mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-26 05:31:15 +03:00 
			
		
		
		
	
		
			
				
	
	
		
			318 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			318 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | |
| title: Lemmatizer
 | |
| tag: class
 | |
| source: spacy/pipeline/lemmatizer.py
 | |
| new: 3
 | |
| teaser: 'Pipeline component for lemmatization'
 | |
| api_base_class: /api/pipe
 | |
| api_string_name: lemmatizer
 | |
| api_trainable: false
 | |
| ---
 | |
| 
 | |
| Component for assigning base forms to tokens using rules based on part-of-speech
 | |
| tags, or lookup tables. Functionality to train the component is coming soon.
 | |
| Different [`Language`](/api/language) subclasses can implement their own
 | |
| lemmatizer components via
 | |
| [language-specific factories](/usage/processing-pipelines#factories-language).
 | |
| The default data used is provided by the
 | |
| [`spacy-lookups-data`](https://github.com/explosion/spacy-lookups-data)
 | |
| extension package.
 | |
| 
 | |
| <Infobox variant="warning" title="New in v3.0">
 | |
| 
 | |
| As of v3.0, the `Lemmatizer` is a **standalone pipeline component** that can be
 | |
| added to your pipeline, and not a hidden part of the vocab that runs behind the
 | |
| scenes. This makes it easier to customize how lemmas should be assigned in your
 | |
| pipeline.
 | |
| 
 | |
| If the lemmatization mode is set to `"rule"`, which requires coarse-grained POS
 | |
| (`Token.pos`) to be assigned, make sure a [`Tagger`](/api/tagger),
 | |
| [`Morphologizer`](/api/morphologizer) or another component assigning POS is
 | |
| available in the pipeline and runs _before_ the lemmatizer.
 | |
| 
 | |
| </Infobox>
 | |
| 
 | |
| ## Config and implementation
 | |
| 
 | |
| The default config is defined by the pipeline component factory and describes
 | |
| how the component should be configured. You can override its settings via the
 | |
| `config` argument on [`nlp.add_pipe`](/api/language#add_pipe) or in your
 | |
| [`config.cfg` for training](/usage/training#config). For examples of the lookups
 | |
| data format used by the lookup and rule-based lemmatizers, see
 | |
| [`spacy-lookups-data`](https://github.com/explosion/spacy-lookups-data).
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > config = {"mode": "rule"}
 | |
| > nlp.add_pipe("lemmatizer", config=config)
 | |
| > ```
 | |
| 
 | |
| | Setting     | Description                                                                                                                                               |
 | |
| | ----------- | --------------------------------------------------------------------------------------------------------------------------------------------------------- |
 | |
| | `mode`      | The lemmatizer mode, e.g. `"lookup"` or `"rule"`. Defaults to `lookup` if no language-specific lemmatizer is available (see the following table). ~~str~~ |
 | |
| | `overwrite` | Whether to overwrite existing lemmas. Defaults to `False`. ~~bool~~                                                                                       |
 | |
| | `model`     | **Not yet implemented:** the model to use. ~~Model~~                                                                                                      |
 | |
| 
 | |
| Many languages specify a default lemmatizer mode other than `lookup` if a better
 | |
| lemmatizer is available. The lemmatizer modes `rule` and `pos_lookup` require
 | |
| [`token.pos`](/api/token) from a previous pipeline component (see example
 | |
| pipeline configurations in the
 | |
| [pretrained pipeline design details](/models#design-cnn)) or rely on third-party
 | |
| libraries (`pymorphy2`).
 | |
| 
 | |
| | Language | Default Mode |
 | |
| | -------- | ------------ |
 | |
| | `bn`     | `rule`       |
 | |
| | `ca`     | `pos_lookup` |
 | |
| | `el`     | `rule`       |
 | |
| | `en`     | `rule`       |
 | |
| | `es`     | `rule`       |
 | |
| | `fa`     | `rule`       |
 | |
| | `fr`     | `rule`       |
 | |
| | `it`     | `pos_lookup` |
 | |
| | `mk`     | `rule`       |
 | |
| | `nb`     | `rule`       |
 | |
| | `nl`     | `rule`       |
 | |
| | `pl`     | `pos_lookup` |
 | |
| | `ru`     | `pymorphy2`  |
 | |
| | `sv`     | `rule`       |
 | |
| | `uk`     | `pymorphy2`  |
 | |
| 
 | |
| ```python
 | |
| %%GITHUB_SPACY/spacy/pipeline/lemmatizer.py
 | |
| ```
 | |
| 
 | |
| ## Lemmatizer.\_\_init\_\_ {#init tag="method"}
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > # Construction via add_pipe with default model
 | |
| > lemmatizer = nlp.add_pipe("lemmatizer")
 | |
| >
 | |
| > # Construction via add_pipe with custom settings
 | |
| > config = {"mode": "rule", "overwrite": True}
 | |
| > lemmatizer = nlp.add_pipe("lemmatizer", config=config)
 | |
| > ```
 | |
| 
 | |
| Create a new pipeline instance. In your application, you would normally use a
 | |
| shortcut for this and instantiate the component using its string name and
 | |
| [`nlp.add_pipe`](/api/language#add_pipe).
 | |
| 
 | |
| | Name           | Description                                                                                         |
 | |
| | -------------- | --------------------------------------------------------------------------------------------------- |
 | |
| | `vocab`        | The shared vocabulary. ~~Vocab~~                                                                    |
 | |
| | `model`        | **Not yet implemented:** The model to use. ~~Model~~                                                |
 | |
| | `name`         | String name of the component instance. Used to add entries to the `losses` during training. ~~str~~ |
 | |
| | _keyword-only_ |                                                                                                     |
 | |
| | mode           | The lemmatizer mode, e.g. `"lookup"` or `"rule"`. Defaults to `"lookup"`. ~~str~~                   |
 | |
| | overwrite      | Whether to overwrite existing lemmas. ~~bool~                                                       |
 | |
| 
 | |
| ## Lemmatizer.\_\_call\_\_ {#call tag="method"}
 | |
| 
 | |
| Apply the pipe to one document. The document is modified in place, and returned.
 | |
| This usually happens under the hood when the `nlp` object is called on a text
 | |
| and all pipeline components are applied to the `Doc` in order.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > doc = nlp("This is a sentence.")
 | |
| > lemmatizer = nlp.add_pipe("lemmatizer")
 | |
| > # This usually happens under the hood
 | |
| > processed = lemmatizer(doc)
 | |
| > ```
 | |
| 
 | |
| | Name        | Description                      |
 | |
| | ----------- | -------------------------------- |
 | |
| | `doc`       | The document to process. ~~Doc~~ |
 | |
| | **RETURNS** | The processed document. ~~Doc~~  |
 | |
| 
 | |
| ## Lemmatizer.pipe {#pipe tag="method"}
 | |
| 
 | |
| Apply the pipe to a stream of documents. This usually happens under the hood
 | |
| when the `nlp` object is called on a text and all pipeline components are
 | |
| applied to the `Doc` in order.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > lemmatizer = nlp.add_pipe("lemmatizer")
 | |
| > for doc in lemmatizer.pipe(docs, batch_size=50):
 | |
| >     pass
 | |
| > ```
 | |
| 
 | |
| | Name           | Description                                                   |
 | |
| | -------------- | ------------------------------------------------------------- |
 | |
| | `stream`       | A stream of documents. ~~Iterable[Doc]~~                      |
 | |
| | _keyword-only_ |                                                               |
 | |
| | `batch_size`   | The number of documents to buffer. Defaults to `128`. ~~int~~ |
 | |
| | **YIELDS**     | The processed documents in order. ~~Doc~~                     |
 | |
| 
 | |
| ## Lemmatizer.initialize {#initialize tag="method"}
 | |
| 
 | |
| Initialize the lemmatizer and load any data resources. This method is typically
 | |
| called by [`Language.initialize`](/api/language#initialize) and lets you
 | |
| customize arguments it receives via the
 | |
| [`[initialize.components]`](/api/data-formats#config-initialize) block in the
 | |
| config. The loading only happens during initialization, typically before
 | |
| training. At runtime, all data is loaded from disk.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > lemmatizer = nlp.add_pipe("lemmatizer")
 | |
| > lemmatizer.initialize(lookups=lookups)
 | |
| > ```
 | |
| >
 | |
| > ```ini
 | |
| > ### config.cfg
 | |
| > [initialize.components.lemmatizer]
 | |
| >
 | |
| > [initialize.components.lemmatizer.lookups]
 | |
| > @misc = "load_my_lookups.v1"
 | |
| > ```
 | |
| 
 | |
| | Name           | Description                                                                                                                                                                                                                                                                         |
 | |
| | -------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
 | |
| | `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. Defaults to `None`. ~~Optional[Callable[[], Iterable[Example]]]~~                                                                                                                 |
 | |
| | _keyword-only_ |                                                                                                                                                                                                                                                                                     |
 | |
| | `nlp`          | The current `nlp` object. Defaults to `None`. ~~Optional[Language]~~                                                                                                                                                                                                                |
 | |
| | `lookups`      | The lookups object containing the tables such as `"lemma_rules"`, `"lemma_index"`, `"lemma_exc"` and `"lemma_lookup"`. If `None`, default tables are loaded from [`spacy-lookups-data`](https://github.com/explosion/spacy-lookups-data). Defaults to `None`. ~~Optional[Lookups]~~ |
 | |
| 
 | |
| ## Lemmatizer.lookup_lemmatize {#lookup_lemmatize tag="method"}
 | |
| 
 | |
| Lemmatize a token using a lookup-based approach. If no lemma is found, the
 | |
| original string is returned.
 | |
| 
 | |
| | Name        | Description                                         |
 | |
| | ----------- | --------------------------------------------------- |
 | |
| | `token`     | The token to lemmatize. ~~Token~~                   |
 | |
| | **RETURNS** | A list containing one or more lemmas. ~~List[str]~~ |
 | |
| 
 | |
| ## Lemmatizer.rule_lemmatize {#rule_lemmatize tag="method"}
 | |
| 
 | |
| Lemmatize a token using a rule-based approach. Typically relies on POS tags.
 | |
| 
 | |
| | Name        | Description                                         |
 | |
| | ----------- | --------------------------------------------------- |
 | |
| | `token`     | The token to lemmatize. ~~Token~~                   |
 | |
| | **RETURNS** | A list containing one or more lemmas. ~~List[str]~~ |
 | |
| 
 | |
| ## Lemmatizer.is_base_form {#is_base_form tag="method"}
 | |
| 
 | |
| Check whether we're dealing with an uninflected paradigm, so we can avoid
 | |
| lemmatization entirely.
 | |
| 
 | |
| | Name        | Description                                                                                                      |
 | |
| | ----------- | ---------------------------------------------------------------------------------------------------------------- |
 | |
| | `token`     | The token to analyze. ~~Token~~                                                                                  |
 | |
| | **RETURNS** | Whether the token's attributes (e.g., part-of-speech tag, morphological features) describe a base form. ~~bool~~ |
 | |
| 
 | |
| ## Lemmatizer.get_lookups_config {#get_lookups_config tag="classmethod"}
 | |
| 
 | |
| Returns the lookups configuration settings for a given mode for use in
 | |
| [`Lemmatizer.load_lookups`](/api/lemmatizer#load_lookups).
 | |
| 
 | |
| | Name        | Description                                                                            |
 | |
| | ----------- | -------------------------------------------------------------------------------------- |
 | |
| | `mode`      | The lemmatizer mode. ~~str~~                                                           |
 | |
| | **RETURNS** | The required table names and the optional table names. ~~Tuple[List[str], List[str]]~~ |
 | |
| 
 | |
| ## Lemmatizer.to_disk {#to_disk tag="method"}
 | |
| 
 | |
| Serialize the pipe to disk.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > lemmatizer = nlp.add_pipe("lemmatizer")
 | |
| > lemmatizer.to_disk("/path/to/lemmatizer")
 | |
| > ```
 | |
| 
 | |
| | Name           | Description                                                                                                                                |
 | |
| | -------------- | ------------------------------------------------------------------------------------------------------------------------------------------ |
 | |
| | `path`         | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
 | |
| | _keyword-only_ |                                                                                                                                            |
 | |
| | `exclude`      | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~                                                |
 | |
| 
 | |
| ## Lemmatizer.from_disk {#from_disk tag="method"}
 | |
| 
 | |
| Load the pipe from disk. Modifies the object in place and returns it.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > lemmatizer = nlp.add_pipe("lemmatizer")
 | |
| > lemmatizer.from_disk("/path/to/lemmatizer")
 | |
| > ```
 | |
| 
 | |
| | Name           | Description                                                                                     |
 | |
| | -------------- | ----------------------------------------------------------------------------------------------- |
 | |
| | `path`         | A path to a directory. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
 | |
| | _keyword-only_ |                                                                                                 |
 | |
| | `exclude`      | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~     |
 | |
| | **RETURNS**    | The modified `Lemmatizer` object. ~~Lemmatizer~~                                                |
 | |
| 
 | |
| ## Lemmatizer.to_bytes {#to_bytes tag="method"}
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > lemmatizer = nlp.add_pipe("lemmatizer")
 | |
| > lemmatizer_bytes = lemmatizer.to_bytes()
 | |
| > ```
 | |
| 
 | |
| Serialize the pipe to a bytestring.
 | |
| 
 | |
| | Name           | Description                                                                                 |
 | |
| | -------------- | ------------------------------------------------------------------------------------------- |
 | |
| | _keyword-only_ |                                                                                             |
 | |
| | `exclude`      | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
 | |
| | **RETURNS**    | The serialized form of the `Lemmatizer` object. ~~bytes~~                                   |
 | |
| 
 | |
| ## Lemmatizer.from_bytes {#from_bytes tag="method"}
 | |
| 
 | |
| Load the pipe from a bytestring. Modifies the object in place and returns it.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > lemmatizer_bytes = lemmatizer.to_bytes()
 | |
| > lemmatizer = nlp.add_pipe("lemmatizer")
 | |
| > lemmatizer.from_bytes(lemmatizer_bytes)
 | |
| > ```
 | |
| 
 | |
| | Name           | Description                                                                                 |
 | |
| | -------------- | ------------------------------------------------------------------------------------------- |
 | |
| | `bytes_data`   | The data to load from. ~~bytes~~                                                            |
 | |
| | _keyword-only_ |                                                                                             |
 | |
| | `exclude`      | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
 | |
| | **RETURNS**    | The `Lemmatizer` object. ~~Lemmatizer~~                                                     |
 | |
| 
 | |
| ## Attributes {#attributes}
 | |
| 
 | |
| | Name      | Description                                 |
 | |
| | --------- | ------------------------------------------- |
 | |
| | `vocab`   | The shared [`Vocab`](/api/vocab). ~~Vocab~~ |
 | |
| | `lookups` | The lookups object. ~~Lookups~~             |
 | |
| | `mode`    | The lemmatizer mode. ~~str~~                |
 | |
| 
 | |
| ## Serialization fields {#serialization-fields}
 | |
| 
 | |
| During serialization, spaCy will export several data fields used to restore
 | |
| different aspects of the object. If needed, you can exclude them from
 | |
| serialization by passing in the string names via the `exclude` argument.
 | |
| 
 | |
| > #### Example
 | |
| >
 | |
| > ```python
 | |
| > data = lemmatizer.to_disk("/path", exclude=["vocab"])
 | |
| > ```
 | |
| 
 | |
| | Name      | Description                                          |
 | |
| | --------- | ---------------------------------------------------- |
 | |
| | `vocab`   | The shared [`Vocab`](/api/vocab).                    |
 | |
| | `lookups` | The lookups. You usually don't want to exclude this. |
 |