method"}
 | |
| 
 | |
| Create an optimizer for the pipeline component.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > span_predictor = nlp.add_pipe("span_predictor")
 | |
| > optimizer = span_predictor.create_optimizer()
 | |
| > ```
 | |
| 
 | |
| | Name        | Description                  |
 | |
| | ----------- | ---------------------------- |
 | |
| | **RETURNS** | The optimizer. ~~Optimizer~~ |
 | |
| 
 | |
| ## SpanPredictor.use_params {#use_params tag="method, contextmanager"}
 | |
| 
 | |
| Modify the pipe's model, to use the given parameter values. At the end of the
 | |
| context, the original parameters are restored.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > span_predictor = nlp.add_pipe("span_predictor")
 | |
| > with span_predictor.use_params(optimizer.averages):
 | |
| >     span_predictor.to_disk("/best_model")
 | |
| > ```
 | |
| 
 | |
| | Name     | Description                                        |
 | |
| | -------- | -------------------------------------------------- |
 | |
| | `params` | The parameter values to use in the model. ~~dict~~ |
 | |
| 
 | |
| ## SpanPredictor.to_disk {#to_disk tag="method"}
 | |
| 
 | |
| Serialize the pipe to disk.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > span_predictor = nlp.add_pipe("span_predictor")
 | |
| > span_predictor.to_disk("/path/to/span_predictor")
 | |
| > ```
 | |
| 
 | |
| | Name           | Description                                                                                                                                |
 | |
| | -------------- | ------------------------------------------------------------------------------------------------------------------------------------------ |
 | |
| | `path`         | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
 | |
| | _keyword-only_ |                                                                                                                                            |
 | |
| | `exclude`      | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~                                                |
 | |
| 
 | |
| ## SpanPredictor.from_disk {#from_disk tag="method"}
 | |
| 
 | |
| Load the pipe from disk. Modifies the object in place and returns it.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > span_predictor = nlp.add_pipe("span_predictor")
 | |
| > span_predictor.from_disk("/path/to/span_predictor")
 | |
| > ```
 | |
| 
 | |
| | Name           | Description                                                                                     |
 | |
| | -------------- | ----------------------------------------------------------------------------------------------- |
 | |
| | `path`         | A path to a directory. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
 | |
| | _keyword-only_ |                                                                                                 |
 | |
| | `exclude`      | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~     |
 | |
| | **RETURNS**    | The modified `SpanPredictor` object. ~~SpanPredictor~~                                          |
 | |
| 
 | |
| ## SpanPredictor.to_bytes {#to_bytes tag="method"}
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > span_predictor = nlp.add_pipe("span_predictor")
 | |
| > span_predictor_bytes = span_predictor.to_bytes()
 | |
| > ```
 | |
| 
 | |
| Serialize the pipe to a bytestring.
 | |
| 
 | |
| | Name           | Description                                                                                 |
 | |
| | -------------- | ------------------------------------------------------------------------------------------- |
 | |
| | _keyword-only_ |                                                                                             |
 | |
| | `exclude`      | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
 | |
| | **RETURNS**    | The serialized form of the `SpanPredictor` object. ~~bytes~~                                |
 | |
| 
 | |
| ## SpanPredictor.from_bytes {#from_bytes tag="method"}
 | |
| 
 | |
| Load the pipe from a bytestring. Modifies the object in place and returns it.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > span_predictor_bytes = span_predictor.to_bytes()
 | |
| > span_predictor = nlp.add_pipe("span_predictor")
 | |
| > span_predictor.from_bytes(span_predictor_bytes)
 | |
| > ```
 | |
| 
 | |
| | Name           | Description                                                                                 |
 | |
| | -------------- | ------------------------------------------------------------------------------------------- |
 | |
| | `bytes_data`   | The data to load from. ~~bytes~~                                                            |
 | |
| | _keyword-only_ |                                                                                             |
 | |
| | `exclude`      | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
 | |
| | **RETURNS**    | The `SpanPredictor` object. ~~SpanPredictor~~                                               |
 | |
| 
 | |
| ## Serialization fields {#serialization-fields}
 | |
| 
 | |
| During serialization, spaCy will export several data fields used to restore
 | |
| different aspects of the object. If needed, you can exclude them from
 | |
| serialization by passing in the string names via the `exclude` argument.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > data = span_predictor.to_disk("/path", exclude=["vocab"])
 | |
| > ```
 | |
| 
 | |
| | Name    | Description                                                    |
 | |
| | ------- | -------------------------------------------------------------- |
 | |
| | `vocab` | The shared [`Vocab`](/api/vocab).                              |
 | |
| | `cfg`   | The config file. You usually don't want to exclude this.       |
 | |
| | `model` | The binary model data. You usually don't want to exclude this. |
 |